Browse Topic: Bodies and Structures

Items (11,677)
This SAE Standard provides test procedures, performance requirements, and guidelines for semiautomatic headlamp beam switching (SHBSD) devices.
Road Illumination Devices Standards Committee
Aiming at the problem of efficiency loss caused by the independent optimization of traditional vehicle - cargo matching and route planning, this paper proposes a spatio - temporal collaborative optimization model. By constructing three - dimensional decision variables to describe the “vehicle - cargo - route” mapping relationship, a multi - objective mixed - integer programming model considering transportation costs, time - window constraints, and carbon emissions is established. An improved NSGA - II algorithm is designed to solve the Pareto optimal solution set, and the TOPSIS method is combined to achieve scheme optimization. Experiments show that the collaborative optimization model reduces the comprehensive cost by an average of 12.7% and the vehicle empty - running rate by 18.4% compared with the traditional two - stage method.
Yang, MeiruLiu, Jian
To address the high security demands of HSR communication, this letter proposes a covert communication scheme using irregular intelligent transparent surfaces (ITSs) deployed on train windows. A joint optimization framework is developed to enhance covert rate under element constraints, involving ATS for topology design and NECE for beamforming and phase shift. Gradient descent is used to handle covert constraints. Simulations confirm that the proposed irregular ITS outperforms regular ITS in performance and robustness, offering a promising solution for future HSR covert communication.
Jia, JingwenGao, YunboXie, Jianli
Based on the TOD (Transit-Oriented Development) concept, this paper addresses the “last mile” issue in urban public transportation. It proposes a multidimensional decision-making model for identifying micro-circulation bus route areas. By integrating indicators such as the TOD comprehensive index, short-distance demand intensity, and branch network density, relevant data is processed using FME linking ArcGIS. The model combines entropy-weighted TOPSIS and unsupervised consensus clustering analysis techniques, utilizing ArcGIS spatial analysis functions to accurately identify priority deployment areas for micro-circulation buses. Taking Jiangbei District in Chongqing as an example, the model divides the study area into four types of traffic zones: (1) Core high-density areas, which require an increase in micro-circulation bus routes due to extremely high short-distance travel demand; (2) Periphery active population areas, which require flexible shuttle services due to transit gaps and
Jiang, TaoJia, XiaoyanLi, Jie
This paper introduces a comprehensive solution for predictive maintenance, utilizing statistical data and analytics. The proposed Service Planner feature offers customers real-time insights into the health of machine or vehicle parts and their replacement schedules. By referencing data from service stations and manufacturer advisories, the Service Planner assesses the current health and estimated lifespan of parts based on metrics such as days, engine hours, kilometers, and statistical data. This approach integrates predictive analytics, cost estimation, and service planning to reduce unplanned downtime and improve maintenance budgeting, aligning with SAE expectations for review-ready manuscripts. The user interface displays current part health, replacement due dates, and estimated replacement costs. For example, if air filter replacement is recommended every six months, the solution uses manufacturer advisories to estimate the remaining life of the air filter in terms of days or
Chaudhari, Hemant Ashok
In the electrical machines, detrimental effects resulted often due to the overheating, such as insulation material degradation, demagnetization of the magnet and increased Joule losses which result in decreased lifetime, and reduced efficiency of the motor. Hence, by effective cooling methods, it is vital to optimize the reliability and performance of the electric motors and to reduce the maintenance and operating costs. This study brings the analysis capability of CFD for the air-cooling of an Electric-Motor (E-Motor) powering on Deere Equipment's. With the aggressive focus on electrification in agriculture domain and based on industry needs of tackling rising global warming, there is an increasing need of CFD modeling to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors.
