Browse Topic: Bodies and Structures

Items (11,749)
Dooring accidents occur when a vehicle door is opened into the path of an approaching cyclist, motorcyclist, or other road user, often causing serious collisions and injuries. These incidents are a major road safety concern, particularly in densely populated urban areas where heavy traffic, narrow roads, and inattentive behavior increase the likelihood of such events. To address this challenge, this project presents an intelligent computer vision based warning system designed to detect approaching vehicles and alert occupants before they open a door. The system can operate using either the existing rear parking camera in a vehicle or a USB webcam in vehicles without such a feature. The captured live video stream is processed by a Raspberry Pi 4 microprocessor, chosen for its compact size, low power consumption, and ability to support machine learning frameworks. The video feed is analyzed in real time using MobileNetSSD, a lightweight deep learning object detection model optimized
C, JegadheesanT, KarthiGurusamy, Varun SankarBalraj, TharunMurugaiya, Tamilselvan
As there is a major shift in customer demand for energy efficient transportation, electric vehicle development has taken prominence worldwide as they provide pollution free and noise free mobility. The subframe being an important structural component of the chassis system, the designers always find it challenging to provide best-in-class rear subframe (RSF) optimized in terms of cost and weight within the available packaging space especially in an electric sport vehicular boundary. The main function of rear subframe is to transmit forces to BIW without deflections hence for this it should be very stiff. At the same time, it should be light in weight and simpler to industrialize. In the present work, the design evolution of a novel sub-frame assembly for a multilink rear suspension of a born electric sports utility vehicle (e-SUV) platform is detailed. With increased rear axle weight contributed by the battery weight and rear mounted motor, the design evolution of the rear subframe (RSF
Nidasosi, Basavraj MarutiJ, RamkumarNayak, BhargavMani, ArunM, Sudhan
Conventional tractor transmission systems feature separate Brake and Bull Cage housings, with brakes often being proprietary components and Bull Cage designed by the Original Equipment manufacturer (OE). To optimize design and performance, an innovative integrated system was developed, combining an in-house braking system with a unitized Bull Cage assembly. This robust design reduces part count, eliminates proprietary dependency (except for friction liners), and enhances performance. Virtual simulations performed under RWUP conditions demonstrated enhanced strength and stiffness in the integrated design. In this Integrated Brake & Bull Cage assembly (IBCA), the braking layout was reconfigured from a 4+1 friction design to a 3+2 configuration which improved balancing, enhancing customer braking experience and increasing contact area by 11%. This adjustment extends friction liner life and boosts mechanical advantage by 7.9%, significantly improving tractor stability and performance
Dumpa, Mahendra ReddyDhanale, SwapnilPerumal, SolairajGomes, MaxsonRedkar, DineshSavant, KedarnathV, Saravanan
Flight vehicles operating in low-speed environments face significant aerodynamic challenges due to weak laminar boundary layers, which lead to early flow separation, reduced lift, and increased pressure drag. Airfoils often experience laminar separation bubbles and abrupt stall, making their performance unstable and difficult to predict. This paper aims to address the low-speed aerodynamic parameter analysis using passive flow control techniques on modified NACA 0021 airfoil profile. The novelty of this research method lies in the integration of dimple-based passive flow control structures on the upper surface of a NACA 0021 airfoil specifically designed to delay flow separation and enhance low-speed aerodynamic performance. Unlike most previous studies that focus on conventional vortex generators or active flow control methods, this work uniquely demonstrates that strategically dimple on the airfoil surface modifications significantly improves the lift characteristics. The methodology
Lakshmanan, D.Raman, Senthil Kumar BellaSivakumar, AravinthPillai, Balaji Shanmuga
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements and provides test methods and requirements to evaluate the suitability of materials intended for optical applications in motor vehicles. The tests are intended to determine physical and optical characteristics of the materials only. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Glass and materials inclusive to the light source are not in scope for this method.
Lighting Materials Standards Committee
This SAE Aerospace Information Report (AIR) provides an overview of the tire properties, strut properties, damper properties, and other landing gear mechanical properties that contribute to shimmy stability and are required for shimmy analysis. A variety of analysis techniques and assumptions are presented.
