Browse Topic: Bodies and Structures
A good Noise, Vibration, and Harshness (NVH) environment in a vehicle plays an important role in attracting a large customer base in the automotive market. Hence, NVH has been given significant priority while considering automotive design. NVH performance is monitored using simulations early during the design phase and testing in later prototype stages in the automotive industry. Meeting NVH performance targets possesses a greater risk related to design modifications in addition to the cost and time associated with the development process. Hence, a more enhanced and matured design process involves Design Point Analysis (DPA), which is essentially a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are used to develop a product model that better fulfills the predefined requirement. This paper shows the systematic approach of conducting a Design Point Analysis-level NVH study to evaluate the acoustic
Wind noise is one of the largest sources to interior noise of modern vehicles. This noise is encountered when driving on roads and freeways from medium speed and generates considerable fatigue for passengers on long journeys. Aero-acoustic noise is the result of turbulent and acoustic pressure fluctuations created within the flow. They are transmitted to the passenger compartment via the vibro-acoustic excitation of vehicle surfaces and underbody cavities. Generally, this is the dominant flow-induced source at low frequencies. The transmission mechanism through the vehicle floor and underbody is a complex phenomenon as the paths to the cavity can be both airborne and structure-borne. This study is focused on the simulation of the floor contribution to wind noise of two types of vehicles (SUV and Sports car), whose underbody structure are largely different. Aero-Vibro-acoustic simulations are performed to identify the transmission mechanism of the underbody wind noise and contribution
Mechanical light detection and ranging (LiDAR) units utilize spinning lasers to scan surrounding areas to enable limited autonomous driving. The motors within the LiDAR modules create vibration that can propagate through the vehicle frame and become unwanted noise in the cabin of a vehicle. Decoupling the module from the body of the vehicle with highly damped elastomers can reduce the acoustic noise in the cabin and improve the driving experience. Damped elastomers work by absorbing the vibrational energy and dispelling it as low-grade heat. By creating a unique test method to model the behavior of the elastomers, a predictable pattern of the damping ratio yielded insight into the performance of the elastomer throughout the operating temperature range of the LiDAR module. The test method also provides an objective analysis of elastomer durability when exposed to extreme temperatures and loading conditions for extended periods of time. Confidence in elastomer behavior and life span was
High-frequency whine noise in electric vehicles (EVs) is a significant issue that impacts customer perception and alters their overall view of the vehicle. This undesirable acoustic environment arises from the interaction between motor polar resonance and the resonance of the engine mount rubber. To address this challenge, the proposal introduces an innovative approach to predicting and tuning the frequency response by precisely adjusting the shape of rubber flaps, specifically their length and width. The approach includes the cumulation of two solutions: a precise adjustment of rubber flap dimensions and the integration of ML. The ML model is trained on historical data, derived from a mixture of physical testing conducted over the years and CAE simulations, to predict the effects of different flap dimensions on frequency response, providing a data-driven basis for optimization. This predictive capability is further enhanced by a Python program that automates the optimization of flap
Sound source identification based on beamforming is widely used today as a spatial sound field visualization technology in wind tunnel experiments for vehicle development. However, the conventional beamforming technique has its inherent limitation, such as bad spatial resolution at the low frequency range, and limited system dynamic range. To improve the performance, three deconvolution methods CLEAN, CLEAN-SC and DAMAS were investigated and applied to identify wind noise sources on a production car in this paper. After analysis of vehicle exterior wind noise sources distribution, correlation analysis between identified exterior noise sources and interior noise were conducted to study their energy contribution to vehicle interior. The results show that the algorithm CLEAN-SC based on spatial source coherence shows the best capability to remove the sidelobes for the uncorrelated wind noise sources, while CLEAN and DAMAS, which are based on point spread functions have definite
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
This study focuses on the numerical analysis of weather-strip contact sealing performance with a variable cross-sectional design, addressing both static and dynamic behaviors, including the critical issue of stick-slip phenomena. By employing finite element modeling (FEM), the research simulates contact pressures and deformations under varying compression loads, DCE (Door Closing Efforts) requirements, typical in automotive applications. The analysis evaluates how changes in the cross-sectional shape of the weather-strip affect its ability to maintain a consistent sealing performance, especially under dynamic vehicle operations. The study also delves into stick-slip behavior, a known cause of noise and vibration issues, particularly improper/ loosened door-seal contact during dynamic driving condition. This study identifies key parameters influencing stick-slip events, such as friction coefficients, material stiffness, surface interactions, sliding velocity, wet/dry condition
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes performance requirements, design requirements, and design guidelines for electronic devices.
