Browse Topic: Exterior lighting
Headlight glare remains a persistent problem to the U.S. driving public. Over the past 30 years, vehicle forward lighting and signaling systems have evolved dramatically in terms of styling and lighting technologies used. Importantly, vehicles driven in the U.S. have increased in size during this time as the proportion of pickup trucks and sport-utility vehicles (SUVs) has increased relative to passenger sedans and other lower-height vehicles. Accordingly, estimates of typical driver eye height and the height of lighting and signaling equipment on vehicles from one or two decades ago are unlikely to represent the characteristics of current vehicles in the U.S. automotive market. In the present study we surveyed the most popular vehicles sold in the U.S. and carried out evaluations of the heights of lighting and signaling systems, as well as typical driver eye heights based on male and female drivers. These data may be of use to those interested in understanding how exposure to vehicle
This SAE Recommended Practice provides the lighting function identification codes for use on all passenger vehicles, trucks, trailers, motorcycles, and emergency vehicles.
This SAE Recommended Practice provides standardized laboratory tests, test methods, and performance requirements applicable to signal and marking devices used on vehicles 2032 mm or more in overall width.
This document includes requirements of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet/turbofan e Military high-performance fighter and attack f Helicopter This document will cover general requirements and recommended practices for all types of landing and taxi lights. More specific recommendations for LED lights in particular can be found in ARP6402.
This SAE Standard provides test procedures, requirements, and guidelines for a parking lamp.
Sensata Technologies' booth at this year's IAA Transportation tradeshow included two of the company's Precor radar sensors. The PreView STA79 is a heavy-duty vehicle side-monitoring system launched in May 2024 and designed to comply with Europe-wide blind spot monitoring legislation introduced in June 2024. The PreView Sentry 79 is a front- and rear-monitoring system. Both systems operate on the 79-GHz band as the nomenclature suggests. PreView STA79 can cover up to three vehicle zones: a configurable center zone, which can monitor the length of the vehicle, and two further zones that can be independently set to align with individual customer needs. The system offers a 180-degree field of view to eliminate blind spots along the vehicle sides and a built-in measurement unit that will increase the alert level when turning toward an object even when the turn indicator is not used. The system also features trailer mitigation to reduce false positive alerts on the trailer when turning. The
The information in this document is intended to apply to commercial jet transport category airplanes that incorporate plastic (polycarbonate or acrylic) lenses on exterior light assemblies, or are being considered for such an application as opposed to glass lens designs. Exterior lighting applications include position light assemblies, anticollision light asemblies, and landing light assemblies. However, much of the material provided herein is general in nature and is directly applicable to many aircraft categories including, but not limited to, helicopters, general aviation aircraft, and military aircraft.
The scope of this SAE Aerospace Information Report (AIR) is to discuss factors affecting visibility of aircraft navigation and anticollision lights, enabling those concerned with their use to have a better technical understanding of such factors, and to aid in exercising appropriate judgment in the many possible flight eventualities.
This SAE Standard provides requirements, test procedures, and installation guidelines for clearance, sidemarker, and identification lamps intended for use on vehicles 2032 mm or more in overall width. Sidemarker lamps conforming to the requirements of this document may also be used on vehicles less than 2032 mm in overall width.
This SAE Standard provides test procedures, requirements, and guidelines for motorcycle turn signal lamps. It does not apply to mopeds.
This SAE Recommended Practice applies to motor vehicle Forward Illumination Devices which incorporate limited adaptive beam pattern capabilities. This document is to be used in conjunction with other forward lighting standards and/or recommended practices which define the base beam procedures, requirements, and guidelines.
To provide specifications for lighting and marking of industrial wheeled equipment whenever such equipment is operated or traveling on a highway.
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device specific tests and requirements can be found in applicable SAE technical reports.
This SAE Standard provides test procedures, requirements, and guidelines for stop lamps intended for use on vehicles of less than, equal to, or greater than 2032 mm in overall width.
This SAE Recommended Practice provides the methods of measurements for electrical and photometric characteristics of LED packages. It provides procedures, requirements, and guidelines for the methods of the measurement of luminous flux and color maintenance of LED devices (packages, arrays, and modules) for ground vehicle lighting applications.
