Browse Topic: Body structures

Items (4,715)
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
Mounting strategies for vehicles with panoramic sunroofs remains a challenge owing to its high complexity to balance cost, performance and assembly efficiency. Achieving efficient and reliable headliner mounting solutions is one of the conundrums where cost optimization must go together with uncompromised performance. Traditional methods like Dual Lock Fasteners (DLFs), have set high benchmarks for robustness but at the cost of increased manufacturing complexity and expense . In pursuit of a more economical and production-friendly alternative, various plastic clip designs were explored. However, these solutions posed significant challenges during validation due to the stringent requirements for mounting feasibility, tolerance management, and long-term durability This paper introduces a novel hybrid plastic-metal clip solution that addresses those challenges comprehensively. [2] The new design achieves precise tolerance control, ensuring reliable headliner installation under varying
D, GowthamKumarasamy, Raj GaneshShoeb, MohdChauhan, Aarti
This invention solves a significant safety issue where drivers have low visibility of the Outside Rear View Mirror (ORVM) in the case of rain, fog, dust or ice formation on the Side Door Window Glass (SDWG). Currently developed methods, such as hydrophobic finishing or films and heated window glass on the doors, provide temporary or weak results, and thus, a more successful and dependable method is demanded. In order to address this problem, we have modified the Outer Waist Seal, which includes a Glass Wiping Mechanism in it. Outer Waist Seal is a type of weather strip fixed on the bottom of the side window of a vehicle on the panel of the door. It does not allow the flow of heavy water, dust and debris into the door cavity, besides supporting the glass on the window when it is in a movement process. The stationary fixed arm of this system is coupled with a rotating arm and an attached wiper blade powered by a low-speed-high-torque motor and interfaced with the Body Control Module (BCM
Neelam, RajatChowdhury, AshokPanchal, GirishKumar, Saurav
A more recent focus on driver comfort and the increasing demand for wide range of information availability make automotive Original Equipment Manufacturers (OEMs) provide advanced features such as Head Up Display (HUD) system. Even though HUD projects vital information onto the windshield/glass, its structural integration comes with significant vibration challenges, leading to display instability and haziness. This paper discusses the significant design parameters influencing the functional effectiveness of HUD system. The structure considered for analysis is the HUD assembly and its integration in vehicle. Cross Car Beam (CCB) turns out to be the critical component of the vehicle structure susceptible to road excitations. Although it’s mass dampens the vibrations inherently, due to the low mass of the HUD, relative oscillation between its projector, mirror, and either the windshield or display causes image distortion This paper investigates in detail the role of HUD structural
Vardhanan K, Aravindha VishnuNaidu, SudhakaraTitave, Uttam
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
A crash pulse is the signature of the deceleration experienced by a vehicle and its occupants during a crash. The deceleration-time plot or crash pulse provides key insights into occupant kinematics, occupant restraints, occupant loading and efficiency of the structure in crash energy dissipation. Analysing crash pulse characteristics like shape, slope, maximum deceleration, and duration helps in understanding the impact of the crash on occupant safety and vehicle crashworthiness. This paper represents the crash pulse characterization study done for the vehicles tested at ARAI as per the ODB64 test protocol. Firstly, the classification and characterization of the crash pulses is done on the basis of the unladen masses of the vehicles. The same are further analysed for suitability of mathematical waveform models such as Equivalent Square Wave (ESW), Equivalent Triangular Wave (ETW), Equivalent Sine Wave (ESW), Equivalent Haversine Wave (EHSW) as well as EDTW (Equivalent dual trapezia
Mishra, SatishKulkarni, DileepBorse, TanmayMahindrakar, Rahula AshokMahajan, RahulJaju, Divyan
The Ro-dip Cathodic Electrodeposition (CED) process is new technology used by automotive manufacturers for higher quality corrosion protection in new generation automobiles. This process involves multiple 360-degree rotation of automotive body-in-white (BIW) which exert higher hydrostatic pressure and drag forces on large surface panels of BIW like hood. For maintaining consistent gaps and flushness control at vehicle level, it is important to safeguard the dimensional stability of light weight (crash performance sensitive) steel hood panel while undergoing through this CED process. This study investigates the enhancement of hood structure supports through strategic optimization of support rod placement and quantity within the Ro-dip CED paint shop system. This Paper underscore the importance of tailored fixture design in the Ro-dip CED process, offering a scalable solution for automotive manufacturers aiming to improve quality while reducing costs associated with dimensional