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device-specific tests and requirements can be found in applicable SAE Technical Reports.
Performing highly representative tests of aircraft equipment is a critical feature for gaining utmost confidence on their ability to perform flawlessly in flight under the entire spectrum of operating conditions. This can also contribute to accelerate the certification process of a new equipment. A research project (E-LISA) was performed in recent years, as part of the European funded Clean Sky 2 framework, with the objective of building an innovative facility for testing an electrically actuated landing gear and brake for a small air transport. The project eventually led to the development and construction of an Iron Bird able to reproduce in a realistic and comprehensive way a full variety of landing test cases consistent with certification specifications and landing histories available in the repository of the airframer. The Iron Bird that was eventually developed is a multi-functional intelligent and easy reconfigurable facility integrating hardware and software allowing to perform
This study presents empirical modifications of Blade Element Momentum Theory (BEMT) to improve rotor performance prediction for open rotors in hovering conditions. The empirical adjustments were made to the inflow ratio, factoring in the real rotor wake area and estimated induced power losses. A comparison between experimental data and two analytical models, one using an empirical inflow formula and the other a theoretical formula (classical BEMT), was conducted for two rotors. The empirical inflow model demonstrated superior accuracy in predicting thrust and torque. These modifications are applied to the inflow ratio by accounting for the actual rotor wake area and estimated induced power losses. The findings highlight the potential for more accurate performance prediction through the integration of empirical data into theoretical frameworks.
Traditional silicon-based solar cells are completely opaque, which works for solar farms and roofs but would defeat the purpose of windows. However, organic solar cells, in which the light absorber is a kind of plastic, can be transparent.
The weave mode of a motorcycle is known to be affected by the flexibility of the vehicle frame. The weave mode has been shown to be more unstable in the 10-DOF model than in the 4-DOF model. However, it is not clear why the weave mode would be unstable, given the six different frame flexibilities. In this study, the authors analyzed the stability of the weave mode in a 4-DOF model when the same was integrated with two types of frame flexibilities. In the vehicle specifications used in the analysis, the combination of the bending flexibility of the front forks and the torsional flexibility of the main frame destabilizes the weave mode. The analysis results show that the phase delay of the front tire lateral force is caused by the phase delay of the steering angle. The combined bending flexibility of the front forks and the torsional flexibility of the main frame results in a large phase lag in the steering angle.
This Aerospace Information Report (AIR) will examine considerations relative to the use of mechanical switches on aircraft landing gear, and present "lessons learned" during the period that these devices have been used.
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
This SAE Recommended Practice applies to functions of motor vehicle signaling and marking lighting devices which use light emitting diodes (LEDs) as light sources. This report provides test methods, requirements, and guidelines applicable to the special characteristics of LED lighting devices. This SAE Recommended Practice is in addition to those required for devices designed with incandescent light sources. This report is intended to be a guide to standard practice and is subject to change to reflect additional experience and technical advances.
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Physical testing is required to assess multiple vehicles in different conditions, specially to validate those related to regulations. The acoustic evaluations have difficulties and limitations in physical test; cost and time represent important considerations every time. Additionally, the physical validation happens once a prototype has been built, this takes place in a later phase of the development. Sound pressure is measured to validate different requirements in a vehicle, horn sound is one of these and it is related to a regulation of united nations (ECE28). Currently the validation happens in physical test only and the results vary depending on the location of the horn inside the front end of every vehicle. [7] In this article, the work for approaching a virtual validation method through CAE is presented with the intention to get efficiency earlier in product development process.
Items per page:
50
1 – 50 of 11585