Browse Topic: Doors

Items (790)
During the development phase of any product, it is crucial to ensure functionality and durability throughout their whole lifecycle. Physical tests have been traditionally used as the main tool to evaluate the durability of a product, especially in the automotive industry. And the evolution of computational methods combined with the Engineering Fundamentals allowed Computer Aided Engineering (CAE) simulations to predict failures in considering different conditions without building a prototype to perform a test. The use of virtual product validation using CAE simulations leads to product design flexibility on early development phase and both development costs and time reduction. This paper presents a methodology for computing the operation reaction loads in an automotive fuel filler door, which is an input needed to virtually validate the subsystem in terms of durability. The methodology is based on rigid body motion assumptions and the result shows good accuracy when comparing the
Pereira, Rômulo FrancoEspinosa-Aguilar, JonathanSilva, LucasSarmento, AlissonChou, Chun Heng
The COVID-19 pandemic has reshaped public transportation dynamics globally, prompting shifts in passenger behavior and payment methods. Concurrently, the rise of fintech and Industry 4.0 has accelerated the adoption of digital payment solutions, aligning with the trend towards cashless societies. This study investigates the impact of the pandemic on the transition from cash to card payments for public transport fares in Belo Horizonte, Brazil. Leveraging data from the city's transparency portal, analyses were conducted on passenger numbers, payment methods, and card usage from November 2019 to November 2021. Findings reveal a steady usage of card payments compared to cash, with a notable increase in individual ticket card transactions post-vaccination. Conversely, employer-provided transportation voucher card usage experienced a decline. These trends suggest a preference among users for card-based payments, potentially driven by concerns over direct cash handling and adherence to
Rodrigues, CádmoSantos Júnior, Wagner
Assembly simulation plays a pivotal role in predicting and optimizing the distortion of an assembly, particularly in the automotive industry where precision and efficiency are paramount. In BIW parts assembly, factors such as clamping, mechanical & thermal joining, and loading direction are important. These factors affect the quality of the final assembly. Predicting and optimizing these parameters in the early design stage can help reduce development time, cost and improve the quality of the final product. Currently, LS-DYNA is used for closures like doors, hoods, and fenders. However, the pre-processing, computation and post-processing time is significantly high in LS-DYNA making it challenging to use for the Entire BIW. Employing a comprehensive approach, authors assess the distortion results, preprocessing, calculation, and post-processing time of both simulation techniques. Notably, the study reveals that AutoForm offers over 50%-time savings across all stages compared to LS-DYNA
Talawar, VaishnavchandanNalam, Swaroop RajuDhanajkar, NarendraKumar, AjayPasupathy, VivekanandChava, Seshadri
Occupant packaging is one of the key tasks involved in the early architectural phase of a vehicle. Accommodation, as a convention, is generally considered related to a car’s interior. Typical roominess metrics of the occupant like hip room, shoulder room, and elbow room are defined with the door in its closed condition. Several other roominess metrics like knee room, leg room, head room, and the like are also specified. While all the guidelines are defined with doors in their closed condition, it is also important to consider the dynamics that exist while the occupant is entering the vehicle. This article expands the traditional understanding of occupant accommodation beyond conventionally considering the vehicle interior’s ability to accommodate anthropometry. It broadens the scope to include dynamic conditions, such as when doors are opened, providing a more realistic and practical perspective. As a luxury car manufacturer, it is important to ensure the best overall customer
Rajakumaran, SriramSreenivas, Kalyan
The analysis presented in this document demonstrates the mathematical model approach for determining the rotation of a door about the hinge axis. Additional results from the model are the torque due to gravity about the axis, opening force, and the door hold open check link force. Vector mechanics, equations of a plane, and parametric equations were utilized to develop this model, which only requires coordinate points as inputs. This model allows for various hinge axis angles and door rotation angles to quickly be analyzed. Vehicle pitch and roll angles may also be input along with door mass to determine the torque about the hinge axis. The vector calculations to determine the moment arm of the door check link and its resulting force are demonstrated for both a standard check link design and an alternate check link design that has the link connected to a slider translated along a shaft. This math model may be implemented using commonly available programs such as Microsoft Excel VBA or