Tile, VikrantUnadkat, SiddharthAskari, HasanJadhav, Devidas
Seats of modern cars should necessarily meet the regulatory safety norms along with aesthetics and comfort. In the existing passenger cars prevailing across the Indian subcontinent, the measure of safety has been a challenging one. The stringent regulatory norms thereby make the Airbag very promising. In the Automotive industry, safety features are very important, one of the topmost features which falls in this category is airbags. The driver and passenger safety during high impact collisions and sudden crashes is the key objective of airbag. This safety is provided by the airbag with its automatic deployment. The inflatable airbag is engineering in a way to respond very quickly during a collision and furnish necessary cushioning to decrease the impulse and enhance the safety of the passenger. The technology has been practiced widely upon many vehicles' seats. However, the present work highlights a novel approach of packaging the HPTS air bag in second row seat. This Air bag unit is
Buradkar, RajatBose, KarthikJadhav, DeepikaBalakrishnan, Gangadharan
A mobile wireless charger is a device that charge a smartphone or other compatible gadgets without the need for physical cables. Principle of wireless mobile charger system based on inductive coupling phenomena. The main objective of this paper aims to address the challenge of packaging wireless mobile charger in peculiar door trim profile keeping overall functionality and aesthetic appearance of door trim intact. This paper deals with integration of a wireless charging system within the door trim of a vehicle to provide convenience and advanced functionality. The objective is to pack a wireless charger in door trim meeting the ergonomic target and equilibrium state stability while maintaining sleek and minimalist design of the door trim. The study focuses on innovative packaging solutions related to space optimization in door despite multiple challenges involved. Major challenge lies in packing the unit amidst complex mechanisms such as window regulators, speakers, structural
Palyal, NikitaD, GowthamBhaskararao, PathivadaKumarasamy, Raj GaneshBornare, Harshad
Automobile frames, particularly trellis frame structures, are engineered for superior dynamic performance, with stiffness being a paramount consideration1. These frames frequently utilize welded tubes, a manufacturing process made more complex by the necessity of bending tubes to precise angles to meet packaging and assembly requirements2. This bending, however, induces residual stresses that can substantially compromise the frame's durability3. This investigation employs a detailed finite element simulation to analyse the structural deformation and residual stresses that arise during the bending of Cold Electric Welded (CEW) annealed round pipes4. A comprehensive 3D mechanical model, incorporating realistic tooling and contact interactions, was developed to accurately simulate shape change, ovality, and wall thickness redistribution during the bending process5. CEW pipes, unlike their Electric Resistance Welded (ERW) counterparts, possess minimal initial forming stresses, and the
Rajwani, IshwarKhare, Saharash
Electric vehicles (EVs) are becoming more popular than Internal Combustion Engine (ICE) powered vehicles, but their battery and motor components elevate their Gross Vehicle Weight (GVW), posing unique collision risks. Manufacturers strategically mount the high voltage (HV) battery packs under the passenger compartment to lower the Centre of Gravity and shield them from the front impacts. However, side impacts remain a concern, as the battery deformation in such instances could trigger fires or explosions, endangering occupants. To address this, crashworthiness designs adhere to New Car Assessment Program (NCAP) standards, particularly against side pole impact and side mobile barrier impact. Unlike the frontal section of BIW, which typically has larger crush space to absorb the crash energy, extensive design attention is required to the vehicle's side structure to absorb pole impacts without transmitting excessive force to the battery pack. Utilizing aluminium extrusions and sheet
Nivesh, DharunNamani, PrasadRamaraj, Rajasekar
Side crashes are generally hazardous because there is no room for large deformation to protect an occupant from the crash forces. A crucial point in side impacts is the rapid intrusion of the side structure into the passenger compartment which need sufficient space between occupants and door trim to enable a proper unfolding of the side airbag. This problem can be alleviated by using the rising air pressure inside the door as an additional input for crash sensing. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. The crash pulses recorded by the acceleration based crash sensors usually exhibit high frequency and noisy responses. The data obtained from the pressure sensors exhibit lower frequency and less noisy responses. Due to its ability to discriminate crash severities and allow the restraint devices to deploy earlier, the pressure sensor technology has
