Browse Topic: Bodies and Structures

Items (11,628)
Urban road traffic state classification is essential for identifying early-stage deterioration and enabling proactive traffic management. This study presents a novel method to accurately assess the traffic state of urban roads while addressing the limitations of existing methods in spatial generalization performance. The approach consists of three key components. First, several indicators are designed to capture the spatial-temporal evolution mechanisms of traffic state, speed freedom, flow saturation, and their variations over time and space. Then, a feature learning module based on an AutoEncoder network is introduced to reduce the dimensionality of the constructed feature set. This enhances feature distinction while mitigating noise effects on classification results. Third, k-means clustering is applied to analyze significant features extracted from the AutoEncoder latent space, categorizing road traffic states into fluent, basic fluent, moderate congested and severe congested
Wang, XiaocongHuang, MinGuo, XinlingXie, JieminZhang, Xiaolan
This study establishes models of airport vertical navigation lights and aircraft vulnerable components (wings and landing gear) using SOLIDWORKS. Based on the frangibility standards for airport navigation facilities, the control dimensions of the circular tube model for navigation lights are determined. Numerical simulations are conducted in ANSYS Workbench to analyze collisions between aircraft wings/landing gear and navigation lights under three different velocity conditions. Internal energy analysis, bidirectional force response, and stress nephograms during the impact process are evaluated. The results indicate that current standards ensure that collisions with vertical navigation lights during takeoff and landing do not cause deformation or damage to aircraft vulnerable components, thereby guaranteeing the safety of aircraft and pilots.
Wang, JianwuSong, XiaoboWei, YanLiu, HongweiYou, ShengnanSun, Jinkun
Reliable antenna performance is crucial for aircraft communication, navigation, and radar detection systems. However, an aircraft's structure can detune the antenna input impedance and obstruct radiation, creating a range of potential problems from a low-quality experience for passengers who increasingly expect connectivity while in the air, to violating legal requirements around strict compliance standards. Determining appropriate antenna placement during the design phase can reduce risk of costly problems arising during physical testing stages. Engineers traditionally use a variety of CAD and electromagnetic simulation tools to design and analyze antennas. The use of multiple software tools, combined with globally distributed aircraft development teams, can result in challenges related to sharing models, transferring data, and maintaining the associativity of design and simulation results. To address these challenges, aircraft OEMs and suppliers are implementing unified modeling and
This SAE Recommended Practice provides test procedures, performance requirements, and guidelines for cargo lamps intended for use on vehicles under 5443 kg (12000 pounds) Gross Vehicle Weight Rating (GVWR).
Signaling and Marking Devices Stds Comm
This SAE Aerospace Standard (AS) establishes minimum performance standards for new equipment anticollision light systems. This Aerospace Standard defines minimum light intensity in terms of "effective intensity" as defined in paragraph 3.5 of this standard and specified vertical and horizontal directions about the longitudinal and vertical axis of the airplane. It will also define flash rate and color for the anticollision light system. It is not intended that this standard require the use of any particular light source such as Xenon, LED or any other specific design of lamp.
A-20B Exterior Lighting Committee
This SAE Aerospace Information Report (AIR) provides general guidance for design considerations and qualification in endurance, strength, and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107B.
A-5B Gears, Struts and Couplings Committee
Time-Sensitive Networking (TSN) enhances Ethernet with features such as time synchronization, scheduled traffic, policing, and redundancy to enable highly deterministic and reliable communications in mission-critical systems. This paper presents a comprehensive approach to the configuration, analysis, and verification of TSN for critical systems, with a focus on time-sensitive applications such as tank barrel stabilization. The impact of different types of topologies, traffic types, and application requirements on the configuration complexity are presented along with various mathematical techniques to generate network solutions and verify against the system requirements. Detailed modeling, configuration, and analysis of TSN is demonstrated using a representative mixed criticality converged network. Lastly, configuration techniques to minimize the latency, jitter, and frame loss while maximizing the network utilization are presented.
Bush, Stephen F.Jabbar, Abdul
This paper presents the development of an alternative to the traditional multichannel Fiber Optic Rotary Joint (FORJ) using spatial division multiplexing. The proposed solution utilizes phase plates assembly in a compact housing made by a French optical communications company called Cailabs. It is distinguished from conventional multichannel technologies that rely on Dove prisms or wavelength multiplexing by using the housing of a single channel Fiber Optic Rotary Joint (FORJ) without needing strong constraint on the choice of optical transceivers. Our research focused on characterizing the specific mechanical parameters required to transfer optical modes from the rotor to the stator without deformation or misalignment of those. Three test campaigns were conducted, each with iterative improvements. The latest results demonstrate commercially viable performance for transmission of 3G-SDI video stream on up to 6 channels.
