Browse Topic: Vehicle roofs

Items (288)
In this work, we evaluated computational fluid dynamics (CFD) methods for predicting the design trends in flow around a mass-production luxury sport utility vehicle (SUV) subjected to incremental design changes via spoiler and underbody combinations. We compared Reynolds-averaged Navier–Stokes (RANS) using several turbulence models and a delayed detached eddy simulation (DDES) to experimental measurements from a 40% scale wind tunnel test model at matched full-scale Reynolds number. Regardless of turbulence model, RANS was unable to consistently reproduce the design trends in drag from wind tunnel data. This inability of RANS to reproduce the drag trends stemmed from inaccurate base pressure predictions for each vehicle configuration brought on by highly separated flow within the vehicle wake. When taking A-B design trends, many of these errors compounded together to form design trends that did not reflect those measured in experiments. On the other hand, DDES proved to be more
Aultman, MatthewDisotell, KevinDuan, LianMetka, Matthew
ABSTRACT The primary focus of this effort is to evaluate the roof liner technology’s ability to reduce the head injury criteria (HIC) and head acceleration to mitigate vertical impact related injures to mounted crew injures which may occur during top and bottom threat events. In an effort to reduce the likelihood of head injury during top and bottom threat attacks, an adequate roof liner is needed to reduce the force exerted on the solider. The roof liners were able to pass all system level tests. The successful system level testing confirmed the blast mat technology’s TRL-6 recommendation. Citation: J. Klima, “Developing Performance and Operating Requirements for Energy Attenuating (EA) Roof Liner for all U.S. Army Military Vehicles”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021
Klima, Julie
ABSTRACT In order to reduce the frequency and severity of warfighter head, neck, and spine injuries associated with military vehicle underbody IED and AVL blasts, crash, and rollover, Hy-Tek Manufacturing Co. Inc. (HMC) has designed, fabricated, tested, and optimized its Vehicle Roof Inflatable Impact Bladder (VRIIB). Comprised of two (2) thin and impermeable airbags separated by semi-rigid force distribution plates; the VRIIB is designed to be mounted on the interior roof panel of military combat vehicles in a deflated state. During IED or AVL detonation, the VRIIB inflates by means of a COTS airbag inflator to provide a significant reduction in the rate at which a warfighter’s head or neck decelerates against the rigid vehicle roof panel. The VRIIB is designed to remain inflated and functional for a protracted period of time after its initial actuation in order to protect vehicle mounted warfighters from follow-on blast related roof impacts, subsequent vehicle rollover and/or vehicle
Middlebrook, DonaldJude, JohnPeck, Jason
ABSTRACT In this paper, we present Pegasus Transforming UAV/UGV Hybrid Vehicle, a unique, transformable UAS/UGV that is particularly well-suited for missions. The combination of flight and ground modalities allows Pegasus to fly to location, automatically transform into a ground vehicle, reposition, and quietly approach a target; or, Pegasus can land and “perch” for long durations, allowing for the maintenance of the custody trail and long ISR missions or emplace sensors particular for a specific mission. The sequential use of aerial and ground capabilities in this platform provides the reach usually lacking in these missions. The Pegasus platform was developed with DTRA/ARDEC funding in support of specialized missions where these functionalities are needed. Robotic Research, LLC has developed the system from the ground up, including: mechanical, electrical, and software designs (without using foreign-made parts). The current system is shown in Figure 2. The system already has obstacle
Lacaze, Alberto
ABSTRACT In order to defeat under body blast events and improve crew survivability, a monocoque aluminum cab structure has been designed as a drop on solution based on the current M1151A1 (HMMWV) chassis. The structure is comprised of all 5083-H131 Aluminum alloy armor plates with various thicknesses. The structure design consists of the following new features: (1) Robust joining design utilizing interlocking ballistic joints and mechanical interlocking features, (2) unique B-pillar gusset design connects roof & floor with B-pillar & tunnel, and (3) “Double V” underbody shaping design. The TARDEC designed, integrated & built vehicle achieved no crew core body injuries for a vehicle of this weight class and demonstrated meeting the crew survivability objective when subjected to a 2X blast during the live fire underbody blast tests. These efforts help to not only baseline light tactical vehicle capabilities, but also validate the possibility of meeting aggressive blast objectives for
Lee, Chu-HwaLacap, Demetrio M.Keller, Shawn J.
In this study, an optimized structure for opening the headlining considering the deployment of the face-to-face roof airbag was studied. It was confirmed that the deployment performance differs depending on the skin of the headlining, and a standardized structure with mass production was proposed. Non-woven fabric and Tricot skin, which are economical and high-end specifications, satisfy the performance of PVC fusion application specifications after cutting 80% of the skin. The structure that satisfies the entire body including the knit specifications is a type that separates the roof airbag area piece, the corresponding soft piece is separated, and the deployment performance is satisfied with safety. Therefore, the structure is proposed as a standardized structure. This structure is expected to be applicable to roof DAB (Driver Airbag), PAB (Passenger Airbag), and Sunroof Airbag, which will be necessary technologies to secure indoor space. Regardless of which area the airbag will be
Park, Jiseob
Automotive body structures are being increasingly made in multi-material system consisting of steel, aluminum (Al) and fiber-reinforced plastics (FRP). Therefore, many joining techniques such as self-piercing riveting (SPR) and adhesive bonding have been developed. On the other hand, OEMs want to minimize the number of joining techniques to reduce the manufacturing complexity. Amount all joining methods, resistance spot welding (RSW) is the most advanced and cost-effective one for body-in-white. However, RSW cannot be applied for joining dissimilar materials. Therefore, a novel Rivet Resistance Spot Welding method (RRSW) was developed in which Al or FRP components can be directly welded to steel structures with existing welding systems. RRSW uses rivet-like double T-shaped steel elements as a welding adapter which are formed or integrated into Al or FRP components during their forming process. After that, they are welded to the steel components by RSW. This paper shows at first the
Fang, XiangfanZhang, FanXu, Hongli
The current research focuses on enhancing the performance of Si solar cells by using Er2O3 (Erbium Oxide) in cubic crystalline nature serves as an anti-reflection coating material. An anti-reflective coating aims to improve the Efficient Power Conversion (EPC) of polycrystalline silicon wafers solar cells (PSSC) utilised in solar roof panels of the automotive sector. It also exhibits superior light transmittance and least light reflectance, which eventually leads to the increase EPC. Erbium oxide helps to convert low energy photons into high energy photons. The incident photons, which lies on the solar cell, gradually losses its energy to travel in a denser medium and dissipate in the form of heat energy. In order to overcome the rate of reflection, current research aims in synthesis of erbium oxide nanosheets using electrospinning deposition technique for varying deposition timings such as 1, 1.5 and 2 hours. The coated solar cells K1, K1.5 and K2 exert coating thickness of 15.94
RAJASEKAR, R.DINESH, D.Kowtham, M.Santhosh, S.Moganapriya, C.Boopathiraja, K.P.
