Browse Topic: Body structures

Items (4,651)
This study aims to develop a lightweight bus passenger seat frame by conducting structural nonlinear finite element analysis (FEA) on various thickness combinations of seat frame components to identify the optimal configuration. The thicknesses of critical structural members that primarily bear the load when force is applied to the seat frame were selected as independent variables, while stress on each component and compliance with ECE R14 seatbelt anchorage displacement regulations were set as dependent variables. A regression analysis was performed to calculate the importance of each component and analyze the influence of each design variable on the dependent variables. Strain gauges were attached to critical areas of the actual seat frame to conduct a seatbelt anchorage test, and simulations under identical conditions were performed using the nonlinear FEA software (LS-DYNA) to validate the reliability of the analysis results. The optimized seat frame exhibited a maximum stress of
Ko, Yeong GookCho, Kyu ChunLee, Ji SunKang, Ki Weon
Rattling noise from electrical sound systems is becoming one of the prominent issues for automakers as it directly affects the perception of customers about vehicle quality. Recently, quality sound system is prerequisite for automotive passenger vehicles. And, in the whole systems subwoofer forms dominant part of sound output. However, subwoofer rattle noise problems sometimes occur in small and midsize Sports Utility Vehicles (SUV). Mainly rattle is noise resulting from physical contact of two parts due to vibrations when relative displacement is bigger than gap of two parts, it occurred certain frequency (Between F1~F2), which is main excitation range of subwoofer. In this study, we analyze the subwoofer structural vibration analysis for five sample vehicles based on the test and correlation. However, the present subwoofer system model has limitation in determining the level of this rattle noise. Therefore, this paper discusses how to correlate subwoofer model, frequency
Thota, JagadeeshChoi, SeungchanPark, Jong-Suh
A good Noise, Vibration, and Harshness (NVH) environment in a vehicle plays an important role in attracting a large customer base in the automotive market. Hence, NVH has been given significant priority while considering automotive design. NVH performance is monitored using simulations early during the design phase and testing in later prototype stages in the automotive industry. Meeting NVH performance targets possesses a greater risk related to design modifications in addition to the cost and time associated with the development process. Hence, a more enhanced and matured design process involves Design Point Analysis (DPA), which is essentially a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are used to develop a product model that better fulfills the predefined requirement. This paper shows the systematic approach of conducting a Design Point Analysis-level NVH study to evaluate the acoustic
Ranade, Amod A.Shirode, Satish V.Miskin, AtulMahamuni, Ketan J.Shinde, RahulChowdhury, AshokGhan, Pravin
Wind noise is one of the largest sources to interior noise of modern vehicles. This noise is encountered when driving on roads and freeways from medium speed and generates considerable fatigue for passengers on long journeys. Aero-acoustic noise is the result of turbulent and acoustic pressure fluctuations created within the flow. They are transmitted to the passenger compartment via the vibro-acoustic excitation of vehicle surfaces and underbody cavities. Generally, this is the dominant flow-induced source at low frequencies. The transmission mechanism through the vehicle floor and underbody is a complex phenomenon as the paths to the cavity can be both airborne and structure-borne. This study is focused on the simulation of the floor contribution to wind noise of two types of vehicles (SUV and Sports car), whose underbody structure are largely different. Aero-Vibro-acoustic simulations are performed to identify the transmission mechanism of the underbody wind noise and contribution
Mordillat, PhilippeZerrad, MehdiErrico, Fabrizio
Basic structures of vehicle frames、aircraft fuselages and ship hulls are made of beams、columns and trusses. If Acoustic Black Holes(ABH) are carefully arranged alongside with the wave propagation paths in those structures, the wave propagation paths could be changed at NVH engineers’ will and the structure vibrations can be reduced. Two kinds of ABHs are used in this paper: one is ABH made of Polyurethane(PU), other one is ABH composed of several steel plate 1D ABH stacked up in parallel. Three structures are used to test the effectiveness of ABHs for vibration reductions: a squared hollow sectional steel commonly used in motorcoach/bus chassis and frame structures, a simple frame for motorcoach airbag suspension and a 12m chassis structure. The attached ABHs show a great vibration attenuation in terms of transfer functions on the basic structure element for a motorcoach. The lateral, vertical and longitudinal transfer functions for steel ABHs were greatly reduced from 13.2~14.7 dB
Xu, ChuanyanWang, JianjunXing, QisenChen, HengbinHuang, Xianli