Storck, Phillip
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues
Cho, KyeongkukChoi, JEWON
Side doors are pivotal components of any vehicle, not only for their aesthetic and safety aspects but also due to their direct interaction with customers. Therefore, ensuring good structural performance of side doors is crucial, especially under various loading conditions during vehicle use. Among the vital performance criteria for door design, torsional stiffness plays an important role in ensuring an adequate life cycle of door. This paper focuses on investigating the impact of several door structural parameters on the torsional stiffness of side doors. These parameters include the positioning of the latch, the number of door side hinge mounting points on doors (single or double bolt), and the design of door inner panel with or without Tailor Welded Blank (TWB) construction. The findings of this study reveal that the change in latch position has the most significant influence on torsional stiffness, followed by the removal of TWB from the inner panel, upon implementation of suitable
Goyal, Vinay KumarSelvan, VeeraPandurangan, VenugopalUnadkat, SiddharthAlmeida, Neil Ricardo
The origami structures have received increasing attention in recent years due to the high stiffness ratio and lightweight feature. This paper has proposed an origami-based honeycomb structure and investigated the mechanical properties of the structure. The compression response and energy absorption of the structure under quasi-static loading have been investigated experimentally and numerically. The numerical results closely matched the experimental results in terms of the compression force curve and deformation patterns. The effects of different structural parameters on the mechanical response and energy absorption characteristics were analyzed with the validated model. Finally, the comparative results show that the origami-inspired honeycomb structure, which is characterized by rotational folding mode under axial compression, has better performance in terms of mechanical response and energy absorption. Two parameters, the thickness and the height have a greater influence on the
Wu, PengjiangWu, ChunfuYe, GuoruiZhao, YonghongYe, BaowenWang, LiangmoWang, TaoZhang, Zeming
The side-door operation of vehicle is vital to the customer, as it reflects the overall build quality of the vehicle. The side door check arm is one of the primary components that determine the operating characteristics of a vehicle door. The profile of the check arm has a significant impact on the closing effort of side doors. In this study, the check arm profiles are analyzed virtually in relation to the side door's closing velocity. A virtual door model was developed in ADAMS to simulate the side door closing and opening. The study involves a check arm that guides the ball spring mechanism housing unit over the guide profile. Typically, a check-arm guide profile has two or three indents at a specific location which serves to maintain the door open in those positions. When a door enters an indent, the user must exert an effort to traverse it. Furthermore, the slope profile of the check arm defines the self-closing assist offered from the initial indent to the latching position. By
Keshav T J, SharathSelvan, VeeraUnadkat, SiddharthSubbaiyan, Prasanna BalajiPandurangan, VenugopalNizampatnam, Balaramakrishna
With 40 years of experience to its name, Sunview Patio Doors Ltd. (acquired by Novatech Group in 2021), has solved one of the industry’s top challenges: meeting customers’ increased demands for faster and better services, while providing an option for product customization. Its ability to adopt digital technology allowed the company to satisfy its customers and compete globally in the marketplace
The interaction of soldiers with advanced combat vehicle systems grows more complex with: 1) Advancements and adaptation to emerging technology; 2) Increased sharing and proliferation of data and information; 3) Changing tactics and requirements of where and how these systems are to be used to gain battlefield dominance; 4) The goal to standardize software and hardware components to reduce costs/maintainability and enable more rapid integration into existing and emerging vehicle systems; 5) The unique shock and vibration experienced by ground combat systems; 6) Weight of the vehicle must be considered for transportability, which drives the vehicle size, that in turn impacts the crewstation volume, or the space soldiers occupy to operate the platform; 7) Survivability and safety of the crew is also essential, so it is desirable to bring the crew under armor instead of head out of hatch
