Browse Topic: Bodies and Structures
The scope of this SAE Aerospace Information Report (AIR) is to discuss factors affecting visibility of aircraft navigation and anticollision lights, enabling those concerned with their use to have a better technical understanding of such factors, and to aid in exercising appropriate judgment in the many possible flight eventualities
The information in this document is intended to apply to commercial jet transport category airplanes that incorporate plastic (polycarbonate or acrylic) lenses on exterior light assemblies, or are being considered for such an application as opposed to glass lens designs. Exterior lighting applications include position light assemblies, anticollision light asemblies, and landing light assemblies. However, much of the material provided herein is general in nature and is directly applicable to many aircraft categories including, but not limited to, helicopters, general aviation aircraft, and military aircraft
This SAE Standard provides requirements, test procedures, and installation guidelines for clearance, sidemarker, and identification lamps intended for use on vehicles 2032 mm or more in overall width. Sidemarker lamps conforming to the requirements of this document may also be used on vehicles less than 2032 mm in overall width
ABSTRACT In this paper a new bolt attachment method was explored, where the attaching bolts were divided into two sets. The first set of bolts was tightened and was used to connect the underbody plate to the hull under ordinary operations. The second set of bolts connecting the plate and the hull were not tightened and had some extra axial freedom. Under blast loading, the first set of bolts would break due to high tensile and shear loads, but the second set of bolts would survive due to extra axial freedom which allows the plate and the hull vibrate and separate from each other to a certain extent. A simulation model was developed to verify this concept. Three underbody plate-hull connection approaches were simulated and analyzed: 1) all tightened bolts, 2) some bolts not fully seated, 3) all bolts not fully seated. The simulation results show that with option 1), 100% of the bolts broke under the blast loading. With option 2) the not fully seated bolts survived and continued to
ABSTRACT In this paper, we present Pegasus Transforming UAV/UGV Hybrid Vehicle, a unique, transformable UAS/UGV that is particularly well-suited for missions. The combination of flight and ground modalities allows Pegasus to fly to location, automatically transform into a ground vehicle, reposition, and quietly approach a target; or, Pegasus can land and “perch” for long durations, allowing for the maintenance of the custody trail and long ISR missions or emplace sensors particular for a specific mission. The sequential use of aerial and ground capabilities in this platform provides the reach usually lacking in these missions. The Pegasus platform was developed with DTRA/ARDEC funding in support of specialized missions where these functionalities are needed. Robotic Research, LLC has developed the system from the ground up, including: mechanical, electrical, and software designs (without using foreign-made parts). The current system is shown in Figure 2. The system already has obstacle
ABSTRACT One of the main thrusts in current Army Science & Technology (S&T) activities is the development of occupant-centric vehicle structures that make the operation of the vehicle both comfortable and safe for the soldiers. Furthermore, a lighter weight vehicle structure is an enabling factor for faster transport, higher mobility, greater fuel conservation, higher payload, and a reduced ground footprint of supporting forces. Therefore, a key design challenge is to develop lightweight occupant-centric vehicle structures that can provide high levels of protection against explosive threats. In this paper, concepts for using materials, damping and other mechanisms to design structures with unique dynamic characteristics for mitigating blast loads are investigated. The Dynamic Response Index (DRI) metric [1] is employed as an occupant injury measure for determining the effectiveness of the each blast mitigation configuration that is considered. A model of the TARDEC Generic V-Hull
ABSTRACT Presented are two designs for compact, low-profile UGVs with high cross-country mobility, intended for underbody operations with heavy manned vehicles. These UGVs are designed to remotely detect and assess combat damage incurred during combat operations, and analyze wear, leaks, and cracks, without the need for a human technician to be exposed to enemy fire, allowing crews to rapidly assess the conditions of their vehicles. Since robots required for underbody inspection would necessarily maintain a low, compact profile, they could also perform effective last-mile resupply in a contested environment, their small size allowing them to hide behind terrain and battlefield debris much more effectively than a heavy logistics robot. Naturally, a robotic vehicle that is capable of rapid underbody inspection of friendly vehicles or last-mile resupply could also be easily adapted as a combat platform to be used against enemy vehicles. Citation: A. Washington, et al., “Expendable Low