Mechanical light detection and ranging (LiDAR) units utilize spinning lasers to scan surrounding areas to enable limited autonomous driving. The motors within the LiDAR modules create vibration that can propagate through the vehicle frame and become unwanted noise in the cabin of a vehicle. Decoupling the module from the body of the vehicle with highly damped elastomers can reduce the acoustic noise in the cabin and improve the driving experience. Damped elastomers work by absorbing the vibrational energy and dispelling it as low-grade heat. By creating a unique test method to model the behavior of the elastomers, a predictable pattern of the damping ratio yielded insight into the performance of the elastomer throughout the operating temperature range of the LiDAR module. The test method also provides an objective analysis of elastomer durability when exposed to extreme temperatures and loading conditions for extended periods of time. Confidence in elastomer behavior and life span was
Russell, CaseyMasterson, PeterO'Connell, Kerry
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Rittenschober, Thomas
Based on the objective and subjective experiment and finite element analysis, the influencing factors on the door closing sound quality of a heavy truck is analyzed and optimized. Results show that the loudness and sharpness can be reduced by increasing stiffness and damping of the door. The sound quality can be enhanced by increasing the pressure release area, which can decrease the air pressure resistance of dooring closing. By adding holes on the inner liner and changing the pressure release location, the dooring closing air pressure resistance is reduced from 289 Pa to 181 Pa. In terms of the rebound sound, the sound level is positively related to the door closing force. Increasing the protrusion height and decreasing the stiffness of the vibration absorber of the handle can improve the rebound sound quality. Optimizing the absorbers on both ends of the handle and adding damping material can decrease the loudness by 47.8%, reduce the cavity sound, reduce the rattle and improve the
Wang, JianZhang, YongshenFeng, LeiXie, ChenhaoLin, JieweiSun, Changchun
The arrangement of error microphones for a vehicle active noise control (ANC) system is no trivial work, especially for heavy-duty trucks, due to the dilemma resulted from the large volume of the cab and the limited number of microphones accepted by most manufacturers in the auto industry. Although some pioneering work has laid the foundation for the application of numerical methods exemplified by the genetic-algorithm (GA) to optimize the error sensor arrangement in an ANC system, most ANC developers still resort to trial and error in practice, which is not only a heavy workload given the amount of interested working conditions to be tested, but also does not guarantee to yield the optimum noise cancellation performance. In this paper, the authors designed and implemented an error microphone selection process using a genetic-algorithm (GA) -based mechanism. The target vehicle was a heavy-duty truck with a six-piston diesel engine, and two application scenarios were particularly
Wang, JianLing, ZihongZhang, ZheCai, DeHualv, XiaoZhang, MingGao, GuoRan
This study focuses on the numerical analysis of weather-strip contact sealing performance with a variable cross-sectional design, addressing both static and dynamic behaviors, including the critical issue of stick-slip phenomena. By employing finite element modeling (FEM), the research simulates contact pressures and deformations under varying compression loads, DCE (Door Closing Efforts) requirements, typical in automotive applications. The analysis evaluates how changes in the cross-sectional shape of the weather-strip affect its ability to maintain a consistent sealing performance, especially under dynamic vehicle operations. The study also delves into stick-slip behavior, a known cause of noise and vibration issues, particularly improper/ loosened door-seal contact during dynamic driving condition. This study identifies key parameters influencing stick-slip events, such as friction coefficients, material stiffness, surface interactions, sliding velocity, wet/dry condition
Ganesan, KarthikeyanSeok, Sang HoSun, Hyang Sun
Exterior noise (EN) regulations for earth-moving machines (EMMs) require original equipment manufacturers (OEMs) to develop noise mitigation solutions early in the design process. Predicting the effectiveness of these solutions at this stage, however, is challenging. Excavators differ from other EMMs due to their rotating upper frame, which operates atop a fixed lower frame. Regulations such as ISO 6395 and EC/2000/14 mandate specific operating maneuvers, where noise sources dynamically change their position, directivity, and speed throughout the operating cycle. This complexity makes noise contribution analysis more difficult, as it must account for variations in angular position and operating conditions. While previous studies successfully applied Acoustic Source Quantification (ASQ) and contribution analysis to linearly moving EMMs, the angular motion of an excavator’s cab with respect to fixed target microphones introduces additional data processing challenges. This study addresses
Vesikar, Prasad BalkrishnaChaduvula, PrasannaAquino Arriaga, Adrian AntonioHaynes, TimothyDrabison II, John
Traditional silicon-based solar cells are completely opaque, which works for solar farms and roofs but would defeat the purpose of windows. However, organic solar cells, in which the light absorber is a kind of plastic, can be transparent.