Singh, BhuvaneshwarTirumala, BhaskarBadgujar, SwapnilHK, Shashikiran
This paper focuses on defining the optimal length of rear axle brake lines (flexible polyamide tubes) for commercial vehicles by simulating the lines digitally by considering tube behavior and various axle articulation conditions. Currently, the length of rear axle brake lines are predominantly defined with the help of a physical mockup by articulating axle conditions in a vehicle. This approach requires actual components such as frame, axle, suspension, etc., which consumes considerable time and cost. Through technological advancements, prototyping can be reduced and convergence on digital to build can be achieved through digital simulation. This paper explores tube properties, axle configurations and definitions, and various methods of digitally simulating line articulation. Boundary conditions, space reservations and design criteria for pneumatic routing are defined for the type of line designed. Digital simulation of rear axle brake lines articulation was performed and compared
Duraiswamy, RupeshSankaran, BhargavRaj, Santhosh
Modern automotive systems generate a wide range of audio-based signals, such as indicator chimes, turn signals, infotainment system audio, navigation prompts, and warning alerts, to facilitate communication between the vehicle and its occupants. Accurate Classification and transcription of this audio is important for refining driver aid systems, safety features, and infotainment automation. This paper introduces an AI/ML-powered technique for audio classification and transcription in automotive environments. The proposed solution employs a hybrid deep learning architecture that leverages convolutional neural networks (CNNs) and recurrent neural networks (RNNs), trained using labeled audio samples. Moreover, an Automatic Speech Recognition (ASR) model is integrated for transcribing spoken navigation prompts and commands from infotainment systems. The proposed system delivers reliable results in real-time audio classification and transcription, facilitating better automation and
Singh, ShwethaKamble, AmitMohanty, AnantaKalidas, Sateesh
The first step in designing or analyzing any structure is to understand “right” set of loads. Typically, off-road vehicles have many access doors for service or getting into cab etc. Design of these doors and their latches involve a knowledge of the loads arising when the door is shut which usually involves an impact of varying magnitudes. In scenarios of these impact events, where there is sudden change of velocity within few milliseconds, produces high magnitude of loads on structures. One common way of estimating these loads using hand calculations involves evaluating the rate-of-change-of-momentum. However, this calculation needs “duration of impact”, and it is seldom known/difficult to estimate. Failing to capture duration of impact event will change load magnitudes drastically, e.g. load gets doubled if time-of-impact gets reduced from 0.2 to 0.1 seconds and subsequently fatigue life of the components in “Door-closing-event” gets reduce by ~7 times. For these problems, structures
Valkunde, SangramGhate, AmitGagare, Kiran
To ensure the effective operation of engine cooling systems in agricultural tractors, several critical parameters must be considered, including grille opening area and location, grille resistance, front-end blockage, fan speed, and coolant flow rate. While grille design has been moderately explored for highway vehicles, research specific to grille configuration in agricultural tractors remains limited. This study investigates the influence of grille location, grille resistance (modeled using porous inertial and viscous resistance coefficients) front-end blockage, fan speed, and coolant flow rate on radiator top tank temperature (TTT) using Computational Fluid Dynamics (CFD). The analysis is conducted in two phases: first, the effects of grille opening area and location, grille resistance, and front-end blockage are evaluated under fixed fan speed and coolant flow rate; second, an orthogonal array design of experiments is employed to rank the influence of grille opening area, fan speed
Subramani, SridharanBaskar, SubramaniyanGopinathan, Nagarajan
A futuristic vehicle chassis rendered in precise detail using state-of-the-art CAD software like Blender, Autodesk Alias. The chassis itself is sleek, low-slung, and aerodynamic, constructed from advanced materials such as high-strength alloys or carbon-fibre composites. Its polished, brushed-metal finish not only exudes performance but also emphasizes the refined form and engineered details. Underneath this visually captivating structure, a sophisticated system of self-hydraulic jacks is seamlessly integrated. These jacks are situated adjacent to the four shock absorber mounts. These jacks are designed to lift the chassis specifically at the tyre areas, and the total vehicle, ensuring that underbody maintenance is efficient and that, in critical situations, vital adjustments or emergency lifts can be performed quickly and safely. The design also incorporates an intuitive control system where the necessary buttons are strategically placed to optimize driver convenience. Whether
Gogula, Venkateswarlu
India, being one of the largest automotive markets has considered various policies affecting fuel efficiency to curb vehicle carbon emissions. In a typical light-duty vehicle (LDV), around 20% of the fuel's energy is used to power the wheels and overcome aerodynamic drag resistance. Aerodynamic drag resistance, influenced by the projected surface area, cooling drag and velocity refers to the resistive force encountered by the vehicle. Furthermore, cooling drag resistance is determined by the effective cooling system architecture and aerodynamic design of the front-end module (FEM), which has major impact on the vehicle's performance and ram curve. In the pursuit of enhancing cooling system architecture, this paper investigates thermal performance and structural integrity of using common fins for both the condenser and radiator to improve the inlet aerodynamic performance which lowers cooling fan power consumption. Preliminary results show a 12% notable reduction in motor power