This SAE Standard establishes minimum requirements for lighting and marking earthmoving work machinery as defined in SAE J1116. It may be used as guidance for other types of machinery. Earthmoving work machines are normally operated off-highway. Therefore, this SAE document is not intended to be used as a basis for regulations by those having authority over on-highway motor vehicles.
To ensure adequate visibility without excessive glare, vehicle headlights are designed to use a specific source of illumination. The optical designs of headlights gather the luminous flux produced by the light source to produce a useful beam pattern that meets the relevant requirements and standards for vehicle forward lighting. With the advent of solid state, light emitting diode sources for general illumination, an increasing number of LED replacement headlight bulb products has emerged over the past decade. In most cases, these LED replacement bulbs are not permitted for legal use on public roadways, but some countries have begun to permit specific LED replacement bulbs to be used legally on the road for specific makes, models and production years of certain vehicles. If they can be demonstrated to produce a beam pattern that meets the photometric requirements for a legal headlight, they are permitted to be used legally for on-road use. In the present paper we present photometric
This document includes recommendations of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet e Military high-performance fighter and attack f Helicopter g Electric Vertical Takeoff and Landing (EVTOL) and Urban Air Mobility (UAM)
Trends in automotive lighting are moving toward vehicle exterior lights, which will communicate with drivers and surroundings. The small size, lower power consumption, high efficiency, and substantially long life make LEDs a leading light source in automotive lighting applications. Losses in optical power for InGaN-based LEDs can be reduced up to 45% compared to AlGaInP, and phosphor-converted color LEDs can contribute to stable light output over the lifetime. Color LEDs will fulfill different requirements such as uniformity in color and luminance. Additionally, the mixing of different colors with white will underline the exterior features and aesthetic design of vehicles.
This SAE Standard provides test methods, performance requirements, installation requirements, and guidelines for snowmobile headlamps.
This SAE Standard provides general design performance requirements and related test procedures for composite lighting unit assemblies, other than signaling and marking devices, used on earthmoving and road building and maintenance off-road work machines as defined in SAE J1116.
Headlamps should illuminate the traffic scene ahead of the vehicle in such a way that the driver can operate the vehicle safely and in a relaxed manner. At the same time, negative effects on drivers of other vehicles, pedestrians and other people should be minimized. Various technical parameters such as beam pattern, mounting height, headlamp aiming, and source spectrum can be tuned to find the necessary compromise. The physiology of the vision system under specific nighttime conditions strongly influences these factors and how headlamps can be best optimized for visibility and comfort. The SAE Improved Roadway Illumination task force collected and reviewed relevant research on these topics. This document is a comprehensive summary of this information. The goal is to enable lighting experts, advocacy groups, and non-experts (journalists, consumer organizations, car drivers) to better understand the benefits and tradeoffs of improved roadway lighting with modern headlamp technology. It
As new headlight technologies begin to take hold in vehicular forward lighting systems and they become more commonplace on vehicles, new frameworks for evaluating the performance of these systems are being developed and promulgated. The objective of each of these systems is the same, namely, improving safety by ensuring that vehicle lighting provides sufficient visibility for drivers without negative impacts such as glare. Recent research has shown the direct link between improved driver visibility and reduced nighttime crashes. To the extent that headlight evaluation systems can be compared using visual performance modeling approaches, it should be possible to relate improved visibility from high-performing headlight systems to the potential for reduced nighttime crashes. In the present paper we demonstrate how visual performance modeling in conjunction with vehicle headlight evaluations can lead to predictions of improved safety and ultimately, beneficial economic impacts to society.
When designing new vehicles, the legal requirements of the countries in which the vehicles are homologated must be observed and implemented. The manufacturers try to consider the legal framework of the UN-ECE (United Nations Economic Commission for Europe), CCC (China Compulsory Certification) and FMVSS (Federal Motor Vehicle Safety Standard) 108 in the same vehicle to keep the variance low. For the appearance of the vehicle, the position of the light modules in the front of the vehicle is important. In addition to the surface requirements of lighting functions, the positions of the low beam (LB), high beam (HB) and the position of daytime running lights (DRL) are also regulated. When it comes to these mounting positions, the legislation between the US and the EU differs quite significantly. The UN-ECE legal framework does not describe the distance between the left and right Adaptive Front Lighting System with a certain value, but only requires the distance to the outer edge of the
Items per page:
50
1 – 50 of 1518