Wind noise is an important indicator for evaluating cabin comfort, and it is essential to accurately predict the wind noise inside the vehicle. In the early stage of automotive design, since the geometry and properties of the sealing strip are often unknown, the contribution of the sealing strip to the wind noise is often directly ignored, which makes the wind noise obtained through simulation in the pre-design stage to be lower than the real value. To investigate the effect of each seal on wind noise, an SUV model was used to simulate the cases of not adding body seals, adding window seals, and further adding door seals, respectively. The contribution of each seal to wind noise was obtained and verified by comparing it with the test results. The influence of the cavity formed at the door seal was also addressed. In the simulations, a CFD solver based on the lattice Boltzmann method (LBM) was used to solve the external flow field, and the noise transmitted into the interior of the
Zhang, YingchaoHe, TengshengWang, YuqiNiu, JiqiangZhang, ZheShen, ChunZhang, Chengchun
Traffic flow prediction is very important in traffic-related fields, and increasing prediction accuracy is the primary goal of traffic prediction research. This study proposes a new traffic flow prediction method, which uses the CNN–BiLSTM model to extract features from traffic data, further models these features through GBRT, and uses Optuna to tune important hyperparameters of the overall model. The main contribution of this study is to propose a new combination model with better performance. The model integrates two deep learning models that are widely used in this field and creatively uses GBRT to process the output features of the front-end model. On this basis, the optimal hyperparameters and the robustness of the model are deeply explored, providing an effective and feasible solution to the difficult problems in traffic flow prediction. This model is experimentally studied using three different data transformation methods (original data, wavelet transform, Fourier transform
Ma, ChangxiJin, Renzhe
The weave mode of a motorcycle is known to be affected by the flexibility of the vehicle frame. The weave mode has been shown to be more unstable in the 10-DOF model than in the 4-DOF model. However, it is not clear why the weave mode would be unstable, given the six different frame flexibilities. In this study, the authors analyzed the stability of the weave mode in a 4-DOF model when the same was integrated with two types of frame flexibilities. In the vehicle specifications used in the analysis, the combination of the bending flexibility of the front forks and the torsional flexibility of the main frame destabilizes the weave mode. The analysis results show that the phase delay of the front tire lateral force is caused by the phase delay of the steering angle. The combined bending flexibility of the front forks and the torsional flexibility of the main frame results in a large phase lag in the steering angle.
Haraoka, ReiyaKatayama, TsuyoshiYoshino, Takahiko
The arc welding process is essential for motorcycle frames, which are difficult to form in one piece because of their complex shapes, because a single frame has dozens of joints. Many of the damaged parts of the frames under development are from welds. Predicting the strength of welds with high reliability is important to ensure that development proceeds without any rework. In developing frames, CAE is utilized to build up strength before prototyping. Detailed weld shapes are not applicable to FE models of frames because weld shapes vary widely depending on welding conditions. Even if CAE is performed on such an FE model and the evaluation criteria are satisfied, the model may fail in the actual vehicle, possibly due to the difference between CAE and actual weld bead geometry. Therefore, we decided to study the extent to which the stresses in the joint vary with the variation of the weld bead geometry. Morphing, a FE modeling method and design of experiment method, was utilized to
Hada, YusukeSugita, Hisayuki
The rear swing arm, a crucial motorcycle component, connects the frame and wheel, absorbing the vehicle’s load and various road impacts. Over time, these forces can damage the swing arm, highlighting the need for robust design to ensure safety. Identifying potential vulnerabilities through simulation reduces the risk of failure during the design phase. This study performs a detailed fatigue analysis of the swing arm across different road conditions. Data for this research were collected from real-vehicle experiments and simulation analyses, ensuring accuracy by comparing against actual performance. Following CNS 15819-5 standards, road surfaces such as poorly maintained, bumpy, and uneven roads were tested. Using Motion View, a comprehensive multi-body dynamic model was created for thorough fatigue analysis. The results identified the most stress-prone areas on the swing arm, with maximum stress recorded at 109.6N on poorly maintained roads, 218.3N on bumpy surfaces, and 104.8N on
Chiou, Yi-HauHwang, Hsiu-YingHuang, Liang-Yu
In traditional four-wheeled automobiles, the imbalance between the roll moment, which is the product of the centrifugal force during a turn acting on the center of gravity and the height of the center of gravity, and roll stiffness, which is the product of the left-right difference in tire vertical load and the tread width and commonly used among automotive suspension engineers, of the front and rear sections necessitates body torsional rigidity. However, there is a lack of specific cases and guidelines for constructing the body structure of three-wheeled PMVs (Personal Mobility Vehicles) with a tilting mechanism from the perspective of vehicle dynamics characteristics. In this paper, the basic considerations related to the dynamics of such three-wheeled PMVs are investigated. We use the term “torsional rigidity” to refer to the stiffness as the torsional deformation of the body itself, and the term “roll stiffness” to refer to the moment that counteracts the roll moment during a turn
Haraguchi, TetsunoriKaneko, Tetsuya
