Browse Topic: Underride guards
Impacts between passenger vehicles and heavy vehicles are uniquely severe due to the aggressivity of the heavy vehicles; this is a function of the difference in their geometry and mass. Side crashes with heavy vehicles are a particularly severe crash type due to the mismatch in bumper/structure height that often results in underride and extensive intrusion of the passenger compartment. Underride occurs when a portion of one vehicle, usually the smaller vehicle, moves under another, rendering many of the passenger vehicle safety systems ineffective. Heavy vehicles in the US, including single-unit trucks, truck tractors, semi-trailers, and full trailers, are currently not required to have side underride protection devices. The NTSB, among other groups, has recommended that side underride performance standards be developed and that heavy vehicles be equipped with side underride protection systems that meet those standards. The work presented used virtual testing to evaluate the relative
This work describes the design and testing of side underride protection devices (SUPD) for tractor-trailers and straight trucks. Its goal is to reduce the incompatibility between small passenger cars and these large vehicles during side collisions. The purpose of these crash attenuating guards is to minimize occupant injury and passenger compartment intrusion. The methods presented utilize a regulation previously created and published for testing the effectiveness of these devices based on the principles of a force application device already implemented in the Canadian rear underride guard regulation. Topology and multi-objective optimization design processes are outlined using a proposed design road map to create the most feasible SUPD. The test vehicle in question is a 2010 Toyota Yaris which represents the 1100C class of vehicle from the Manual for Assessing Safety Hardware (MASH). Since the tractor-trailers and straight trucks utilize different structural components, separate
This SAE Recommended Practice establishes the recommended locations for the air brake and electrical connections for towing multiple trailers. It applies to all commercial trailers except drop frame and car haul types
This SAE Recommended Practice establishes the recommended locations for the air brake and electrical connections for towing multiple trailers. It applies to all commercial trailers except drop frame and car haul types
This SAE Recommended Practice establishes the recommended locations for the air brake and electrical connections for towing multiple trailers. It applies to all commercial trailers except drop frame and car haul types
This SAE Recommended Practice is intended to provide a uniform basis for evaluating the effectiveness of rear underride devices employed to reduce the likelihood of penetration of the passenger compartment of an impacting vehicle. The procedures described in this document provide means for determining the characteristics of a rear underride guard, taking into consideration the nature and direction of forces involved
This SAE Recommended Practice is intended to provide a uniform basis for evaluating the effectiveness of rear underride devices employed to reduce the likelihood of penetration of the passenger compartment of an impacting vehicle. The procedures described in this report provide means for determining the characteristics of a rear underride guard, taking into consideration the nature and direction of forces involved
Items per page:
50
1 – 25 of 25