Browse Topic: Windows and windshields
To address the high security demands of HSR communication, this letter proposes a covert communication scheme using irregular intelligent transparent surfaces (ITSs) deployed on train windows. A joint optimization framework is developed to enhance covert rate under element constraints, involving ATS for topology design and NECE for beamforming and phase shift. Gradient descent is used to handle covert constraints. Simulations confirm that the proposed irregular ITS outperforms regular ITS in performance and robustness, offering a promising solution for future HSR covert communication.
This SAE Recommended Practice specifies an intrusion resistance test method for glazing systems installed in motor vehicles. Intrusion resistance performance is determined not solely by the glazing but also by the glazing attachment to the vehicle and by the vehicle structure. Therefore, the glazing/attachment/vehicle structure must be tested as a single unit. This test determines intrusion resistance only. The test applies to those materials that meet the requirements for use as safety glazing materials as specified in ANSI/SAE Z26.1 or other applicable standards. The test applies to all installation locations.
The scope of this SAE performance standard is to provide a simple, practical, and broadly applicable test procedure for appraising luminous Illuminant A reflectance of reflecting safety glazing materials for road vehicles. This SAE performance standard, which provides a simple test procedure widely used in the optics field, may be used to measure the reflectivity which films applied to safety glazing materials for road vehicles may enhance. This test procedure applies to conditions where feasibility, rather than accuracy of measurement, is of prime importance. Measurements can be made outside laboratories in a quality control environment and in similar applications, when glazings, instead of small test specimens, have to be tested.
This SAE Recommend Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less, as defined by the EPA, and M1 category vehicles, as defined by the European Commission:
The American truck market is huge. The trucks themselves are also quite large. Pickups went from workhorse machines to enormous luxury vehicles with equally large price tags. Even the Maverick, Ford's latest entry, has seen its price creep up since its debut. The antithesis of the current market is the newly unveiled Slate pickup. A small, two-door, two-seater, bare-bones electric truck that doesn't have power windows, leather interior, or even an entertainment system. It also doesn't boast an insane zero to 60 time, even though it's an EV. Instead, it flies in the face of everything that's happening in the truck market, and it might just be what many customers are looking for.
Traditional silicon-based solar cells are completely opaque, which works for solar farms and roofs but would defeat the purpose of windows. However, organic solar cells, in which the light absorber is a kind of plastic, can be transparent.
High-efficiency manufacturing involves the transmission of copious amounts of data, exemplified both by trends in the automotive industry and advances in technology. In the automotive industry, products have been growing increasingly complex, owing to multiple SKUs, global supply chains and the involvement of many tier 2 / Just-In Time (JIT) suppliers. On top of that, recalls and incidents in recent years have made it important for OEMs to be able to track down affected vehicles based on their components. All of this has increased the need for OEMs to be able to collect and analyze component data. The advent of Industry 4.0 and IoT has provided manufacturing with the ability to efficiently collect and store large amounts of data, lining up with the needs of manufacturing-based industries. However, while the needs to collect data have been met, corporations now find themselves facing the need to make sense of the data to provide the insights they need, and the data is often unstructured
The integrated bracket is a plastic part that packages functional components such as the ADAS (Advanced Driver Assistance System) camera, rain light sensor, and the mounting provisions of the auto-dimming IRVM (Inner Rear View Mirror). This part is fixed on the windshield of an automobile using double-sided adhesive tapes and glue. ADAS, rain light sensors, and auto-dimming IRVM play an important part in the safety of the driver and everyone present in the automobile. This makes proper functioning of the integrated bracket very integral to occupant safety. Prior to this work, the following literature; Integrated Bracket for Rain Light Sensor/ADAS/Auto-Dimming IRVM with provision of mounting for Aesthetic Cover [1] outlines the design considerations and advantages of mounting several components on the same bracket. It follows the theme where the authors first define the components packaged on the integrated bracket and then the advantages of packaging multiple components on a single
This SAE Recommended Practice establishes uniform test procedures and performance requirements for the defrosting system of enclosed cab trucks, buses, and multipurpose vehicles. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. For laboratory evaluation of defroster systems, current engineering practice prescribes that an ice coating of known thickness be applied to the windshield and left- and right-hand side windows to provide more uniform and repeatable test results, even though - under actual conditions - such a coating would necessarily be scraped off before driving. The test condition, therefore, represents a more severe condition than the actual condition, where the defroster system must merely be capable of maintaining a cleared viewing area. Because of the special nature of the operation of most of these vehicles (where vehicles are generally kept in a garage or warmed up before driving), and since
Reliable and safe Redundant Steering System (RSS) equipped with Dual-Winding Permanent Magnet Synchronous Motor (DW-PMSM) is considered an ideal actuator for future autonomous vehicle chassis. The built-in DW-PMSM of the RSS is required to identify various winding’s faults such as disconnection, open circuit, and grounding. When achieving redundant control through winding switching, it is necessary to suppress speed fluctuations during the process of winding switching to ensure angle control precision. In this paper, a steering angle safety control for RSS considering motor winding’s faults is proposed. First, we analyze working principle of RSS. Corresponding steering system model and fault model of DW-PMSM have been established. Next, we design the fault diagnosis and fault tolerance strategy of RSS. Considering the difference in amplitude frequency characteristics of phase current during DW-PMSM winding faults, the Hanning window and Short-Time Fourier Transform (STFT) is
Researchers at UBC Okanagan are looking at ways to improve cell phone connectivity and localization abilities by examining “smart” surfaces that can bounce signals from a tower to customers to improve the link. A smart surface involves installing reflective elements on windows or panels on buildings in dense urban environments.