The car door handle is an essential component of any vehicle, as it plays a crucial role in providing access to the cabin and ensuring safety of the passenger. The primary function of the car door handle is to allow entry and exit from the vehicle while preventing unauthorized access. In addition to this, car door handles also play a critical role in ensuring passenger safety by keeping the door closed during accidents or when there is a significant amount of G-force acting on the vehicle. A typical car door handle comprises several components including the structure, cover, bowden lever, bracket, pins and other child parts. The structure provides the ergonomics and rigidity for grabbing the handle, while the cover gives the handle an aesthetic appearance. The Bowden lever facilitates the unlatching of the door and the intermediate parts ensure that the handle operates smoothly. The position of the Bowden lever is crucial for the unlatching process and for keeping the door closed
Kumar, Vinayak
In automotive market, with competitive car prices, build quality of a car will be a major distinguishing factor. Consumer's need for acoustic comfort has evolved from the removal of annoying noises to perceived sound quality. Operational sounds from electromechanical systems like sunroof system, window regulator, door lock system, HVAC etc. directly interact with users’ senses. The perceived acoustics comfort of these sounds are direct indicators of vehicle character and can influence customer’s buying decision. With the reduction in product development time and stringent cost constraints, a proper structured target setting methodology to benchmark & evaluate these operational sounds is crucial. In this paper, such a target setting methodology is proposed and discussed for operational sound quality evaluation. Electromechanical noises from various vehicles are measured using binaural head measurement system. Using Simultaneous Categorical Scaling method, jury evaluation is performed
Somasundharam, SundaralingamManoj K, MridulRaj, GauravMohammed, RiyazuddinR, Prasath
The Indian passenger vehicle market has grown by more than 40% by volume in the last decade and has reached a record high in FY23. This has created a more diverse and demanding customer base that values interior design and quality. The modern customer expects a high level of aesthetics and sophistication in their vehicle interiors - including in the luggage area. The Luggage Cover (Parcel Tray) is a component in the luggage area of a passenger vehicle that is used to conceal the luggage & improve its aesthetics. The cover is generally made of thermoplastic material with rotating hinges and is held in its place by the compression from the back door, which is frequently opened and closed. The parts that connect the cover to the door (usually an elastomer interface on the thermoplastic tray) tend to change over a period due to climatic conditions and leads to rattling concerns over a period. The change in elastomer interface with the back door (due to repeated compression & climatic
Sreejith, M PKhandelwal, LokeshSandilya, ArnabNatu, Mandar RRay, Amulya KaliHanda, Rajat
Integrating sensors into rotational mechanisms could make it possible for engineers to build smart hinges that know when a door has been opened, or gears inside a motor that tell a mechanic how fast they are rotating. MIT engineers have now developed a way to easily integrate sensors into these types of mechanisms, with 3D printing
Low-dimensional materials are essential in optoelectronic, electrical, and contemporary photonics areas because of their specific properties with decreased dimensions. Low-dimensional materials are those with dimensions in the nanoscale range that are between 1 and 100 nm. Halide perovskites of low dimension can be produced inexpensively using solution-processable procedures, unlike usual semiconductor nanomaterials. Since halide perovskite in thin layers may be produced utilizing a variety of solution-based techniques like simple spin coating. It is possible to produce it with a variety of compositions using low-cost, simple, and large-scale procedures. Quantum dots, perovskite nanoplatelets, nanosheets, perovskite nanorods or nanowires, and other low-dimensional perovskites are all examples of such small-dimensional devices that have been created in a range of morphologies (two-dimensional). In this work, a 1D array of perovskite solar cells (methyl ammonium lead halide) is modeled
P, GeethaSudarmani, R.Venkataraman, C.Shubha, S.