Berard, ElliotLarousse, SébastienAutebert, ClaireLe Guennic, TangiDenolle, BertrandOcchipinti, David
This Aerospace Recommended Practice provides guidance for designers and specifiers of aircraft exterior lighting. Typical causes of light degradation and methods of predicting performance degradation in the aircraft environment are given. Although the document considers only exterior lighting, many of the principles and methods discussed apply to interior or flight deck lighting as well.
A-20B Exterior Lighting Committee
In the present article it is investigated why active grille shutters (AGS) can have very different aerodynamic characteristics, ranging from progressive to strongly degressive, and which factors influence them. For this purpose, the authority concept known from the field of heating, ventilation, and air-conditioning (HVAC) is referred to. According to this theory, the control characteristics of dampers depend primarily on the ratio of the pressure losses at the fully open damper to the pressure losses of the rest of the system. The adaptation of the concept to the automotive field shows that, in addition to the pressure losses, the geometry of the cooling air ducting plays a decisive role in motor vehicles. The effect of driving speed and fan operation on the characteristic curves is also being investigated. In addition, authority theory can also be used to derive the conditions under which the opening characteristic curve of an AGS provides a good prediction of the real characteristic
Wolf, Thomas
In this article, the authors present the various choices made to design a magnet free and directly recyclable pure synchro-reluctant (Pure-SynRel) machine with asymmetrical poles operating at a maximum speed of ~21,000 rpm dedicated to automotive. This project focused on identifying design levers and optimizing the magnetic circuit to address three well-known challenges of this topology that limit its application as an automotive traction machine. These challenges include: maximizing the power factor to reduce inverter rating and cost, minimizing sources of NVH (noise, vibration, and harshness) and torque ripples, and ultimately maximizing efficiency to bridge the performance gap with magnet-based technologies (PMaSynRel). The sizing of stator components—such as the choice of winding (concentric or distributed, full or fractional pitch, round or hairpin wire)—and rotor components (e.g., the number of pole pairs, shape, and number of barriers) are explained. Additionally, the
Applagnat-Tartet, AntoineMilosavljevic, MisaDelpit, Pierre
The rapid development of electric mobility leads to improve the performance of all the powertrain components. There is still a high need to maximize their efficiency for autonomy reasons, but weight and volume are critical parameters for automotive, aeronautic or train applications. This paper focuses on electrical machines, especially the permanent magnet synchronous axial flux motors (PMSAFM) which offer advantages in terms of power density and volumetric electromagnetic torque. The paper proposes a panorama of solutions for designing such a motor, with an application case to 100 kW – 10000 rpm, and an objective of 12 kW/kg at steady state. Obtaining such a power density can be obtained by optimizing the design, by boosting the current, using a high DC voltage, choosing a high-performance electrical steel and adapted permanent magnets, etc). For the PMSAFM topologies several configurations can be considered, and the authors show that a double rotor PMSAFM surface-mounted magnets
Lecointe, Jean-PhilippeHebri, MohamedBauw, GrégoryFawaz, SaraDuchesne, StéphaneZito, GianlucaABDELLI, AbdenourARSLANE, Idir
Knowing the magnetic flux inside an electric machine can provide valuable information, as it allows for monitoring the actual behavior of the motor during operation. This leads to more accurate torque delivery and enables prognostic and state-of-health analyses. By integrating Hall-effect sensors inside an e-motor, it is possible to measure the magnetic flux and gain all the benefits from this information, such as accurate torque, rotor position and speed, and magnets' temperature. This paper describes the design of an e-motor with an integrated flux sensing array (ISA), including all surrounding models and software solutions for efficient motor control, integrating health monitoring and failure prevention. The focus is on the analyses performed to estimate the magnetic flux linkage and determine the optimal sensor placement, the control architectures that can benefit from a more accurate flux estimation, and the design of the e-machine to integrate the flux sensors. The aim is to
Capitanio, AlessandroSala, GiadaEsmaeilnia, AliGarcia de Madinabeitia, InigoPastore, AndreaTranchero, MaurizioFranceschini, GiovanniSaur, Michael
Micro gas turbines are gaining renewed interest as range-extender engines in hybrid vehicles due to their superior power-to-weight ratio, fuel flexibility, and robust steady-state performance. However, their widespread adoption is hindered by modest efficiency and high component costs, particularly from recuperators. This study investigates the thermodynamic performance enhancement of two commercial micro gas turbines, the Capstone C-30 and C-60, through wave rotor integration as a topping device. Using Aspen Plus and Aspen Custom Modeler, three configurations were analyzed: a recuperated engine with a single wave rotor, and unrecuperated engines with a single and two cascaded wave rotors, respectively. Key performance metrics—including brake thermal efficiency, specific fuel consumption, and specific work—were evaluated across a range of wave rotor pressure ratios. Results show that the wave rotor significantly improves power output and pressure ratio while maintaining or improving
Babaji, BadamasiKenkoh, Kesty YongTurner, James W.G.