Bhagat, MilindNarale, NaganathMahajan, AshutoshWayal, VirendraJadhav, Swapnil
Quieter cabins in an automobile are the new era, they provide customers with pleasurable driving experience. Squeak and Rattle are spoil sport for any OEM that aim to improvise customer driving experience. Their nonlinear nature makes it difficult to formulate design frontloading methods. The issue of seals rubbing against the body & door interface is a clear sign of seal squeak & seal chucking. Seals are applied with anti-friction coatings to avoid stick slip phenomena between EPDM and painted panel. Primary root cause for seal squeak is coating erosion. The challenge lies in determining whether the body or the closure side contributes to the seal issue. This paper presents a distinctive approach for identifying the seal squeaking noise and enriches on the new modelling methods for seal interaction with door and body interfaces using FE software. The proposed method was able to highlight the locations along the door-body interface for squeak noise. The approach for reducing the
H, RavishankarC M, MithunMichael Stephan, Navin Estac RajaMohammed, Riyazuddin
This research analyzes the significance of air extractor on car door closing effort, especially within the context of highly sealed cabins. The goal is to measure their effectiveness in lowering pressure-induced resistance, study how the cut-out cross section and location affect performance, and its contribution to vehicle premium feel. Current vehicle design trends prioritize airtight cabin sealing for improving aerodynamic efficiency, NVH performance. This causes a problem in door closing operation. Air trapped while closing door creates transient pressure pulses. This pressure surge creates immediate discomfort to user i.e., Popping in Ears and requires high door closing force, and long-term durability problems in hinges and seals. In properly sealed cabins, air pressure resistance can contribute to 25% to 40% of total door closing force. Air extractors, usually installed in the rear quarter panels or behind rear bumpers, serve as pressure relief valves, allowing for a smoother
P, SivasankarSankineni, Vikhyath RaoShah, SahilMarimuthu, Anbarasan
This paper presents a novel Plunger-Integrated Hybrid System aimed at enhancing the efficiency and performance of deep drawing operations in metal forming processes. The proposed hybrid system strategically combines the mechanical strength of metals with the elastic flexibility of polymers, specifically polyurethane rubber, to improve formability and reduce spring-back, two critical challenges in conventional sheet metal forming. A novel two-stage forming technique is employed, an initial drawing operation using a larger radius with polyurethane rubber, followed by final radius formation using the same rubber in conjunction with a pneumatic cylinder. This integrated approach ensures uniform force distribution via the embedded plunger, significantly minimizing forming defects and enhancing the dimensional accuracy of the final components. The solution has been validated using Finite Element (FE) simulation methods, confirming its capability to produce high-quality parts suitable for
Chava, Seshadri ReddySingh, PrakharDhanajkar, NarendraRoy, AmlanRaju, Gokul
The paper aimed to improve the accurate quantification of driver drowsiness and to provide comprehensive, evidence-based validation for a Vision-Based Driver Drowsiness and Alertness Warning System. Advanced quantification of driver drowsiness is designed to enhance distinction of true positive events from False Positive and False Negative events. Methodology to pursue this included assessing inputs such as facial features, driver visibility, dynamic driving tasks, driving patterns, driving course time and vehicle speed. The system is programmed to actively learn Eye Aspect Ratio (EAR) reference and adapt personalised EAR threshold value to process EAR frames against the learnt threshold value. This method optimized the data frames to enhance the evaluation and processing of essential frames, thereby reducing delays in the processor and the Human-Machine Interface (HMI) warning module. Comprehensive validation is systematically conducted within a controlled test track environment to
Balasubrahmanyan, ChappagaddaAkbar Badusha, A
Vehicle door-related accidents, especially in urban environments, pose a significant safety risk to pedestrians, infrastructure and vehicle occupants. Conventional rear view systems fails to detect obstacles in blind spots directly below the Outside Rear View Mirror (ORVM), leading to unintended collisions during door opening. This paper presents a novel vision-based obstacle detection system integrated into the ORVM assembly. It utilizes the monocular camera and a projection-based reference image technique. The system captures real-time images of the ground surface near the door and compares them with calibrated reference projections to detect deviations caused by obstacles such as pavements, potholes or curbs. Once such an obstacle is detected the vehicle user is alerted in the form of a chime.