This specification establishes the requirements for a polysulfide sealing compound in putty consistency to be used for form-in-place sealing of removable doors, skins, and panels
AMS G9 Aerospace Sealing Committee
Thin plates buckle after applying load and return to normal position after the load is released, this process is called oil canning. Waviness in thin panels can be seen on various plates of metals. Oil canning is a major issue if panels are too thin and these panels create vibration and noise in the vehicle body panel. If the panels are wider, then there are more chances of oil canning issues. Different digital simulations and physical techniques are currently available to check the canning performance, but they required geometrical data and physical setup. In this paper machine learning (ML) approach to predict the oil canning performance is presented. This approach adds a new process to the existing process of vehicle door design, but it helps avoid the number of simulations and unwanted structural modifications at the early design stage, making it a handy and powerful tool for the designer
Kulkarni, Prasad RameshSahu, DilipKhatavkar, AkshayHursad, Tushar HaridasPatil, SanjayBelur, Nikhil
The analysis presented demonstrates the application of section 5.1.1.4 (a) Inertial Force Calculation of the Federal Motor Vehicle Safety Standard 206 (FMVSS 206) to a step van pocket sliding door latch system. FMVSS 206 applies to step van trucks regardless of the gross vehicle weight rating (GVWR) as clarified by the National Highway Traffic Safety Administration (NHTSA). The step van latching system is a unique latch configuration with a floating pivot that enables the latch to engage the striker plates at both the open and closed body pillars for latching closed and holding open. The latch forkbolt bar can be actuated in both unlatching directions with the same handle. FMVSS 206 specifies a minimum inertial resistance requirement for the latch system to ensure the latched state is maintained when acted upon by inertial force generated during an impact event. This calculation method follows the approach recommended in SAE J839 for a door latching system. Two calculation analysis
Storck, PhillipMitchell, Brett
The present work focusses on development of AlSi10Mg alloy component from the pre-alloyed powder by laser powder bed fusion (LPBF), one of the popular additive manufacturing technologies. The effect of heat treatment on microstructure and mechanical properties has also been studied. In accordance with T6 heat treatment process, the LPBF specimens were solution treated at 535°C for 2 h, then water quenched and subsequently, artificially aged at 160°C for 10 h. The role of printing direction on microstructure and mechanical properties has also been investigated. The printing parameters such as laser power, scan speed and hatch space were optimized for defect free automotive component. The as-printed and heat treated components were subsequently evaluated to assess their performance
Mohapatra, Satya P.DEBATA, MayadharSengupta, PradyutPanigrahi, AjitKaushik, Harish C.PATTANAYAK, Deepak K.
In an automotive vehicle, the Window Regulator is an electro-mechanical assembly that is mounted inside the door. The basic function of the Window Regulator is to raise or lower the glass when required and hold the glass in closed position or in any desired position. During Water servicing or rains, Water will typically enter inside the door through the seals and on to the Window Regulator mechanism. Hence these conditions must be physically tested in the laboratory to assess the Window Regulator’s functionality which could get affected by Water intrusion. The Water spray test conditions are based on mutual agreement between Inteva Products and the OEMs. Water spray test involves moving the electric Window Regulator to upper stall position (Window closed) at a defined voltage and line resistance. The glass must be dwelled followed by spraying defined amount of Water which simulates the rain. The agreed number of test cycles would be around 4500 which lasts about 7 weeks. Hence, to
Gavhane, SudarshanBabu, YugandharPrasannakumar, JitheshBanjan, Rohith
An automotive door latch that functions manually or electronically is a vital component of a door closure system. It primarily aims to provide security of the occupants by securing the door system by ensuring timely locking and unlocking of the doors. A wide range of factors like safety, ergonomics, and security influence the development of these latches to eliminate safety. With the growing trend and advancements, automotive electronics is becoming more complex and prevalent. Hence, any exposure of electrical/electronic components to water make them susceptible to short circuits, corrosion etc., thereby may make it the functionality of systems and increasing the chances of failure in these devices. Intrusion of water possible into the latch system can be disastrous depending on the climatic conditions. Stringent safety criteria have given rise to unconventional test methods that are time-consuming and hence necessitate virtual validation techniques. Virtual validation becomes a viable
Kaushik, AchalaKrishnamurthy, HarishGajendra, HarishCalamaco, Eli