ABSTRACT Since the development of combat vehicles for military use, such as tanks, infantry carriers, gun transports, etc. the main approach has been a monolithic structure that has been described as monocoque. This approach has been the standard–bearer since the inception of modern combat vehicles. Since the end of the Cold War, the world has become a much more “Multi–Polar” world. The U.S. is not locked in a static, monotonic engagement against the Soviet Union and its allies. The nature of the threat has changed. The U.S. Army is looking to make its Combat Vehicle fleet lighter and more adaptable to new technology and changing environments. By doing so the U.S. will be better able to project forces where they are needed. Lighter weight means more flexibility in transportation of equipment to various locations. In addition, the U.S. Army will be better able to deploy forces that have the latest and/or the most desirable protection required for the specific engagement they may
ABSTRACT This paper reviews the Army Generic Hull [1-5] as a vital developmental tool for underbody blast modeling and simulation applications. Since 2010, it has been used extensively to help calibrate and validate various numerical software codes and methodologies. These are being used extensively today in the development of underbody armor, as well as mine blast subsystems such as seats, to protect both military vehicles and their occupants. In the absence of easily shareable information in this domain due to data classification, this specially formulated product is a valuable part of any toolset for underbody blast development and product design. Citation: K. Kulkarni, S. Kankanalapalli, V. Babu, J. Ramalingam, R. Thyagarajan, “The Army Generic Hull As A Vital Developmental Tool For Underbody Blast Applications,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Abstract RedRAVEN is a pioneered autonomous robot utilizing the innovative Linked-Bogie dynamic frame, which minimizes platform tilt and movement, and improves traction while maintaining all the vehicle’s wheels in contact with uneven surfaces at all times. Its unique platform design makes the robot extremely maneuverable since it allows the vehicle’s horizontal center of gravity to line up with the center of its differential-drive axle. Where conventional differential-drive vehicles use one or more caster wheels either in front or in the rear of the driving axle to balance the vehicle’s platform, the Linked-Bogie design utilizes caster wheels both in the front and in the rear of the driving axle. Without using any springs or shock absorbers, the dynamic frame allows for compensation of uneven surfaces by allowing each wheel to move independently. The compact and lightweight ground vehicle also features a driving-wheel neutralizing mechanism, a rigid aluminum frame, and a translucent
ABSTRACT Automatic guided vehicles (AGV) have made big inroads in the automation of assembly plants and warehouse operations. There are thousands of AGV units in operation at OEM supplier and service facilities worldwide in virtually every major manufacturing and distribution sector. Although today’s AGV systems can be reconfigured and adapted to meet changes in operation and need, their adaptability is often limited because of inadequacies in current systems. This paper describes a wireless navigated (WN) omni-directional (OD) autonomous guided vehicle (AGV) that incorporates three technical innovations that address the shortfalls. The AGV features consist of: 1) A newly developed integrated wireless navigation technology to allow rapid rerouting of navigation pathways; 2) Omnidirectional wheels to move independently in different directions; 3) Modular space frame construction to conveniently resize and reshape the AGV platform. It includes an overview of the AGVs technical features
ABSTRACT V-shaped hulls for vehicles, to mitigate buried blast loads, are typically formed by bending plate. Such an approach was carried out in fabricating small test articles and testing them with buried-explosive blast load in Southwest Research Institute’s (SwRI) Landmine Test Fixture. During the experiments, detailed time dependent deflections were recorded over a wide area of the test article surface using the Dynamic Deformation Instrumentation System (DDIS). This information allowed detailed comparison with numerical simulations that were performed with LS-DYNA. Though in general there is good agreement on the deflection, in the specific location of the bends in the steel the agreement decreases in the lateral cross section. Computations performed with empirical blast loads developed by SwRI and by more computationally intensive ALE methods in LS-DYNA produced the same results. Computations performed in EPIC showed the same result. The metal plate was then bent numerically so
ABSTRACT In order to defeat under body blast events and improve crew survivability, a monocoque aluminum cab structure has been designed as a drop on solution based on the current M1151A1 (HMMWV) chassis. The structure is comprised of all 5083-H131 Aluminum alloy armor plates with various thicknesses. The structure design consists of the following new features: (1) Robust joining design utilizing interlocking ballistic joints and mechanical interlocking features, (2) unique B-pillar gusset design connects roof & floor with B-pillar & tunnel, and (3) “Double V” underbody shaping design. The TARDEC designed, integrated & built vehicle achieved no crew core body injuries for a vehicle of this weight class and demonstrated meeting the crew survivability objective when subjected to a 2X blast during the live fire underbody blast tests. These efforts help to not only baseline light tactical vehicle capabilities, but also validate the possibility of meeting aggressive blast objectives for
Items per page:
50
1 – 50 of 11685