This SAE Recommended Practice determines whether plastic and glass-plastic safety glazing materials will successfully withstand exposure to simulated weathering conditions.
In recent decades, significant technological advances have made cruise control systems safer, more automated, and available in more driving scenarios. However, comparatively little progress has been made in optimizing vehicle efficiency while in cruise control. In this paper, two distinct strategies are proposed to deliver efficiency benefits in cruise control by leveraging flexibility around the driver’s requested set speed, and road information that is available on-board in many new vehicles. In today’s cruise control systems, substantial energy is wasted by rigidly controlling to a single set speed regardless of the terrain or road conditions. Introducing even a small allowable “error band” around the set speed can allow the propulsion system to operate in a pseudo-steady state manner across most terrain. As long as the vehicle can remain in the allowed speed window, it can maintain a roughly constant load, traveling slower up hills and faster down hills. This strategy reduces the
Skyline Robotics has achieved what many other companies have attempted but failed to perfect. The Israeli company has succeeded in automating window washing for the world’s skyscrapers — a task that has been done manually for over 100 years.
The innovation and application of new technologies in battery electric vehicle (BEV) development continues to be a key objective of the automotive industry. One such area of development is glazing designs that reduce transmission of noise into vehicle interiors. Highly asymmetric laminated front side lites that consist of thick soda lime glass exterior plies laminated with thinner ion exchanged interior plies with acoustic polyvinyl butyral interlayers offer substantially reduced noise transmission compared to industry standard monolithic front side lites. These asymmetric laminate designs also provide additional benefits of improved toughness and penetration resistance. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of asymmetric laminated glass front side lites. The test-based assessment included within this study was conducted to isolate
A typical cab used on agriculture machines is made up of a metal frame structure with large enclosing panels of glass, plastic, and metal. Acoustic treatments such as coatings, textiles and foams are used within the cab for aesthetics but also to mediate undesired noise. To develop effective designs for the cab to combat noise, accurate tools for measurement, and predictive methods for sound transmission loss are needed. This paper focuses on Sound Transmission Loss (STL) of the rear upper panel of a cab used in agriculture machines. Results from CAE based tools such as Statistical Energy Analysis (SEA), Finite Element Analysis (FEA) and Hybrid FE-SEA methods are compared to measurements. The panel studied included features such as curvature, deep drawn beads with a glass window and a damping coating. The simulation results are refined by incorporating methods for accurate modeling of ribs stiffness, curvature effect and radiation efficiency by synthetic modal approach. The STL
Nearly every company in the world performs some level of quality inspection on their products before delivering them to customers. If you’re in the downloadable software business, this might involve making sure the product is bug-free and easy to use. But in the realm of physical products, the appearance of the product is nearly as important as its functionality. Would you want to purchase a new car that has scratches on the bumper or hubcaps? What if there was a crack in the windshield? From large to small, the same is true of many other items including appliances, laptops, cellphones, watches, and earbuds.
A driveline differential gear housing or diff-case is the heaviest component of a driveline that rotates at high velocities. core shift during diff-case casting is a major source of imbalance as casting cores can never be placed at the exact intended location. Core shift in the present case is defined as combination of pure translation along the parting plane and tilting about two orthogonal axes. Given the ranges of variation of these shift parameters, large numbers of random sampling of these variations are generated through Monte Carlo method where normal distribution of each of the core shift parameters is assumed. Static unbalance values of the diff-case from each of the instances of core shift is calculated using Boolean operation in MSC Adams View and a nonlinear data set is created. Next, a statistical model is created based on a neutral network-based fitting method to appropriately represent the set. The validity of the model is checked based on specific core shift cases to
NASA Kennedy Space Center developed the Inductive Non-Contact Position Sensor for motion control applications. The sensor was designed to monitor the precise movements of an optical inspection system that measured defects in Space Shuttle windows. The technology has been prototyped and successfully field-tested. Its small size, low cost, wide range, and accuracy give it a distinct advantage over other types of sensors used for similar applications.
Items per page:
50
1 – 50 of 1208