Foaming materials such as 2C-PUR or expandable baffles are increasingly used in the car body acoustic package of modern passenger vehicles. Over the last several decades the primary function of foaming materials was the moisture sealing and airborne noise absorption / insulation in various areas of the car body such as pillars, door sills or other cavities. Recent developments also show an increasing application of expandable foams, functioning as structural dampers and reducing structure-borne noise transmission through frames and pillars. This paper summarizes the results of various studies that deal with the impact of expandable baffle materials on structure-borne noise in car bodies with special focus on mid and high frequencies which become more relevant in the acoustic optimization efforts of EV’s. Structural vibrations are evaluated experimentally on foamed generic frames and double sheet metal systems under free-free boundary conditions. The most promising candidate among
Unruh, OliverObst, Heike-UrsulaFuhrmann, BerndBautista, Jose
Imagine a home computer operating one million times faster than the most expensive hardware on the market. Now, imagine that level of computing power as the industry standard
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations. To support the use of comparable test conditions, a set of combat-relevant driving courses
Green, Paul
The side door closing effort is one of the main evaluating parameters which demonstrates the build quality of the vehicle. The side door hinge axis inclination is one of the key attributes that affect the side door closing effort. Commonly, the hinge axis is inclined in two directions of a vehicle to have necessary door rise during the door opening event. Due to the process and assembly variations in the door assembly, the upper and lower hinge axis of the side door deviates from the design axis. In this paper, the deviations in the side door hinge axis and its effects on the side door closing velocity is discussed. The deviations of the side door hinge axis are studied with a coordinate measuring machine. The side door closing velocity of the vehicle is measured with the velocity meter. The study revealed that side door closing velocity is increasing with an increase in the deviation of the top and bottom door hinge axis from the design hinge axis. The hinge axis skewness between the
Selvan, VeeraAskari, HasanBhosale, MukundUnadkat, SiddharthPandurangan, Venugopal
Side Door closing velocity is one of the key customer touch points which depicts the build quality of the vehicle. Side door closing velocity results from the interaction of different parts like door and body seals, door check arm, door hinge, latch, and alignment of door hinge axis. In this paper, a high door closing velocity issue in a sports utility vehicle is discussed. Physical studies are carried out to understand each parameter in door closing velocity and its contribution is defined in terms of velocity. Many physical trials are conducted to conclude the contribution of each parameter. Studies revealed that the body and door seal are contributing around 70% of door closing velocity. Check arm and hinge axis deviation are contributing around 10% of the door closing velocity. Physical trials are conducted by reducing the compression distance of the body seal. Around 13.5 to 20 % reduction in door closing velocity is observed with a 3mm reduction in compression distance of the
Bhosale, MukundAskari, HasanSelvan, VeeraKale, SanjayUnadkat, SiddharthPandurangan, VenugopalChavan, Shailesh
Premium instrument panels (IPs) contain passenger airbag (PAB) systems that are typically comprised of a stiff plastic substrate and a soft ‘skin’ material which are adhesively bonded. During airbag deployment, the skin tears along the scored edges of the door holding the PAB system, the door opens, and the airbag inflates to protect the occupant. To accurately simulate the PAB deployment dynamics during a crash event all components of the instrument panel and the PAB system, including the skin, must be included in the model. It has been recognized that the material characterization and modeling of the skin tearing behavior are critical for predicting the timing and inflation kinematics of the airbag. Even so, limited data exists in the literature for skin material properties at hot and cold temperatures and at the strain rates created during the airbag deployment. This paper presents tensile test results of one typical skin material conducted at four different strain rates of 0.01/s
G, KarthiganSavic, VesnaHu, SiboRavichandran, GowrishankarTripathy, Biswajit
Optimization design of hard point parameters for hinge mechanism has been paid more attention in recent years, attributable to their significant improvement in dynamic performance. In this paper, the experimental analysis and dynamic optimization design of hinge mechanism is performed. The acceleration measurement experiments are carried out at different arrangement points and under different working conditions. Furthermore, the accuracy of established multi-body dynamics model is verified by three-axis accelerometer measurement experiment. In addition, sensitivity analysis for electric strut and gas strut coordinates is performed and shows that the Y coordinate of the lower end point of the electric strut is the design variable that has the greatest impact on the responses. To improve the dynamic performance of the hinge mechanism, a surrogate-assisted NSGA-II multi-objective optimization design framework for hard point coordinates of struts, combining the radial basis neural network