Bhuyan, AnuragKhandekar, DhirajJahagirdar, Shweta
Body-on-frame vehicles are well-regarded for their durability and off-road capabilities, but their structural design often makes them more vulnerable to noise, vibration, and harshness (NVH) issues. Vibrations originating from uneven roads are transmitted through the suspension and steering assemblies, sometimes resulting in rattles or other disturbances. These vibrations can be amplified by the inherent flexibility in the body-to-frame mounting system. In such vehicles, the steering system plays a critical role in driver comfort and is highly sensitive to vibrational inputs from the road surface, especially on coarse or uneven terrain. Occasionally, these inputs result in subtle rattle noises that are perceptible only to the driver and may not be detected under controlled testing environments. This poses a challenge for engineers trying to isolate and resolve such intermittent NVH phenomena. Identifying the source requires a combination of real-world driving evaluations, structural
Ramesh Chand, Karan KumarGopinathan, HaridossKabdal, Amit
To address the issues of large storage requirements in maps and the dependence of localization accuracy on initial pose estimation, this paper proposes a novel relocalization method named LLS-SMGSC, which is based on simplified maps integrated with Global Search capabilities. Firstly, we partition the map-based on grid size to reduce memory usage. Next, we voxelize the point cloud and map and extract surfel. Then, a coarse-to-fine hierarchical alignment module between the initial frame and maps to estimate the initial global pose. Finally, unmanned platform pose is estimated by the Normal Distribution Transform (ndt) algorithm. Experiments demonstrate that LLS-SMGSC achieves the highest localization accuracy in both unstructured and structured environments while maintaining computational efficiency.
Quan, Zhiheng
In previous multi-object tracking paradigms, a complex data association strategy is generally needed to achieve accurate matching for detections and trajectories. In this paper, a novel end-to-end 3D multi-object tracking (MOT) framework is proposed based on probability distribution and state regression. Firstly, this framework does not rely on complex data association strategies; instead, it derives the accurate position of an object in the current frame directly by regression based on the prior information of the object’s trajectory. Secondly, a probability grid sampling strategy is then adopted to expand the regression search range of the trajectory in an adaptive manner, thereby reducing the uncertainty of the trajectory states caused by consecutive predictions. Lastly, to eliminate overlaps of trajectories, a trajectory interaction module is introduced to retain trajectories with higher confidence. Experiments are conducted on the KITTI and Waymo datasets. The results demonstrate
Liang, ZhengHe, JiaweiJi, PanHuang, MingguangCheng, HaoFu, Chunyun
According to a problem of the vibration and noise suppression of an engineering vehicle cab, a dynamical model of the engine-frame-cab system was established to describe the vibration transmission path. The method of calculation of the vibratory power flow, which is transmitted from the vibration source engine to the cab through the frame and isolators, was deduced. And then an optimization strategy for the frame structure and the corresponding analysis algorithm process were proposed based on the objective function of power flow. The method proposed was validated through an application to a practical example, which would have practical value in the field of vehicle vibration reductions and optimization design of frame structures.
Wang, QiangHuo, RuiGuan, YanfengZhang, Daokun
With the rapid development of the worldwide highway transportation industry, continuous box girder bridges have many advantages, such as superior spanning capacity, reasonable force-bearing performance, and low cost, which give them significant strengths in bridge design. However, to ensure that the structural alignment of the girder meets the design and specification requirements, it is necessary to study the laws of alignment changes of cantilever structures during the construction process. This is to reasonably control the alignment of the main girder structure during construction and ensure that the alignment of the completed bridge is consistent with the design alignment. This paper takes a continuous rigid frame bridge on a certain expressway as the engineering basis. Its superstructure is a three-span prestressed concrete continuous box girder with a span of (88 + 160 + 88) m, a bridge width of 16.5 m, and a maximum pier height of 130 m. The paper analyzes the influence of each
Liu, XingshunMa, KunZhao, Qiang
In this article we will discuss the development and implementation of a computer vision system to be used in decision-making and control of an electro-hydraulic mechanism in order to guarantee correct functioning and efficiency during the logistics project. To achieve this, we have brought together a team of engineering students with knowledge in the area of Artificial Intelligence, Front End and mechanical, electrical and hydraulic devices. The project consists of installing a system on a forklift that moves packaged household appliances that can identify and differentiate the different types of products moved in factories and distribution centers. Therefore, the objective will be to process this identification and control an electro-hydraulic pressure control valve (normally controlled in PWM) so that it releases only the hydraulic pressure configured for each type of packaging/product, and thus correctly squeezing (compressing) the specific volume, without damaging it due to
Furquim, Bruno BuenoPivetta, Italo MeneguelloIbusuki, Ugo