This article analyses the fundamental curving mechanics in the context of conditions of perfect steering off-flanging and on-flanging. Then conventional, radial, and asymmetric suspension bogie frame models are presented, and expressions of overall bending stiffness kb and overall shear stiffness ks of each model are derived to formulate the uniform equations of motion on a tangent and circular track. A 4 degree of freedom steady-state curving model is formulated, and performance indices such as stability, curving, and several parameters including angle of attack, tread wear index, and off-flanging performance are investigated for different bogie frame configurations. The compatibility between stability and curving is analyzed concerning those configurations and compared. The critical parameters influencing hunting stability and curving ability are evaluated, and a trade-off between them is analyzed. For the verification, the damped natural frequencies and mean square acceleration
Sharma, Rakesh ChandmalSharma, Sunil KumarPalli, SrihariRallabandi, Sivasankara RajuSharma, Neeraj
The New Car Assessment Program (e.g., US NCAP and EuroNCAP) frontal crash tests are an essential part of vehicle safety evaluations, which are mandatory for the certification of civil means of transport prior to normal road exploitation. The presented research is focused on the behavior of a tubular low-entry bus frame during a frontal impact test at speeds of 32 and 56 km/h, perpendicular to a rigid wall surface. The deformation zones in the bus front and roof parts were estimated using Ansys LS-DYNA and considered such factors as the additional mass (1630 kg) of electric batteries following the replacement of a diesel engine with an electric one. This caused stabilization of the electric bus body along the transverse axis, with deviations decreased by 19.9%. Speed drop from 56 to 32 km/h showed a reduction of the front window sill deformations from 172 to 132 mm, and provided a twofold margin (159.4 m/s2) according to the 30g ThAC criterion of R80. This leads to the conclusion about
Holenko, KostyantynDykha, AleksandrKoda, EugeniuszKernytskyy, IvanRoyko, YuriyHorbay, OrestBerezovetska, OksanaRys, VasylHumeniuk, RuslanBerezovetskyi, SerhiiChalecki, Marek
Headliners are one of the largest components inside an automobile, stretching from the front windshield to the rear windshield. Besides its aesthetic purpose, it contributes to multiple other purposes like housing different components, helps in NVH, defines the interior roominess, and plays a crucial role in defining the deployment of curtain airbag. The headliner also plays a role in meeting regulatory requirements like upward visibility and headroom requirements of the occupants. During the deployment of curtain airbag, it is important that the headliner-pillar interface aids in the easy opening of airbag, with the least hindrance. This is defined by multiple factors like the location of headliner-pillar interface, its distance from the airbag ramp bracket, the position of the inflator, the mountings of the headliner and pillar trims, to name a few. Also, during the deployment of the airbag, it is important that parts such as grabhandle, speaker grilles, etc which are fitted on the
Sabesan, Arvind KochiD., AnanthaKakani, Phani Kumar
This paper addresses the need for improved material selection in parcel shelves, a key component in passenger vehicles used to conceal the trunk area. The focus is on weight optimization, structural integrity, and perceived quality improvement using sustainable and ultra-lightweight composite materials. Traditional materials such as PET Woodstock, while durable, contribute significantly to vehicle weight, which is a drawback in the context of electric vehicles (EVs). The proposed composite material alternatives offer a high strength-to-weight ratio and have been shown to improve the load vs. deflection ratio, enhance aesthetics, and reduce manufacturing complexity and costs. This study outlines the testing and evaluation process of varying GSM and thicknesses of composite materials, demonstrating superior stiffness, reduced deflection under load, and enhanced ease of assembly. This work contributes to the ongoing efforts to achieve lightweighting, cost efficiency, and sustainability in
Kinthala, Nareen KumarPatnaik, MangaKhandelwal, MohitKakani, Phani KumarPalaniappan, Elavarasan
Nonlinearities in mechanical systems pose significant challenges for efficiently solving multi-body dynamics (MBD) problems. Although simulations of traditional mechanisms with perfect joints can be performed efficiently, joints in practical applications are often characterized by clearances, leading to reduced simulation efficiency and accuracy. Improving solver effectiveness is essential for simulating systems with nonlinearities. This paper explores the use of Julia, a high-performance open-source programming language, to solve MBD problems formulated as index-1 differential-algebraic equations (DAEs). Euler parameters (quaternions) are employed to represent the orientation of rigid bodies. To illustrate the method's adaptability in addressing non-standard joint types, both perfect and imperfect (with clearance or friction) planar roller guide joints are modeled alongside common perfect joints. A case study of a vehicle sliding door system is presented. The numerical results are
Tong, JiachiMeng, DejianLian, YuboGao, YunkaiYang, James
Physical testing is required to assess multiple vehicles in different conditions, specially to validate those related to regulations. The acoustic evaluations have difficulties and limitations in physical test; cost and time represent important considerations every time. Additionally, the physical validation happens once a prototype has been built, this takes place in a later phase of the development. Sound pressure is measured to validate different requirements in a vehicle, horn sound is one of these and it is related to a regulation of united nations (ECE28). Currently the validation happens in physical test only and the results vary depending on the location of the horn inside the front end of every vehicle. [7] In this article, the work for approaching a virtual validation method through CAE is presented with the intention to get efficiency earlier in product development process.
