Browse Topic: Body structures
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
A mobile wireless charger is a device that charge a smartphone or other compatible gadgets without the need for physical cables. Principle of wireless mobile charger system based on inductive coupling phenomena. The main objective of this paper aims to address the challenge of packaging wireless mobile charger in peculiar door trim profile keeping overall functionality and aesthetic appearance of door trim intact. This paper deals with integration of a wireless charging system within the door trim of a vehicle to provide convenience and advanced functionality. The objective is to pack a wireless charger in door trim meeting the ergonomic target and equilibrium state stability while maintaining sleek and minimalist design of the door trim. The study focuses on innovative packaging solutions related to space optimization in door despite multiple challenges involved. Major challenge lies in packing the unit amidst complex mechanisms such as window regulators, speakers, structural
Side crashes are generally hazardous because there is no room for large deformation to protect an occupant from the crash forces. A crucial point in side impacts is the rapid intrusion of the side structure into the passenger compartment which need sufficient space between occupants and door trim to enable a proper unfolding of the side airbag. This problem can be alleviated by using the rising air pressure inside the door as an additional input for crash sensing. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. The crash pulses recorded by the acceleration based crash sensors usually exhibit high frequency and noisy responses. The data obtained from the pressure sensors exhibit lower frequency and less noisy responses. Due to its ability to discriminate crash severities and allow the restraint devices to deploy earlier, the pressure sensor technology has
Bogie frame is a main skeleton and structural member in railway system which is carrying all the loads such as Suspensions, Axles, wheels, car body, Motor, Gear box etc. The frame is subjected an exceptional and service stresses in Vertical, Longitudinal, Lateral and twist directions throughout the service life which should be withstand for a life span of 30 years without failure. The purpose of this project is to determine the Structural integrity of the Metro rail bogie frame in consideration with EN13749 standard. This paper is the outcome of bench testing of metro rail bogie frame with the application of multiaxial loading in static and dynamic campaign through which stress data is collected with strain gauge sensors and correlated with the FEA results at initial design phase. This helps to verify and evaluate the design and validate the quality of metro rail frame as per the requirement specified in EN13749:2021 European standard in early design stages.
This research analyzes the significance of air extractor on car door closing effort, especially within the context of highly sealed cabins. The goal is to measure their effectiveness in lowering pressure-induced resistance, study how the cut-out cross section and location affect performance, and its contribution to vehicle premium feel. Current vehicle design trends prioritize airtight cabin sealing for improving aerodynamic efficiency, NVH performance. This causes a problem in door closing operation. Air trapped while closing door creates transient pressure pulses. This pressure surge creates immediate discomfort to user i.e., Popping in Ears and requires high door closing force, and long-term durability problems in hinges and seals. In properly sealed cabins, air pressure resistance can contribute to 25% to 40% of total door closing force. Air extractors, usually installed in the rear quarter panels or behind rear bumpers, serve as pressure relief valves, allowing for a smoother
Quieter cabins in an automobile are the new era, they provide customers with pleasurable driving experience. Squeak and Rattle are spoil sport for any OEM that aim to improvise customer driving experience. Their nonlinear nature makes it difficult to formulate design frontloading methods. The issue of seals rubbing against the body & door interface is a clear sign of seal squeak & seal chucking. Seals are applied with anti-friction coatings to avoid stick slip phenomena between EPDM and painted panel. Primary root cause for seal squeak is coating erosion. The challenge lies in determining whether the body or the closure side contributes to the seal issue. This paper presents a distinctive approach for identifying the seal squeaking noise and enriches on the new modelling methods for seal interaction with door and body interfaces using FE software. The proposed method was able to highlight the locations along the door-body interface for squeak noise. The approach for reducing the
Items per page:
50
1 – 50 of 4716