In vehicle development, occupant-centered design is crucial to ensuring customer satisfaction. Key factors such as visibility, access, interior roominess, driver ergonomics, interior storage and trunk space directly impact the daily experience of vehicle occupants. While automakers rely on engineering metrics to guide architectural decisions, however in some cases doesn’t exist a clear correlation between these quantitative parameters and the subjective satisfaction of end users. This study develops a methodology which addresses that gap by proposing the creation of quantitative satisfaction curves for critical engineering metrics, providing a robust tool to support decision-making during the early stages of vehicle design. Through a combination of clinics, research, and statistical analysis, this project outlines a step-by-step process for developing (dis)satisfaction curves, offering a clearer understanding of how dimensions like headroom, glove box volume, and A-pillar obscuration
Santos, Alex CardosoSilva, GustavoBenevente, RodrigoPadua Silva, AntonioLourenço, Sergio RicardoAndrade, Cecilia NavasSobral, Piero
Safety improvements in vehicle crashworthiness remain a primary concern for automotive manufacturers due to the increasing complexity of traffic and the rising number of vehicles on roads globally. Enhancing structural integrity and energy absorption capabilities during collisions is paramount for passenger protection. In this context, longitudinal rails play a critical role in vehicle crashworthiness, particularly in mitigating the effects of rear collisions. This study evaluates the structural performance of a rear longitudinal rail extender, characterized by a U-shaped, asymmetric cross-section, subjected to rear-impact scenarios. Seventy-two finite-element models were systematically developed from a baseline configuration, exploring variations in material yield conditions, sheet thickness, and targeted geometric modifications, including deformation initiators at three distinct positions or maintaining the original geometry. Each model was simulated according to ECE R32 regulation
Souza Coelho Freitas, Victor dePereira, Romulo FrancoSouza, Daniel Souto de
Compared to steel, aluminum alloy has the advantages of light weight, high specific strength, corrosion resistance, and easy processing, and is widely used in structures such as aviation, construction, bridges, and offshore oil platforms. All along, Chinese construction aluminum profiles have been produced according to the GB/T5237-XXXX standard, which is determined based on the mechanical performance requirements of doors and windows and the actual processing of aluminum profiles. There are many problems. The author of this article has developed a new product 6063-T56, which has a tensile strength of 240-260Mpa and an elongation rate of not less than 8%, surpassing the latest technology level in Europe. It has been promoted and applied to the aluminum profile production industry in China, improving product performance, reducing production costs, improving production efficiency, and meeting the requirements of the "Aluminum Alloy Doors and Windows Standard" GB/T8478-2020, making
Qiao, Zhou
In view of the complex intertidal terrain challenges faced by offshore wind power maintenance, this paper optimizes the lightweight design of multi-terrain tracked vehicles. The structure was optimized by finite element analysis, and the maximum stress was 211.68 MPa ( lower than the safety limit of 230 MPa), and the maximum deformation was 5.25 mm, which ensured the stability and stiffness. Titanium alloy has the advantages of high strength, low density and corrosion resistance, which improves the durability of the frame while reducing the weight of the frame. Advanced manufacturing technologies such as phase transformation superplastic diffusion welding optimize the connection between TC4 titanium alloy and stainless steel. Modal analysis and optimization techniques refine the structural parameters and improve the complex load performance. The research promotes the lightweight of the frame and provides theoretical and technical support for the design of multi-terrain vehicles.
Xu, HanXu, ShilinMa, WenboZhu, Wei
This study addresses the abnormal noise issue in an inline six-cylinder engine during acceleration through noise testing and near-field microphone array-based sound source localization, combined with engine modal coupling theory and analytical methods. The results of testing and modal analysis indicate that the overlap of modal parameters between the engine crankshaft system and cylinder block leads to structural resonance under high-speed operation, which is identified as the root cause of the abnormal noise. The diagnostic conclusion was further validated through experimental verification. To mitigate the resonance, a high-stiffness spacer block was added between the vibration damper and crankshaft to adjust the overall modal parameters of the crankshaft system. This optimization effectively avoided resonance, reducing the near-field noise at the engine front end by 3.9 dB(A). The findings provide valuable insights for abnormal noise diagnosis and optimization strategies in engine
Hu, LiDong, JianWan, YeqingTian, RuiliXu, MaolinZhang, Min
In order to accurately evaluate the strength and stiffness of the key components of the spring mechanism for circuit breakers under strong impact load conditions, and provide strong data support for product design and structural optimization, the impact dynamics analysis method is used to model and simulate the spring mechanism. The dynamic stress test data is used to verify the accuracy of the simulation, and the strength of the key components under impact conditions is obtained. The influence of different stiffness frames on the output shaft offset is analyzed.