Alonso, LilianaCruz, RacielAlvarez, Ezequiel
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
S M, Rahuld, AnanthaKakani, Phani Kumar
The current Range Rover is the fifth generation of this luxury SUV. With a drag coefficient of 0.30 at launch, it was the most aerodynamically efficient luxury SUV in the world. This aerodynamic efficiency was achieved by applying the latest science. Rear wake control was realised with a large roof spoiler, rear pillar and bodyside shaping, along with an under-floor designed to reduce losses over a wide range of vehicle configurations. This enabled manipulation of the wake structure to reduce drag spread, optimising emissions measured under the WLTP regulations. Along with its low drag coefficient, in an industry first, it was developed explicitly to achieve reduced rear surface contamination with reductions achieved of 70% on the rear screen and 60% over the tailgate when compared against the outgoing product. This supports both perceptions of luxury along with sensor system performance, demonstrating that vehicles can be developed concurrently for low drag and reduced rear soiling
Chaligné, SébastienGaylard, Adrian PhilipSimmonds, NicholasTurner, Ross
In Formula SAE , the primary function of the frame is to provide structural support for the different components and withstand the applied load. In recent years, most Formula Student teams worldwide to adopt monocoque made of carbon fiber composites, which are lighter and stronger. Enhancing the mechanical performance of carbon fiber laminates has been a key focus of research for these teams. In three-point bending tests, significant stress at the adhesive layer between the skin and the core material at both ends of the laminate, often lead to potential adhesive failure. Consequently, experimental boards often exhibit delamination between the outer skin and the core material, and premature core crushing, which compromises the mechanical performance of the laminate and fails to pass the Structural Equivalency Spreadsheet. Therefore, it is necessary to consider the influence of the bonding factor of toughened epoxy prepreg film on the mechanical properties of the laminated plate. This
Ning, Zicheng
Two wheelers motorcycles are used for many purposes e.g. commuting from one place to another, long highway rides, racing and off-roading. Motorcycles which are used in off-road conditions require higher suspension strokes to absorb large oscillations due to terrain conditions. These motorcycles undergo jumps of varying heights and different vehicle orientations. In some of the dynamic situations front wheel may land on the ground before the rear and in other cases it may be vice versa. To make sure that the vehicle is durable enough to withstand loads in such operating conditions, vehicle drop test was developed in test lab where vehicle is dropped from predefined heights in both front & rear wheel landing conditions. Same test case is simulated in multibody dynamics to capture loads at important connections of the frame. This paper presents the correlation exercise carried out to validate MBD model and simulation process with test data captured during lab test. Accelerations at
Jain, Arvind KumarNirala, Deepak
Combined with a modified Zener-Hollmon parameter, a recently proposed ductile failure criterion is further improved to predict the forming limit of boron steel at hot stamping temperatures. The ductile failure criterion takes into account the critical damage at localized necking or at fracture as a function of strain path and initial sheet thickness. The modified Zener-Hollomon parameter accounts for both effect of varying strain rate and temperature for Boron steel. Working FEM simulation, the capability of the ductile failure criterion is further demonstrated by predicting forming limit of a boron steel in an isothermal Nakajima dome test. Comparison shows the prediction matches quite well with the measurement.
