Browse Topic: Frames
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
ABSTRACT Automatic guided vehicles (AGV) have made big inroads in the automation of assembly plants and warehouse operations. There are thousands of AGV units in operation at OEM supplier and service facilities worldwide in virtually every major manufacturing and distribution sector. Although today’s AGV systems can be reconfigured and adapted to meet changes in operation and need, their adaptability is often limited because of inadequacies in current systems. This paper describes a wireless navigated (WN) omni-directional (OD) autonomous guided vehicle (AGV) that incorporates three technical innovations that address the shortfalls. The AGV features consist of: 1) A newly developed integrated wireless navigation technology to allow rapid rerouting of navigation pathways; 2) Omnidirectional wheels to move independently in different directions; 3) Modular space frame construction to conveniently resize and reshape the AGV platform. It includes an overview of the AGVs technical features
Abstract RedRAVEN is a pioneered autonomous robot utilizing the innovative Linked-Bogie dynamic frame, which minimizes platform tilt and movement, and improves traction while maintaining all the vehicle’s wheels in contact with uneven surfaces at all times. Its unique platform design makes the robot extremely maneuverable since it allows the vehicle’s horizontal center of gravity to line up with the center of its differential-drive axle. Where conventional differential-drive vehicles use one or more caster wheels either in front or in the rear of the driving axle to balance the vehicle’s platform, the Linked-Bogie design utilizes caster wheels both in the front and in the rear of the driving axle. Without using any springs or shock absorbers, the dynamic frame allows for compensation of uneven surfaces by allowing each wheel to move independently. The compact and lightweight ground vehicle also features a driving-wheel neutralizing mechanism, a rigid aluminum frame, and a translucent
ABSTRACT Since the development of combat vehicles for military use, such as tanks, infantry carriers, gun transports, etc. the main approach has been a monolithic structure that has been described as monocoque. This approach has been the standard–bearer since the inception of modern combat vehicles. Since the end of the Cold War, the world has become a much more “Multi–Polar” world. The U.S. is not locked in a static, monotonic engagement against the Soviet Union and its allies. The nature of the threat has changed. The U.S. Army is looking to make its Combat Vehicle fleet lighter and more adaptable to new technology and changing environments. By doing so the U.S. will be better able to project forces where they are needed. Lighter weight means more flexibility in transportation of equipment to various locations. In addition, the U.S. Army will be better able to deploy forces that have the latest and/or the most desirable protection required for the specific engagement they may
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The method is based on non-linear theories in the frequency domain. It uses the Harmonic Balance Method (HBM) in combination with the Alternating Frequency/Time Domain Method (AFT) to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked. In the second step, the
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
REE Automotive is aiming to be a major disruptor in the medium-duty truck space with the rollout of its P7 EV chassis. The P7 frame is built around its “REEcorners” suspension, which are modular suspension units featuring REE's x-by-wire design. By packaging components into the area between the chassis and the wheel, REE claims that it was able to design the P7 with a completely flat chassis with up to 35% more interior volume for passengers, cargo and batteries. “The REEcorners suspension system is the core of the technology that we built this truck around,” Peter Dow, VP of engineering for REE Automotive, said during an interview with Truck & Off-Highway Engineering. “It also allows us to achieve the level of vehicle dynamics we were looking for. We were trying to make a truck that was very exciting and easy to drive
In the early stages of vehicle development, it is critical to establish performance goals for the major systems. The fundamental modes of body and chassis frames are typically assessed using FE models that are discretized using shell elements. However, the use of the shell-based FE method is problematic in terms of fast analysis and quick decision-making, especially during the concept phase of a vehicle design because it takes much time and effort for detailed modeling. To overcome this weakness, a one-dimensional (1D) method based on beam elements has been extensively studied over several decades, but it was not successful because of low accuracy for thin-walled beam structures. This investigation proposes a 1D method based on thin-walled beam theory with comparable accuracy to shell models. Most body pillars and chassis frame members are composed of thin-walled beam structures because of the high stiffness-to-mass ratio of thin-walled cross sections. However, thin-walled cross