Guo, MingqinLi, JunfengYin, TianshuoZhang, PanLi, PengzhenWang, PengchaoJi, Linhao
When a tunnel passes through the transition zone between two faults, different support schemes have varying impacts on the deformation of the surrounding rock. This study, based on the Zhangzhuang Tunnel's double-fault area, establishes a numerical simulation model using Midas GTS NX to compare and analyze the effects of an enhanced support scheme versus a standard reinforcement scheme. The results indicate that when the non-reinforced support scheme is applied throughout the tunnel, the settlement of the transition zone's crown is 5.7 mm, only 0.27 mm greater than that of the reinforced scheme. Additionally, the variation in support stress in the transition zone between the two schemes is minimal. This demonstrates the feasibility of adopting the non-reinforced scheme, which reduces the number of steel arch frames, enhances construction efficiency, and provides a reference for future construction of small-section tunnels in double-fault conditions.
Wu, JianminNiu, ShuoZhang, TeMeng, Xianghua
Based on the TOD (Transit-Oriented Development) concept, this paper addresses the “last mile” issue in urban public transportation. It proposes a multidimensional decision-making model for identifying micro-circulation bus route areas. By integrating indicators such as the TOD comprehensive index, short-distance demand intensity, and branch network density, relevant data is processed using FME linking ArcGIS. The model combines entropy-weighted TOPSIS and unsupervised consensus clustering analysis techniques, utilizing ArcGIS spatial analysis functions to accurately identify priority deployment areas for micro-circulation buses. Taking Jiangbei District in Chongqing as an example, the model divides the study area into four types of traffic zones: (1) Core high-density areas, which require an increase in micro-circulation bus routes due to extremely high short-distance travel demand; (2) Periphery active population areas, which require flexible shuttle services due to transit gaps and
Jiang, TaoJia, XiaoyanLi, Jie
A futuristic vehicle chassis rendered in precise detail using state-of-the-art CAD software like Blender, Autodesk Alias. The chassis itself is sleek, low-slung, and aerodynamic, constructed from advanced materials such as high-strength alloys or carbon-fibre composites. Its polished, brushed-metal finish not only exudes performance but also emphasizes the refined form and engineered details. Underneath this visually captivating structure, a sophisticated system of self-hydraulic jacks is seamlessly integrated. These jacks are situated adjacent to the four shock absorber mounts. These jacks are designed to lift the chassis specifically at the tyre areas, and the total vehicle, ensuring that underbody maintenance is efficient and that, in critical situations, vital adjustments or emergency lifts can be performed quickly and safely. The design also incorporates an intuitive control system where the necessary buttons are strategically placed to optimize driver convenience. Whether
Gogula, Venkateswarlu
This paper focuses on defining the optimal length of rear axle brake lines (flexible polyamide tubes) for commercial vehicles by simulating the lines digitally by considering tube behavior and various axle articulation conditions. Currently, the length of rear axle brake lines are predominantly defined with the help of a physical mockup by articulating axle conditions in a vehicle. This approach requires actual components such as frame, axle, suspension, etc., which consumes considerable time and cost. Through technological advancements, prototyping can be reduced and convergence on digital to build can be achieved through digital simulation. This paper explores tube properties, axle configurations and definitions, and various methods of digitally simulating line articulation. Boundary conditions, space reservations and design criteria for pneumatic routing are defined for the type of line designed. Digital simulation of rear axle brake lines articulation was performed and compared
Duraiswamy, RupeshSankaran, BhargavRaj, Santhosh
The first step in designing or analyzing any structure is to understand “right” set of loads. Typically, off-road vehicles have many access doors for service or getting into cab etc. Design of these doors and their latches involve a knowledge of the loads arising when the door is shut which usually involves an impact of varying magnitudes. In scenarios of these impact events, where there is sudden change of velocity within few milliseconds, produces high magnitude of loads on structures. One common way of estimating these loads using hand calculations involves evaluating the rate-of-change-of-momentum. However, this calculation needs “duration of impact”, and it is seldom known/difficult to estimate. Failing to capture duration of impact event will change load magnitudes drastically, e.g. load gets doubled if time-of-impact gets reduced from 0.2 to 0.1 seconds and subsequently fatigue life of the components in “Door-closing-event” gets reduce by ~7 times. For these problems, structures