This study presents a comprehensive methodology for the design and optimization of hybrid electric powertrains across multiple vehicle segments and electrification levels. A full-factorial simulation framework was developed in MATLAB/Simulink, featuring a modular, physics-based vehicle model combined with a backward simulation approach and an ECMS (Equivalent Consumption Minimization Strategy) -based energy management algorithm. The objective is to evaluate three hybrid powertrain architectures, namely Series Hybrid (SH), Series-Parallel Hybrid with a single gear stage (SHP1), and Series-Parallel Hybrid with a double gear stage (SHP2), across three vehicle classes (Sedan, Mid-SUV, Large-SUV), four different internal combustion engines (ICEs), and three application types (HEV, PHEV, REEV). More than 10,000 unique configurations were simulated and filtered through a two-step performance requirements analysis. The first phase assessed individual vehicle-level performance targets, while
Amati, NicolaMarello, OmarMancarella, AlessandroCavallaro, DavideIanni, LucaCascone, ClaudioPaulides, Johannes JH
Engineers have harnessed quantum physics to detect the presence of biomolecules without the need for an external light source, overcoming a significant obstacle to the use of optical biosensors in healthcare.
This SAE Recommended Practice specifies an intrusion resistance test method for glazing systems installed in motor vehicles. Intrusion resistance performance is determined not solely by the glazing but also by the glazing attachment to the vehicle and by the vehicle structure. Therefore, the glazing/attachment/vehicle structure must be tested as a single unit. This test determines intrusion resistance only. The test applies to those materials that meet the requirements for use as safety glazing materials as specified in ANSI/SAE Z26.1 or other applicable standards. The test applies to all installation locations.
Glazing Materials Standards Committee
The recent advancements in vehicle powertrain and aerodynamics have led to an increase in the production of faster passenger cars, where high-speed driving scenarios demand equally efficient and safe braking systems to ensure the safety of both passengers and surrounding vehicles and pedestrians. At high speeds, aerodynamics can significantly impact overall vehicle braking performance due to the interaction between downforces and lift forces, which, in turn, affects the vehicle’s overall dynamic weight, directly contributing to the maximum attainable deceleration or braking force. Accordingly, the braking performance can be maximized by generating more downforce by means of rear spoilers, while taking into consideration their inevitable drag, which adds to the total vehicle motion resistance. Therefore, this proposed work aims to investigate the effectiveness of employing an active rear spoiler to enhance the vehicle’s braking performance, without introducing remarkable drag that could
Abidou, DiaaAbdellah, Ahmed HelmyHaggag, Salem
In a groundbreaking achievement, the 101st Combat Aviation Brigade, 101st Airborne Division (Air Assault) earlier this year became the first unit to successfully use the Mobile User Objective System (MUOS) function of the Army/Navy Portable Radio Communications (AN/PRC) 158 and 162 radios for conventional rotary wing operations. The trailblazing accomplishment occurred as the brigade continued its mission of providing support to ground forces, April 9, 2025. The MUOS function, of the AN/PRC-158 and 162 radios, operates by transmitting ultra-high frequency radio waves through a constellation of satellites to create a steady communications network. MUOS is a component of a bigger Integrated Tactical Network (ITN).
In a groundbreaking achievement, the 101st Combat Aviation Brigade, 101st Airborne Division (Air Assault) earlier this year became the first unit to successfully use the Mobile User Objective System (MUOS) function of the Army/Navy Portable Radio Communications (AN/PRC) 158 and 162 radios for conventional rotary wing operations. The trailblazing accomplishment occurred as the brigade continued its mission of providing support to ground forces, April 9, 2025.