Zhang, SuoGao, YunkaiChang, Mengjie
The passenger car segment has been extremely competitive and automotive OEMs are thriving to provide superior customer experience. Door closing is an event that requires slamming of the door with a certain velocity to get the door latched. A good latching provides that thud sound and assurance of the door getting closed for an SUV. While the door is closed, it pushes the volume of air inside the cabin. As the amount of air moved in is proportionate to the size of the door it becomes more critical for the SUV segment of vehicles to ensure the air extraction path is efficient. Else, steep pressure rise inside the cabin causes severe discomfort to the passengers sitting inside the vehicle. Current work focused on the process of simulation of cabin pressure while door closing, implementing changes based on results and validating with test results. Test results are in close correlation with simulation predictions. Also, it emphasizes that body panel changes made to improve the airflow path
Unadkat, Siddharth BhupendraPandurangan, VenugopalSelvan, Veera
Frontal crashes are the most common crash mode in the US vehicle fleet, and a large proportion of these crashes are “fender-benders” or low-speed collisions. This, among other considerations, led the Insurance Institute for Highway Safety (IIHS) to conduct a series of low-speed front and rear bumper impact tests. These crash tests have been performed on passenger vehicles manufactured by various manufacturers since 1970 and continuing through the 2009 model year. Test data and video for individual tests are available through IIHS’s online data portal, most extensively for model years 2007 to 2009. While IIHS’s test protocol varied over the years, these tests specified, in part, a full engagement impact of the tested vehicle into a rigid, bumper-shaped barrier covered with an energy absorber. Although IIHS reported the closing speed for each test, they did not report the separation speed or crash pulse duration. These values have been determined, in the current study, by analyzing the
Paradiso, MarcMcDowell, Eric
With higher customer expectations and advances in vehicular technology, automotive functions and operations are becoming more intelligent. Electric self-priming door locks fulfil the automatic closing and locking of side doors, hatchback doors, sliding doors, liftgates, decklids, etc. They are widely implemented into high-end models for the elegance of soft closing. In the list of perceived vehicle qualities, door-closing sound quality has been one of the important customer concerns in the market. In comparison to conventional door locks, electric self-priming door locks add another dimension to the development of sound quality for noise, vibration, and harshness (NVH) efforts. In this article, the characteristics of door-closing sound involving self-priming door lock mechanisms are analyzed and illustrated. Human perception of different sounds from the self-priming door lock working process is ranked by subjective evaluations. For typical door closing sounds associated with the self
Zhang, YanHou, HangshengYang, YushengFeng, JingtingZhang, Zhi
This article describes the research work taken to compare the effect of air blast and surface-buried mine blast loading on an armored fighting vehicle (AFV) escape hatch, using the coupled Eulerian-Lagrangian (CEL) technique. Two types of escape hatch were considered for the study, namely, the flat plate version and double-side curved-plate version. To evaluate the research methodology used in this investigation, initially, a published experimental work on a circular plate subjected to air blast was chosen and a benchmark simulation was carried out using the CEL technique to establish the simulation procedure. Then the established procedure was utilized for further analysis. It was observed that the variation in the deformation between the published literature and the simulation work was well within the acceptable engineering limits. After that, numerical studies were conducted on the flat and double-side curved hatch by subjecting it to both air blast and surface-buried mine blast
Parthasarathy, SundaresanKumar, J. Rajesh
Thermoelectric devices are already used widely in thermal management applications in the aerospace and defense industries. While state-of-the-art electronics - such as night vision equipment, infrared detectors and avionics - utilize these devices for thermal regulation, efficiency limitations have curbed their use in other advanced applications. A recent breakthrough in material technology has unlocked the potential of thermoelectrics (TE), opening up new doors for TE systems by delivering dramatic increases in heating and cooling efficiency and capacity
Scientists, including an Oregon State University materials researcher, have developed a better tool to measure light, contributing to a field known as optical spectrometry in a way that could improve everything from smartphone cameras to environmental monitoring