Sheng, ZiQiangMallick, Pankaj
Selective catalytic oxidation/reduction catalysts coated on diesel particulate filters (SDPF) are an important technology route to meet next-stage emission regulations. The previous research of the research group showed that compared with SDPF coated with Cu-SSZ-13, the SDPF coated with novel selective catalytic oxidation-selective catalytic reduction (SCO-SCR) catalyst, which combined MnO2-CeO2/Al2O3 and Cu-SSZ-13, can simultaneously improve NOx reduction and soot oxidation performance. Catalyst coating strategy is an important parameter affecting the performance of SDPF. In this study, the effects of different coating strategies of SCO-SCR catalysts (C25, C50, C75, and C100) on the performance of NOx reduction and soot oxidation in SDPF were investigated. The results show that, as the inlet gas temperature increases, NO emissions first decrease and then increase, NOx conversion efficiency first increases and then decreases, and the rich-NO2 area, NH3 oxidation rate, N2O, CO, CO2
Chen, Ying-jieTan, PiqiangYao, ChaojieLou, DimingHu, ZhiyuanYang, Wenming
Abstract The technological advancements in the automotive industry have seen a significant leap with the introduction of automated driving system (ADS)-equipped Vehicles (AVs), with potential for enhanced safety, efficiency, and mobility. As the development of an AV transitions from the stages of conceptual design to deployment, assessing the maturity of the technology through a structured framework is crucial. This paper proposes the adaptation of the Technology Readiness Level (TRL) framework originally developed by NASA (and adopted widely in a variety of industries) to the AV industry to provide a consistent, understandable, and transparent method to describe an AV product’s stage of development. The TRL framework is mated to the existing safety case framework (SCF) developed in the Automated Vehicle – Test and Evaluation Process (AV-TEP) Mission, a collaboration between Science Foundation Arizona and Arizona State University. The claim that the AV is ready to transition from one
Swaminathan, SunderWishart, JeffreyZhao, JunfengRusso, BrendanRahimi, Shujauddin
In automotive engineering, seam welds are frequently used to join or connect various parts of structures, frames, cradles, chassis, suspension components, and body. These welds usually form the weaker material link for durability and impact loads, which are measured by lab-controlled durability and crash tests, as well as real-world vehicle longevity. Consequently, designing robust welded components while optimizing for material performance is often prioritized as engineering challenge. The position, dimensions, material, manufacturing variation, and defects all affect the weld quality, stiffness, durability, impact, and crash performance. In this paper, the authors present best practices based on studies over many years, a rapid approach for optimizing welds, especially seam welds, by adopting Design For Six Sigma (DFSS) IDDOV (Identify, Define, Develop, Optimization, and Verification) discrete optimization approach. We will present the case testimony to show the approach throughout
Qin, WenxinLi, FanPohl, Kevin J.Pentapati, Venkat
The significance of the liftgate's role in vehicle low-frequency boom noise is highlighted by its modal coupling with the vehicle's acoustic cavity modes. The liftgate's acoustic sensitivity and susceptibility to vehicle vibration excitation are major contributors to this phenomenon. This paper presents a CAE (Computer-Aided Engineering) methodology for designing vehicle liftgates to reduce boom risk. Empirical test data commonly show a correlation between high levels of liftgate vibration response to vehicle excitations and elevated boom risk in the vehicle cabin. However, exceptions to this trend exist; some vehicles exhibit low boom risk despite high vibration responses, while others show high boom risk despite low vibration responses. These discrepancies indicate that liftgate vibratory response alone is not a definitive measure of boom risk. Nonetheless, evidence shows that establishing a vibration level control guideline during the design stage results in lower boom risk. The
Abbas, AhmadHaider, Syed
This paper presents a new regression model-based method for accurate predictions of stiffness of different glass laminate constructions with a point-load bending test setup. Numerical FEA models have been developed and validated with experimental data, then used to provide training data required for the statistical model. The multi-variable regression method considered six input variables of total glass thickness, thickness ratio of glass plies as well as high-order terms. Highly asymmetrical, hybrid laminates combining a relatively thick soda-lime glass (SLG) ply joined with a relatively thin Corning® Gorilla® Glass (GG) ply were analyzed and compared to standard symmetrical SLG-SLG constructions or a monolithic SLG with the same total glass thickness. Both stiffness of the asymmetrical laminates and the improvement percentage over the standard symmetrical design can be predicted through the model with high precision.
Yu, ChaoCleary, ThomasJoubaud, Laurentkister, EvanFisher, W Keith
This study is to demonstrate a vehicle dynamics simulation process to assess vehicle vibration performance. A vehicle dynamics model including non-linear tuning elements and flexible vehicle body is simulated on ride roads. The goal of the simulation is acceleration responses at the passenger locations in frequency domain. Body interface loads are recovered from the vehicle dynamic simulations. Frequency response function (FRF) of the body structure is ready in a fashion that input forces are applied to all body interface locations to the suspension and powertrains. This will give acceleration response sensitivity of the body structure to each body interface. The sum of body interface loads multiplied by FRF at each interface produces acceleration responses in frequency domain. A mid-size sedan model was used to demonstrate the process. A full vehicle dynamics model using Ansys Motion was simulated on a virtual ride road at a constant speed. The body loads were recovered in time domain
Hong, Hyung-JooMaddula, Pavan KumarJun, Hyochan
In this study, the aerodynamics and surface flow field of a 1/5 scale SUV vehicle model called “AeroSUV” were experimentally investigated. The aerodynamics and surface flow field investigations were carried out in the wind tunnel at Hiroshima University with a Reynolds number ReL = 1.2×106, baseline yaw angle β = 0° and crosswind conditions β = 5°, 10° and 15° for two rear ends, Estateback and Fastback. The results provide aerodynamic information and detailed surface flow field information for a standard middle-class SUV vehicle with different rear ends, which is important for automotive design. By applying GLOF measurements to automotive aerodynamics, the skin friction topology was revealed in detail as surface flow field information that is useful for understanding the physics of the flow. The skin friction topology clearly shows the separation lines, reattachment lines, and focus points associated with the separation flow, longitudinal vortices and recirculation vortices of this
Hijikuro, MasatoShimizu, KeigoNakashima, TakujiHiraoka, Takenori