K, MuthukrishnanVijayaraj, Jayanth MuraliN, AswinNarashimagounder, ThailappanMahobia, Tanmay
This paper presents a comprehensive overview of the methodology employed in leveraging CFD for optimizing HVAC kinematics, focusing on reducing the operating torque by improvising the flap geometry. The aim here is to utilize the CFD simulation in order to predict the torque generated on the actuator motor connected to the flap when the flap is placed in high speed airflow and based on this value work out an optimized geometry of the flap, since its geometry plays a significant role when it comes to determining the torque values. Different flap geometry imparts different torque on motor. This torque is generated because of the force acting on the flap which is acting as a buffer in the path of airflow. The torque generated should be less than the stall torque of the actuator motor in order for smooth performance/movement of the flap. Initial geometry of the flap generated a torque of around 82.5 Ncm which was much higher than the recommendation limit. So in order to bring these torque
Madaan, AshishKumar, RaviBehera, SureshChauhan, Arpit
This study explores the application of Particleworks, a meshless CFD solver based on the Moving Particle Simulation (MPS) method, for simulating hydraulic retarders. Two distinct models were used: one for validating physical fidelity and another for conducting performance-focused design investigations. Validation results demonstrated that Particleworks closely aligns with experimental data from the reference literature, effectively capturing torque variations with rotor speed effect. A sensitivity study also emphasized the importance of particle resolution on accuracy and computational cost. Design studies using an in-house hydraulic retarder model assessed the influence of flow rate, rotor speed, working fluid, temperature, and cup geometry on braking torque. Notably, torque increased with rotor speed and steeper cup angles, while thermal effects and fluid properties significantly impacted performance trends. Comparative analysis with Star-CCM+ showed that Particleworks offers similar
Kumar, Kamal S.Chaudhari, Gunjan B.
Efficient clearing of frost formed on automotive side window glass during cold conditions is crucial for maintaining visibility and ensuring passenger safety. Conventional systems often employ dedicated side demisters, which increase system complexity, production costs and vehicle weight. This study explores an alternative approach to defrosting side window glass by optimizing airflow from the defroster, thus eliminating the need for separate side demisters. The Study leverages optimized airflow dynamics and strategic design of defroster to direct a portion of the air towards the side glass. Computational Fluid Dynamics (CFD) simulations and actual Tests to analyze the airflow patterns, temperature gradients, and defrosting efficiency of this configuration. Results indicate that the front defroster airflow can effectively clear frost from the side windows, achieving comparable performance to conventional side demisters. Key design parameters, including defroster geometry and airflow
Kushwaha, MayankBhangale, ShekharMittal, SachinKumar, MukeshUmbarkar, Shriganesh
A battery bicycle with luggage space is designed and developed to have variable luggage space available to the rider. The developed design with bicycle frame has an innovative sideway moving frame for variable need-based space. The design was prepared for an e-commerce delivery application, suppling products through an easy, quick, and low-cost mode of transport with variable spacing options. The design was prepared for 160 kg weight, with 210 cm, 90 cm, and 35 cm as length height and width, respectively. The designed bicycle can carry luggage up to 100 kg. The design is powered by a 250-watt electric motor and can move with a maximum speed of 24 km/hr. The steering mechanism, cargo bucket, and the base frame are made in two parts for commuter convenience. The cargo bucket is front-mounted, on a sliding frame that enables one half of the bucket to be slid into the other half through sideways movement by fitted channels. The design has both electric and non-electric driving modes. The
Vashist, DevendraSatti, HarshAwasthi, A.KMUKHERJEE, SOURAV
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
Pawar, SourabhSharma, ShantanuSingh, Ramanand
This study establishes models of airport vertical navigation lights and aircraft vulnerable components (wings and landing gear) using SOLIDWORKS. Based on the frangibility standards for airport navigation facilities, the control dimensions of the circular tube model for navigation lights are determined. Numerical simulations are conducted in ANSYS Workbench to analyze collisions between aircraft wings/landing gear and navigation lights under three different velocity conditions. Internal energy analysis, bidirectional force response, and stress nephograms during the impact process are evaluated. The results indicate that current standards ensure that collisions with vertical navigation lights during takeoff and landing do not cause deformation or damage to aircraft vulnerable components, thereby guaranteeing the safety of aircraft and pilots.
Wang, JianwuSong, XiaoboWei, YanLiu, HongweiYou, ShengnanSun, Jinkun
Items per page:
1 – 50 of 11677