Browse Topic: Body structures
Customers are expecting higher level of refinement in electric vehicle. Since the background noise is less in electric vehicle in comparison with ICE, it is challenging for NVH engineers to address even minor noise concerns without cost and mass addition. Higher boom noise is perceived in the test vehicle when driven on the coarse road at a speed of 50 kmph. The test vehicle is rear wheel driven vehicle powered by electric motor. Multi reference Transfer Path Analysis (TPA) is conducted on the vehicle to identify the path through which maximum forces are entering the body. Based on the findings from TPA, solutions like reduction in the dynamic stiffness of the suspension bushes are optimized which resulted in reduction of noise. To reduce the noise further, Operational Deflection Shape (ODS) analysis is conducted on the entire vehicle to identify the deflection shapes of all the suspension components and all the body panels like floor, roof, tailgate, dash panel, quarter panel and
During the early phase of vehicle development, one of the key design attributes to consider is the trunk. Trunk is the pillar that is responsible for user’s accommodate their baggage and make into customer needs in engineer metrics. Therefore, it is one of the key requirements to be considered during the vehicle design. Certain internal vehicle trunk characteristics such as the trunk height and length are engineer metrics that influence the occupants’ perception for trunk. One specific characteristic influencing satisfaction is the rear opening width lower for notch back segment, which is the subject of this paper. The objective of this project is to analyze the relationship between the rear opening width lower with the occupant’s satisfaction under real world driving conditions, based on research, statistical data analysis and dynamic clinics.
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
In recent years, engineers at ETH Zurich have developed the technology to produce liquid fuels from sunlight and air. In 2019, they demonstrated the entire thermochemical process chain under real conditions for the first time, in the middle of Zurich, on the roof of ETH Machine Laboratory. These synthetic solar fuels are carbon neutral because they release only as much CO2 during their combustion as was drawn from the air for their production. Two ETH spin-offs, Climeworks and Synhelion, are further developing and commercializing the technologies.
Items per page:
50
1 – 50 of 4663