Plasticized polyvinyl chloride (PVC) has many applications in automotive industry including electrical harnesses, door handles, seat and head rest covers, and instrument panel (IP) and other interior trim. In IP applications, the PVC skin plays a critical role in passenger airbag deployment (PAB) by tearing along the scored edge of the PAB door and allowing the door to open and the airbag to inflate to protect the occupant. As part of the IP, the PVC skin may be exposed to elevated temperatures and ultraviolet (UV) radiation during the years of the vehicle life cycle which can affect the PVC material properties over time and potentially influence the kinematics of the airbag deployment. Chemical and thermal aging of plasticized PVC materials have been studied in the past, yet no information is found on how the aging affects mechanical properties at high rates of loading typical for airbag deployment events. This paper compares mechanical properties of the virgin PVC-based IP skin
G, KarthiganSavic, VesnaRavichandran, Gowrishankar
With the development of additive manufacturing technology, the concept of integrated design has been introduced and deeply involved in the research of body design. In this paper, by analyzing the structural characteristics of the electric vehicle body, we designed a body in white with the additive manufacturing process, and analyzed its mechanical properties through finite element method. According to the structural characteristics of the body, the integrated structure was modeled in three dimensions using CATIA. For the mechanical properties of the body, the strength and stiffness of the body structure were simulated and analyzed based on ANSYS Workbench. The results show that for the strength of the body, the maximum stress of the simulation results was compared with the permissible stress, and the maximum stress was calculated to be less than the permissible stress under each working condition. For the body stiffness, the displacement of the body deformation was used to measure, and
Xu, ChengZhang, MingWang, TaoZhang, Tang-yunCao, CanWang, Liangmo
The proliferation of the electric vehicle (EVs) in the US market led to an increase in the average vehicle weight due to the assembly of the larger high-voltage (HV) batteries. To comply with this weight increase and to meet stringent US regulations and Consumer Ratings requirements, Vehicle front-end rigidity (stiffness) has increased substantially. This increased stiffness in the larger vehicles (Large EV pickups/SUVs) may have a significant impact during collision with smaller vehicles. To address this issue, it is necessary to consider adopting a vehicle compatibility test like Euro NCAP MPDB (European New Car Assessment Program Moving Progressive Deformable Barrier) for the North American market as well. This study examines the influence of mass across vehicle classes and compares the structural variations for each impact class. The Euro NCAP MPDB (European New Car Assessment Program Moving Progressive Deformable Barrier) protocol referenced for this analysis. Our evaluation
Kusnoorkar, HarshaKoraddi, BasavarajGuerrero, MichaelSripada, Venu VinodTangirala, Ravi
The pre-validation process for door trim noise has gained increasing importance as noise standards have become more stringent with the transition to electric vehicles. Currently, the validation process employs squeak and rattle director simulations to evaluate noise based on relative displacement values. However, this approach is time-intensive. To address this limitation, we have improved process efficiency by developing a database of relative displacement values derived from the cross-sectional and structural characteristics of matching parts. This advancement enables noise pre-validation using only cross-sectional and structural information.
Cho, WonhyungNa, HyunghyunKim, DonghyeonKim, JongSooShin, Dongwan
With the widespread application of the Automatic Emergency Braking System (AEB) in vehicles, its impact on pedestrian safety has received increasing attention. However, after the intervention of AEB, the kinematic characteristics of pedestrian leg collisions and their corresponding biological injury responses also change. At the same time, in order to accurately evaluate the pedestrian protection performance of vehicles, the current assessment regulations generally use advanced pedestrian protection leg impactors (aPLI) and rigid leg impactors (TRL) to simulate the movement and injury conditions of pedestrian legs. Based on this, in order to explore the collision boundary conditions and changes in injury between vehicles and APLI and TRL leg impactors under the action of AEB, this paper first analyzes the current passive and active assessment conditions. Secondly, the simulation software LS-DYNA is used to build a finite element model of APLI and TRL impactor-vehicle collisions to
Ye, BinHong, ChengWan, XinmingLiu, YuCheng, JamesLong, YongchenHao, Haizhou
A passenger vehicle hood is designed to meet Vulnerable Road User (VRU) regulatory requirements and consumer metric targets. Generally, hood inner design and its reinforcements, along with deformable space available under the hood are the main enablers to meet the Head Impact performance targets. However, cross functional balancing requirements, such as hood stiffness and packaging space constraints, can lead to higher Head Injury Criteria (HIC15) scores, particularly when secondary impacts are present. In such cases, a localized energy absorber is utilized to absorb the impact energy to reduce HIC within the target value. The current localized energy absorber solutions include the usage of flexible metal brackets, plastic absorbers etc. which have limited energy absorbing capacity and tuning capability. This paper focuses on usage of a novel 3D printed energy absorbers, based on various kinds of lattice structures. These absorbers are either sandwiched between the inner and the outer
Kinila, VivekanandaAgarwal, VarunV S, RajamanickamTripathy, BiswajitGupta, Vishal
Accurate reconstruction of vehicle collisions is essential for understanding incident dynamics and informing safety improvements. Traditionally, vehicle speed from dashcam footage has been approximated by estimating the time duration and distance traveled as the vehicle passes between reference objects. This method limits the resolution of the speed profile to an average speed over given intervals and reduces the ability to determine moments of acceleration or deceleration. A more detailed speed profile can be calculated by solving for the vehicle’s position in each video frame; however, this method is time-consuming and can introduce spatial and temporal error and is often constrained by the availability of external trackable features in the surrounding environment. Motion tracking software, widely used in the visual effects industry to track camera positions, has been adopted by some collision reconstructionists for determining vehicle speed from video. This study examines the
Perera, NishanGriffiths, HarrisonPrentice, Greg
This paper summarizes work on the application of a new and fully parallelized native GPU-based finite-volume solver on the DrivAER Notchback configuration using a wall-function LES approach. A series of meshes generated using a Rapid-Octree strategy have been investigated, and results for drag, surface pressure coefficient and velocity profile are compared with available experimental data.