A-5 Aerospace Landing Gear Systems Committee
Mounting strategies for vehicles with panoramic sunroofs remains a challenge owing to its high complexity to balance cost, performance and assembly efficiency. Achieving efficient and reliable headliner mounting solutions is one of the conundrums where cost optimization must go together with uncompromised performance. Traditional methods like Dual Lock Fasteners (DLFs), have set high benchmarks for robustness but at the cost of increased manufacturing complexity and expense . In pursuit of a more economical and production-friendly alternative, various plastic clip designs were explored. However, these solutions posed significant challenges during validation due to the stringent requirements for mounting feasibility, tolerance management, and long-term durability This paper introduces a novel hybrid plastic-metal clip solution that addresses those challenges comprehensively. [2] The new design achieves precise tolerance control, ensuring reliable headliner installation under varying
D, GowthamKumarasamy, Raj GaneshShoeb, MohdChauhan, Aarti
This paper presents a novel Hardware-in-the-Loop (HiL) testing framework for validating panoramic Sunroof systems independent of infotainment module availability. The increasing complexity of modern automotive features—such as rain-sensing auto-close, global closure, and voice-command operation—has rendered traditional vehicle-based validation methods inefficient, resource-intensive, and late in the development cycle. To overcome these challenges, a real-time HiL system was developed using the Real time simulation, integrated with Simulink-based models for simulation, control, and fault injection. Unlike prior approaches that depend on complete vehicle integration, this methodology enables early-stage testing of Sunroof ECU behavior across open, close, tilt, and shade operations, even under multi-source input conflicts and fault conditions. Key innovations include the emulation of real-world conditions such as simultaneous voice and manual commands, sensor faults, and environmental
Ghanwat, HemantLad, Aniket SuryakantJoshi, VivekMore, Shweta
A more recent focus on driver comfort and the increasing demand for wide range of information availability make automotive Original Equipment Manufacturers (OEMs) provide advanced features such as Head Up Display (HUD) system. Even though HUD projects vital information onto the windshield/glass, its structural integration comes with significant vibration challenges, leading to display instability and haziness. This paper discusses the significant design parameters influencing the functional effectiveness of HUD system. The structure considered for analysis is the HUD assembly and its integration in vehicle. Cross Car Beam (CCB) turns out to be the critical component of the vehicle structure susceptible to road excitations. Although it’s mass dampens the vibrations inherently, due to the low mass of the HUD, relative oscillation between its projector, mirror, and either the windshield or display causes image distortion This paper investigates in detail the role of HUD structural
Vardhanan K, Aravindha VishnuNaidu, SudhakaraTitave, Uttam
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
Patil, Mahendra G.Kirve, JyotiParlikar, Padmakumar
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
This study focuses on the effect of door seal compression prediction and its impact on structure borne NVH in trucks. Customer perception of vibrations are envisaged as quality criteria. It is necessary to determine the contribution of seal stiffness due to seal compression under closed condition of the door rather than considering stiffness of the door seal under uncompressed conditions. The dynamic stiffness of door seal is determined from analysis of non-linear type. The simulations are built using the Mooney - Rivlin model. The parameters influencing the compression of door seals in both two – dimension and three – dimension, are identified from the analysis. This involves contemplating the appropriate seal mounted boundary condition on the body and the door of the vehicle. The stiffness after compression of seal is extracted from this non-linear analysis which is further used to obtain the vibration modes for the doors in the truck cabin. As a part of next step, the compressed
L, KavyaRamanathan, Vijay
As the transportation industry pivots towards safer and more sustainable mobility solutions, the role of advanced surface technologies is becoming increasingly critical. This paper presents a novel application of electroluminescent (EL) coating systems in heavy-duty trucks, exploring their potential to enhance vehicular safety and reduce environmental impact through lightweight, energy-efficient lighting integration. Electroluminescent coatings, capable of emitting light uniformly across painted surfaces when electrically activated, offer a transformative alternative to conventional external lighting and reflective materials. In the context of heavy-duty trucks, these systems can significantly improve visibility under low-light and adverse weather conditions, thereby reducing the risk of road accidents. Furthermore, the uniform illumination achieved without bulky fixtures contributes to aerodynamic efficiency, supporting fuel economy and reducing carbon emissions. use of this coating
Harel, Samarth DattatrayaBorse, ManojL, Kavya