Electric vehicles (EV) are much quieter than IC engine powered vehicles due to less mechanical components and absence of combustion. The lower cabin noise in electric vehicles make customers sensitive to even small noise disturbances in vehicle. Road boom noise is one of such major concerns to which the customers are sensitive in electric vehicles. The test vehicle is a front wheel driven compact SUV powered by electric motor. On normal plain road, noise levels are acceptable but when the vehicle has been driven on coarse road, the boom noise is perceived, and the levels are objectionable. Multi reference Transfer Path Analysis (MTPA) is conducted to identify the path through which maximum forces are entering the body. Based on MTPA, modifications are proposed on the suspension bushes and the noise levels were assessed. Operational Deflection Shape (ODS) analysis is conducted on entire vehicle components like suspension links, sub frame, floor, roof, and doors to identify the
The current approach of hybrid RLDA is typically incapable of providing accurate dynamic loads coming on cab at chassis-to-cab load transfer locations, primarily due to the following two reasons. Firstly, all of the model parameters of the vehicle, which is put on the 4-post, are not known. Secondly, MBS (Multi-body System) Cab model is multi degree of freedom with rigid bodies, flex bodies, contacts and non-linear force elements. Therefore, if the system identification is to be performed manually it becomes an arduous and humanly impossible task. Towards generating accurate dynamic loads on cab, an approach using FEMFAT LAB - VI & MI has been developed which involves a two-step process: a) Generating MBS excitation by back calculating from measured frame response – VI (Virtual iterations). b) Fine tuning modelling parameters to match measured cab response – MI (Model Improvement). To execute the VI & MI approach for calculating dynamic loads on cab through 4-poster & 7-poster
NVH is of prime importance in buses as passengers prefer comfort. Traditionally vehicle NVH is analysed post completion of proto built however this leads to modifications, increases cost & development time. In modern approach physical validation is replaced by CAE. There are many sources of NVH in vehicle however this article is focused about the methodology to improve NVH performance of bus by analysing and improving the stiffness and mobility of various chassis frame attachment points on which source of vibrations are mounted or attached. In this study chassis frame attachment stiffness of Engine mounts and propeller shafts is focused
A research team has developed a robotic system that can be unobtrusively built into the frame of a standard honeybee hive. Composed of an array of thermal sensors and actuators, the system measures and modulates honeybee behavior through localized temperature variations
A new simulation model for motorcycle motion is presented. The model was reproduced the equation of motion which called 10 degrees of freedom (10-DoF) motorcycle model using multi-body dynamics. There are some good reasons to reconstruct equation model by multi-body dynamics, because computer technology helped development of tools which is versatile to expand model. Straight line stability characteristics of motorcycle have been studied by using an equation of motion model for a long time. This model was originally developed by Sharp as a 4-DoF model, later Aoki developed 10-DoF model by adding 6-DoF to take frame stiffness into account. The eigenvalues of the Weave and Wobble mode showed some disagreement between the equation of motion model and the new multi-body dynamics model. The frame lateral bending is represented by the “equilibrium of lateral force” in the 10-DoF equation of motion. It turned out that “lateral force at bending Point” was not expressed in the equation. To make
Universal test frames are generally either screw-driven or servohydraulic, which are both perfectly suited for uniaxial tensile testing experiments. A uniaxial test frame is comprised of several basic fixture components: loading device, a load cell, and a specimen gripping apparatus
Editorial Note: With the growth in adoption of addititively manufactured materials across aerospace and defense manufacturing, we decided to include two parts of this Air Force Research Lab report. Air Force Research Laboratory, Wright-Patterson Air Force Base, OH Universal test frames are generally either screw-driven or servohydraulic, which are both perfectly suited for uniaxial tensile testing experiments. A uniaxial test frame is comprised of several basic fixture components: loading device, a load cell, and a specimen gripping apparatus. An example of a commercially available tensile testing frame is shown below. Load cells are available in a wide range of load limits to accommodate the sensitivity needs for a wide range of materials and specimen geometries. ASTM E74 outlines the calibration procedure for load cells and must be followed to ensure proper measurement during testing, regardless of specimen size. Further details about alignment and gripping will be provided given
Outokumpu and collaborators show a possible weight reduction of up to 35% by using high-strength stainless steel in place of carbon steel. The weight of a typical bus could be reduced by up to 35% - more than 1,000 kg (2,205 lbs.) - by using high-strength stainless steel to replace tubular bus-frame elements traditionally manufactured in carbon steel. That is the conclusion of a first-of-its-kind project carried out by stainless-steel manufacturer Outokumpu, together with CAD/CAE solution specialist FCMS, the Munich University of Applied Sciences and RotherCONSULT. Corrosion-resistant stainless steel could offer sustainability combined with reduced maintenance time and costs. In addition, high-strength stainless steel grades have become commercially available that offer significant weight savings. The aim of this project was to examine what that could mean in terms of lower weight and reduced material costs
Items per page:
50
1 – 50 of 1446