A research team has developed a new microfluidic chip for diagnosing diseases that uses a minimal number of components and can be powered wirelessly by a smartphone. The University of Minnesota — Twin Cities innovation opens the door for faster and more affordable at-home medical testing
This SAE Aerospace Standard (AS) defines interface configurations for the ground air conditioning service connection on commercial transport aircraft. In addition, it defines the clearances required to accommodate the connection of ground air conditioning hose couplings. Two types of service connections are included. The Type A connection (Figure 1) is a slotted ring with integral locking pads and is comparable to the MS33562 connection. The Type B connection (Figure 2) is a flanged tube with external locking lugs (Figure 3). The Type B connection has the same interface dimensional requirements as the Type A connection
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Information Report (AIR) covers information relative to ULDs (Unit Load Devices) container and pallet configurations, maximum usable container, pallet and bulk compartment volumes and tare weights for the lower deck of various wide-body aircraft. Bulk compartment volumes are also included for standard-body aircraft
AGE-2 Air Cargo
This SAE Aerospace Standard describes the system used by passenger boarding stairs (PBS) mobile passenger boarding ramps (PBS) and boarding bridges (PBB) to inform on-board cabin crew about the docking status of the PBS/PBR/PBB and whether it is positioned such that it is safe to open the aircraft door. Current practice calls for the PBS/PBR/PBB operator to knock on the aircraft door to inform the cabin crew that it is safe to open the aircraft door. New technologies being incorporated into PBS/PBR/PBB such as remote control systems and autonomous driving vehicles are entering the market. As such, new/updated controls and/or procedures are necessary to ensure continuing safe operations
AGE-3 Aircraft Ground Support Equipment Committee
As autonomous driving vehicles are developed, automotive makers start focusing on implementing new door types, such as a falcon wing door or a B-pillarless dual sliding door, which could be one of the best-selling points. To make these doors electrically operate, applying advanced sensors like a RADAR or an Ultrasonic sensor is almost mandatory. Without these sensors, the door could be easily damaged or the customers could be seriously injured. Due to physical limitation, however, every sensor has a noise in nearby area and has a specification of the minimum detection range, which causes us not to be able to precisely detect the object in close area. If the controller cannot detect the precise distance of the object, the door could malfunction, since it could misidentify the obstacles. In this paper, we propose a method to reduce the minimum detection range by applying a prior estimation scheme. Without changing any sensor mechanisms, we can use this method if the door electrically
Kim, JunhyukChoi, Jae HongJe, Myoung KwonKu, Bon Hyeok
Collisions between opened doors and approaching vehicles such as bicycles are common occurrences in urban areas around the world. For example, in Chicago, 20% of all bicycle accidents involve collisions with doors, which occur over 300 times a year. In addition, there are concerns about a further rise in accidents due to the recent increase in home delivery services and bicycle commuting during the COVID-19 pandemic. Some advanced driver assistance systems (ADAS) that are designed to help prevent this type of accident have already been introduced. These systems detect approaching vehicles with sensors and alert the person opening the door via LED lights or a buzzer when the door is opened. The occupant must understand the meaning of the alert and stop opening the door quickly to prevent an accident. However, if the occupant is an elderly person or a child, it is difficult to stop opening the door quickly. One possible countermeasure for this issue is an ADAS that completely locks the
Takeuchi, KojiIshida, Masaho
In swing door design, the check strap plays an important role since it assists the door opening and closing maneuvers and stops the door in case of extra opening events. Computer-Aided-Engineering is extensively used to simulate door opening and closing events for designing the door structure in terms of durability performance and closing effort. However, in customer perspective, other phenomena related to check strap subsystem need to be investigated, as the onset of door vibration in opening and closing phase. This paper describes a methodology, based on the Finite Element approach, able to simulate the opening and closing maneuver of a swing door, including detailed check strap mechanism through a sequential implicit-explicit strategy. Such methodology can reproduce in virtual door vibrations caused by check strap operation. Since this oscillatory phenomenon could be potentially unacceptable in terms of perceived quality, a component optimization may be necessary. The methodology
Mennillo, SerenaDuni, EfthimioAudano, Livio
Items per page:
1 – 50 of 790