The present work demonstrates a transient Fluid-Structure-Interaction (FSI) based numerical methodology for estimation of aerodynamic-induced flutter of the rear bumper of a Sports Utility Vehicle (SUV). Finite Volume Method (FVM) based High-fidelity transient full vehicle aerodynamic simulations were conducted for the estimation of the transient aerodynamic load. Subsequently, by mapping this transient aero load onto the surface of the rear bumper, Finite Element Method (FEM) based dynamic structural simulations were performed to predict its response. The results obtained through simulations were then compared against experimental wind tunnel test data of a prototype car with modified bumper for the specific test-case. The pressure and the time series data of rear bumper deflection were captured at multiple probe locations from wind tunnel experiments at 140 and 200 kmph. The distribution of pressure on the rear surfaces of the car was well captured by the aerodynamic simulation at
Choudhury, SatyajitYenugu, SrinivasaWalia, RajatZander, DanielGullapalli, AtchyutBalan, ArunAstik, Pritesh
The rising importance of sustainability in the automotive sector has led to increased interest in circular and environmentally responsible materials, particularly for plastic trims parts, both interior and exterior. This study focuses on developing textile solutions using recycled polyethylene terephthalate (r-PET) sourced from post-consumer plastic waste, along with bio-based fibres such as bamboo. These materials made into woven and knitted fabrics are studied to suit different vehicle interior applications. r-PET textiles show promising strength, aesthetic appeal, and durability performance. Bamboo fabrics are known for their natural antimicrobial properties and enhanced breathability. Extensive testing is performed to validate explored sustainable materials performance against key automotive requirements. With this study, we gain an understanding of the performance of variedly sourced sustainable raw materials for automotive specific textile applications by different manufacturing
Deshpande, SanjanaBorgaonkar, Subodh
Designing and manufacturing a support ring (POM ring -Polyoxymethylene ring) for a MacPherson strut suspension system brings unique set of challenges due to the high-performance and durability demands for Indian road application. Support ring along with the jounce bumper used in the shock absorber is designed to absorb the strong shock coming from the road inputs when suspension travel reached to the maximum limit. thereby absorbing the impact energy and preventing it from transferring it to the body. A bump stopper for a suspension of a vehicle is made of poly urethane (PU) material and is surrounded by a support ring or POM ring made up of Polyoxymethylene material. The bump stopper deflects into bellow shape during the absorption of impact energy. In the present paper, the authors have demonstrated the key challenges experienced in successfully designing the support ring post initial failure experienced in the validation phase which was unprecedented. The authors detail the failure
Koritala, Ashok KumarMalekar, AmitKulkarni, PurushottamS, SivashankarMishra, HarshitGanesh, Mohan SelvakumarPatnala, AvinashJ, RamkumarNayak, BhargavM, Sudhan
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
The automotive industry is advancing rapidly with the integration of cutting-edge technology, aesthetics, and performance. One area that has remained relatively underexplored in the pursuit of sleek, minimalistic interiors is the packaging of Sunshade in door trim system. Traditional sunshade design, often bulky and increasingly incompatible with the trend towards compact design and packaging. The car sunshade is a shield that is placed on a car side window and used for regulating the amount of light entering from the car window and helps improve the passenger comfort inside the cabin. Car Interior components, specifically plastic and seats are based on thermal stress properties. When we expose these parts to direct contact with sunlight, humidity and ambient temperature above threshold limit, the interior plastic parts can start to soften and melt. Due to this, they start emitting harmful chemicals which cause anemia and poor immune systems. So, the Sunshade, in addition to protecting
Palyal, NikitaD, GowthamBhaskararao, PathivadaBornare, HarshadRitesh, Kakade
The first step in designing or analyzing any structure is to understand “right” set of loads. Typically, off-road vehicles have many access doors for service or getting into cab etc. Design of these doors and their latches involve a knowledge of the loads arising when the door is shut which usually involves an impact of varying magnitudes. In scenarios of these impact events, where there is sudden change of velocity within few milliseconds, produces high magnitude of loads on structures. One common way of estimating these loads using hand calculations involves evaluating the rate-of-change-of-momentum. However, this calculation needs “duration of impact”, and it is seldom known/difficult to estimate. Failing to capture duration of impact event will change load magnitudes drastically, e.g. load gets doubled if time-of-impact gets reduced from 0.2 to 0.1 seconds and subsequently fatigue life of the components in “Door-closing-event” gets reduce by ~8 times. For these problems, structures
Valkunde, SangramGhate, AmitGagare, Kiran
Items per page:
1 – 50 of 11749