This document outlines the current state of the art in the understanding of gas in solution in shock absorber oils (hydraulic fluid, referred to hereafter as oil or fluid [refer to AIR5358B]) in unseparated shock absorbers. A literature review, overview of Henry’s law, Henry’s law coefficients for known gas and oil couples, in-service operational problems, lessons learned, and potential future work are discussed in the document.
A-5B Gears, Struts and Couplings Committee
A Rear Underrun Protection Device (RUPD) is a safety feature installed on the rear end of chassis of trailers, designed to prevent smaller vehicles from sliding underneath the rear of the trailer in the event of a collision. Therefore, it plays a critical role in reducing the risk of serious injuries or fatalities. The RUPD standard is updated aiming to improve the strength and resistance of these devices, therefore improving the road safety. This paper shares the author’s experience with the latest standards and regulations for Rear Underrun Protection Devices (RUPD), with a focus on the use of Advanced High Strength Steel (AHSS). It provides a general overview of RUPD standard requirements and suggests several AHSS steel tube sizes suitable for the main longitudinal member, serving as a starting point for design. Key design parameters and potential failure points in RUPD structures are discussed, along with possible solutions. Finite Element Modeling (FEM) is commonly used in the
Rad, Nima Asadi
Advanced motion control technologies are essential to modern aerospace design, supporting a wide range of safety-critical and comfort-driven applications. In aerospace, motion control components such as gas springs, actuators, and dampers are integral to nearly every commercial aircraft, rocket, satellite, and space vehicle. These critical elements support flight safety and transport functions, from the dependable deployment of landing gear and cargo doors to the smooth, ergonomic operation of seating for pilots and passengers.
Electric Vertical Take-Off and Landing (eVTOL) aircraft, conceptualized to be used as air taxis for transporting cargo or passengers, are generally lighter in weight than jet-fueled aircraft, and fly at lower altitudes than commercial aircraft. These differences render them more susceptible to turbulence, leading to the possibility of instabilities such as Dutch-roll oscillations. In traditional fixed-wing aircraft, active mechanisms used to suppress oscillations include control surfaces such as flaps, ailerons, tabs, and rudders, but eVTOL aircraft do not have the control surfaces necessary for suppressing Dutch-roll oscillations.
This SAE Recommended Practice describes the test procedures for conducting quasi-static cab roof strength tests for heavy-truck applications. Its purpose is to establish recommended test procedures that will standardize the procedure for heavy trucks. Descriptions of the test setup, test instrumentation, photographic/video coverage, and test fixtures are included.
Truck Crashworthiness Committee
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Truck and Bus Electrical Systems Committee
The scope of this SAE performance standard is to provide a simple, practical, and broadly applicable test procedure for appraising luminous Illuminant A reflectance of reflecting safety glazing materials for road vehicles. This SAE performance standard, which provides a simple test procedure widely used in the optics field, may be used to measure the reflectivity which films applied to safety glazing materials for road vehicles may enhance. This test procedure applies to conditions where feasibility, rather than accuracy of measurement, is of prime importance. Measurements can be made outside laboratories in a quality control environment and in similar applications, when glazings, instead of small test specimens, have to be tested.