Menter, FlorianDalvi, AshwiniFlad, DavidSharkey, Patrick
The trends of intelligence and connectivity are continuously driving innovation in automotive technology. With the deployment of more safety-critical applications, the demand for communication reliability in in-vehicle networks (IVNs) has increased significantly. As a result, Time-Sensitive Networking (TSN) standards have been adopted in the automotive domain to ensure highly reliable and real-time data transmission. IEEE 802.1CB is one of the TSN standards that proposes a Frame Replication and Elimination for Reliability (FRER) mechanism. With FRER, streams requiring reliable transmission are duplicated and sent over disjoint paths in the network. FRER enhances reliability without sacrificing real-time data transmission through redundancy in both temporal and spatial dimensions, in contrast to the acknowledgment and retransmission mechanisms used in traditional Ethernet. However, previous studies have demonstrated that, under specific conditions, FRER can lead to traffic bursts and
Luo, FengRen, YiZhu, YianWang, ZitongGuo, YiYang, Zhenyu
While numerous advancements have been made in autonomous navigation for structured indoor and outdoor environments, these solutions often do not generalize well to off-road settings. There are unique challenges in such settings such as unreliable GPS, limited computational and memory resources, and sparse environmental features, making navigation particularly difficult. In our work, we propose a novel data structure called Hierarchical Dynamic Scene Graphs (HDSG) to address these challenges. HDSG captures environmental information at different resolutions, integrating both geometric and semantic features. It enables various navigation tasks such as localization, loop closure, and human interaction through the visualization of environmental features for remote operators. We evaluated the performance of localizing a robot’s position within the world frame by comparing compact spatial descriptors extracted from semi-consecutive scene graphs, derived from 3D LiDAR point clouds. Compared to
Alam, Fardifa FathmiulLuricich, FedericoLi, NianyiJia, YunyiLi, Bing
Monocoque is a kind of integrated shell structure technology, which has gradually become the primary choice for various racing teams to make car bodies because of its advantages of small specific gravity and high specific strength. The unit of the monocoque is a carbon fiber composite sandwich structure, which is composed of two layers of carbon fiber skin inside and outside and core material between them. The inner and outer layers of the carbon fiber skin are stacked with carbon fiber composite materials of different directions and types.In this project, we plan to optimize the shape of the monocoque shell using the surface design software Alias, select core materials of different materials and structures, more advanced layups, and obtain feasible layup sequences and core material types through Ansys simulation and Matlab collaborative optimization, which will be verified by three-point bending experiments. Different from the previous lightweight work based a lot on experience, this
Cheng, Zhu H.Liu, JJ
Taking a commercial vehicle cab suspension system as the research focus, a rigid-flexible coupled dynamics model was established based on the nonlinear characteristics of the integrated damper air spring and bushings. Time-domain vibration acceleration signals were acquired at the connection points between the frame, cab, and suspension. The vibration signals at the frame and suspension connection points were input into the simulation model, where the vibration responses at the cab and suspension connection points were calculated and analyzed using the established cab suspension system model. The accuracy of the model was verified by comparing the simulation results with experimental data. The established cab suspension system model was further used to evaluate human vibration comfort within the cab, following national standards for subjective human perception. A piecewise polynomial function was employed to fit the stiffness-damping characteristics of the integrated damper air spring
Hao, QiZhu, YuntaoSun, WenSun, KaiSun, ZhiyongHuang, YuZhen, RanShangguan, Wen-Bin
Items per page:
1 – 50 of 4651