Valkunde, SangramGhate, AmitGagare, Kiran
This paper introduces a comprehensive solution for predictive maintenance, utilizing statistical data and analytics. The proposed Service Planner feature offers customers real-time insights into the health of machine or vehicle parts and their replacement schedules. By referencing data from service stations and manufacturer advisories, the Service Planner assesses the current health and estimated lifespan of parts based on metrics such as days, engine hours, kilometers, and statistical data. This approach integrates predictive analytics, cost estimation, and service planning to reduce unplanned downtime and improve maintenance budgeting, aligning with SAE expectations for review-ready manuscripts. The user interface displays current part health, replacement due dates, and estimated replacement costs. For example, if air filter replacement is recommended every six months, the solution uses manufacturer advisories to estimate the remaining life of the air filter in terms of days or
Chaudhari, Hemant Ashok
India, being one of the largest automotive markets has considered various policies affecting fuel efficiency to curb vehicle carbon emissions. In a typical light-duty vehicle (LDV), around 20% of the fuel's energy is used to power the wheels and overcome aerodynamic drag resistance. Aerodynamic drag resistance, influenced by the projected surface area, cooling drag and velocity refers to the resistive force encountered by the vehicle. Furthermore, cooling drag resistance is determined by the effective cooling system architecture and aerodynamic design of the front-end module (FEM), which has major impact on the vehicle's performance and ram curve. In the pursuit of enhancing cooling system architecture, this paper investigates thermal performance and structural integrity of using common fins for both the condenser and radiator to improve the inlet aerodynamic performance which lowers cooling fan power consumption. Preliminary results show a 12% notable reduction in motor power
K, MuthukrishnanVijayaraj, Jayanth MuraliN, AswinNarashimagounder, ThailappanMahobia, Tanmay
A battery bicycle with luggage space is designed and developed to have variable luggage space available to the rider. The developed design with bicycle frame has an innovative sideway moving frame for variable need-based space. The design was prepared for an e-commerce delivery application, suppling products through an easy, quick, and low-cost mode of transport with variable spacing options. The design was prepared for 160 kg weight, with 210 cm, 90 cm, and 35 cm as length height and width, respectively. The designed bicycle can carry luggage up to 100 kg. The design is powered by a 250-watt electric motor and can move with a maximum speed of 24 km/hr. The steering mechanism, cargo bucket, and the base frame are made in two parts for commuter convenience. The cargo bucket is front-mounted, on a sliding frame that enables one half of the bucket to be slid into the other half through sideways movement by fitted channels. The design has both electric and non-electric driving modes. The
Vashist, DevendraSatti, HarshAwasthi, A.KMUKHERJEE, SOURAV
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
Pawar, SourabhSharma, ShantanuSingh, Ramanand
Time-Sensitive Networking (TSN) enhances Ethernet with features such as time synchronization, scheduled traffic, policing, and redundancy to enable highly deterministic and reliable communications in mission-critical systems. This paper presents a comprehensive approach to the configuration, analysis, and verification of TSN for critical systems, with a focus on time-sensitive applications such as tank barrel stabilization. The impact of different types of topologies, traffic types, and application requirements on the configuration complexity are presented along with various mathematical techniques to generate network solutions and verify against the system requirements. Detailed modeling, configuration, and analysis of TSN is demonstrated using a representative mixed criticality converged network. Lastly, configuration techniques to minimize the latency, jitter, and frame loss while maximizing the network utilization are presented.
Bush, Stephen F.Jabbar, Abdul
Advanced motion control technologies are essential to modern aerospace design, supporting a wide range of safety-critical and comfort-driven applications. In aerospace, motion control components such as gas springs, actuators, and dampers are integral to nearly every commercial aircraft, rocket, satellite, and space vehicle. These critical elements support flight safety and transport functions, from the dependable deployment of landing gear and cargo doors to the smooth, ergonomic operation of seating for pilots and passengers.
Items per page:
1 – 50 of 4715