Glazing Materials Standards Committee
This paper presents an optimisation approach for rotor skewing in a Yokeless and Segmented Armature (YASA) design Axial Flux Machine (AFM) for electric vehicle applications. Torque ripple amplitudes are a critical factor influencing the noise, vibration and harshness (NVH) behaviour of electric motors. The focus of this paper is to reduce the torque ripple amplitudes of the dominant harmonics over the entire torque-speed characteristic of the AFM. The principle of the proposed approach is a segmented permanent magnet configuration of the AFM, where individual magnet segments can be circumferentially shifted to achieve optimal skewing configurations. Initial optimisations are performed using 2D finite element (FE) simulations, modelled as linear motors with multiple slices and different numbers of magnet segmentation. However, the accuracy of the 2D FE results is limited due to the lack of interaction between the individual segments and the insufficient representation of three
Müller, KarstenMaisch, HannesDe Gersem, HerbertBurkhardt, Yves
Power hop is a vibration phenomenon that occurs during high accelerations from low speed. In severe cases it can lead to component damage or deformation. Therefore, the affected vehicles must be safeguarded against these vibrations by a safe design of the components and by additional software-based functions. Conventional software-based solutions, such as Traction Control Systems (TCS), often perform delayed interventions and apply harsh torque adjustments that reduce driving comfort. Motivated by these challenges, this paper proposes a novel approach for power hop detection in a high-torque vehicle based on Long Short-Term-Memory Network (LSTM) and real-time measurements. Unlike conventional methods, our LSTM precisely detects the start of power hop, enabling proactive torque adjustments. Due to its impact on vehicle stability, the model must achieve a high level of reliability and robustness. Given the importance of data quality in Machine Learning (ML), we consider data-related
Chehoudi, MoatezMoisidis, IoannisSailer, MarcPeters, Steven
The video systems include a camera, display, and lights. Video is the recording, reproducing, or broadcasting of moving visual images as illustrated in Figure 1. A camera video imaging system is a system composed of a camera and a monitor, as well as other components, in which the monitor provides a real-time or near real-time visual image of the scene captured by the camera. Such systems are capable of providing remote views to the pilot and can therefore be used to provide improved visibility (for example, coverage of blind spots). In general, camera video systems may be used in the pilot’s work position for purposes of improving airplane and corresponding environmental visibility. Examples of aircraft video system applications include: Ground maneuver or taxi camera system Flight deck entry video surveillance system Cargo loading and unloading Cargo compartment livestock monitoring Monitoring systems that are used to track the external, internal, and security functions of an
A-20B Exterior Lighting Committee
This SAE Information Report applies to structural integrity, performance, drivability, and serviceability of personally licensed vehicles not exceeding 10000 pounds GVWR such as sedans, crossovers, SUVs, MPVs, light trucks, and van-type vehicles that are powered by gas and alternative fuel such as electric, plug-in hybrid, or hybrid technologies. It provides engineering direction to vehicle modifiers in a manner that does not limit innovation, and it specifies procedures for preparing vehicles to enhance safety during vehicle modifications. It further provides guidance and recommendations for the minimum acceptable design requirements and performance criteria on general and specific structural modifications, thereby allowing consumers and third-party payers the ability to obtain and purchase equipment that meets or exceeds the performance and safety of the OEM production vehicle.
Adaptive Devices Standards Committee
Energy stability is considered as a significant engineering challenge during transient event simulations using Abaqus/Explicit dynamics. This study focuses on the simulation of automotive door slamming impact to analyze the factors influencing total energy stability systematically. Contact pairs, general contacts, and nonlinear connection elements are identified as factors having the most substantial impact on energy stability. Additionally, the study proposes a novel Explicit dynamics modeling method conducive to achieving total energy stability. By addressing the issue of energy stability in Explicit dynamics, this research contributes to enhancing the accuracy of transient dynamic analysis.
Liu, XiangzhengDeng, XiongzhiWu, Tianyang
This SAE Aerospace Standard (AS) provides design criteria for onboard stairways intended for use by passengers aboard multi-deck transport category airplanes. It is not intended for stairways designed for use only by crewmembers, supernumeries, or maintenance personnel. Additionally, this AS does not apply to fuselage mounted or external stairways used for boarding passengers, which are covered by ARP836.
S-9B Cabin Interiors and Furnishings Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
A-5 Aerospace Landing Gear Systems Committee
This SAE Recommend Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less, as defined by the EPA, and M1 category vehicles, as defined by the European Commission:
Interior Climate Control Vehicle OEM Committee
The exhaust front pipe is a critical structural component in commercial vehicles, ensuring the leak-proof flow of exhaust gases into the exhaust after-treatment system while withstanding engine and frame vibrations. To isolate these vibrations, the front pipe is equipped with a flex connector capable of enduring various displacements at frequencies between 8-25 Hz. The position of the flex connector relative to the engine crank axis significantly impacts its structural reliability over its service life. This paper compares the existing design, which features a horizontally positioned flex connector, with a modified design that positions the flex connector vertically and changes the material from SS-304 to SS-321. Finite element analysis was conducted using Nastran software. The fatigue life of the existing flex connector design is approximately 1015 cycles. In contrast, the improved design demonstrates a fatigue life of 1727 cycles, representing a 70% increase in durability compared to
Chandel, KushalParoche, SonuNamdev, AkhileshJain, ShailendraPatil, Keyur
Items per page:
1 – 50 of 11628