The reduction in wind noise is increasingly important to vehicle designers as overall vehicle refinement increases. Customers often fit accessories such as roof bars to vehicles, with the aerodynamic interaction of these components generating aeroacoustic noise sources. These are often tonal in nature and of particular annoyance to occupants. Sensors for automated driving fitted to future vehicles may also have a similar detrimental effect on vehicle refinement. Therefore, careful design of such components is important to minimise dissatisfaction. This paper presents the combined application of acoustic beamforming in a full-scale aeroacoustic wind tunnel and the use of a Lattice Boltzmann Method CFD code to characterise the aeroacoustic performance of a roof bar design when fitted to a production vehicle. The use of large microphone arrays within a wind tunnel allows the visualisation of noise sources generated by the flow over a vehicle, with correlation techniques utilised to
Smith, OliverOettle, Nicholas
This SAE Recommended Practice establishes a uniform test procedures for on highway trucks equipped with an air-conditioning system used to condition the air in the cabin and sleeper compartment of the vehicle. This specification will apply to heavy trucks with and without sleeper compartments
Truck and Bus Windshield Wipers and Climate Control Comm
Recreational vehicles have a lot of potential consumers in China, especially the type C recreational vehicle is popular among consumers due to its advantages, prompting an increase in the production and sales volumes. The type C vehicle usually has a higher air drag than the common commercial vehicles due to its unique appearance. It can be reduced by optimizing the structural parameters, thus the energy consumed by the vehicle can be decreased. The external flow field of a recreational vehicle is analyzed by establishing its computational fluid dynamic (CFD) model. The characteristic of the RV’s external flow field is identified based on the simulation result. The approximation models of the vehicle roof parameters and air drag and vehicle volume are established by the response surface method (RSM). The vehicle roof parameters are optimized by multi-objective particle swarm optimization (MO-PSO). According to the comparison, the air drag is reduced by 2.89% and the vehicle volume is
Huang, BinWei, Xiaoxu
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53x0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators. The shape of the desired speaker zone is an ellipse, and the required
Lee, Ki-HoCho, MunhwanIh, Jeong-Guon
Composites technology for the automotive market continues to advance rapidly. Increasing knowledge of composite design, simulation tools, new materials and process equipment are all contributing to make composites better performing and more affordable for mass-produced vehicles. In particular, the high pressure resin transfer molding (HP-RTM) and related liquid compression molding (LCM) processes are enabling manufacturers to produce complex composite parts at shorter and shorter cycle times. This paper describes the development of an epoxy carbon fiber roof frame targeted for future vehicle production. Several composite processes were considered for the roof frame. The case illustrates that when the (product) design, material and process are considered together, a high-performing, cost-efficient part can be produced. The resulting carbon fiber roof frame met all OEM performance requirements and economic targets while weighing 44% less than the original design in magnesium and 32% less
Ball, Cedric A.Greydanus, StephenSwentek, IanNara, Kameswara Rao
Sunroof is placed in certain high-end vehicles to give user a better driving experience. All automakers are searching alternatives to reduce weight and cost in the vehicle, in which sunroofs are also impacted. Some alternatives are already applied, as a honeycomb paper used in some sunshades that presents benefits, as less weight and with a good cost reduction. Although, due the reduced weight for this part produced in this material, it shows more susceptibility to reproduce the vibration that vehicle propagates in movement, especially in bad condition roads. The sunroof assembly is dependent of the roof reinforcement and roof skin, but in this special case, the validation could be done in the components itself because the interaction of the sunshades is directly dependent of the other sunroof parts, as rails and front frame. These buzz noise in lights sunshades is perceptible when it is almost or totally close, since lighter material vibrates freely without rail anchorage, then
Demori, Douglasde Oliveira, Marcos PauloViegas, RosianeFrança, DouglasNeto, Oswaldo Tursi
Tractors in the field are exposed to adverse operating conditions and are surrounded by dust and dirt. The tiny, thin and sharp broken straw and husks surround the system in reaper operation. The tractors which are equipped with air conditioning system tend to show detrimental effects in cooling performance. The compressor trips frequently by excess pressure developed in the system due to condenser clogging and hence cooling performance is reduced considerably. The air conditioning performance reduces due to the clogged condenser located on the top roof compartment of operator’s cabin, which is better design than keeping in front of radiator where clogging happens every hour and customer need to stop the tractor to clean it with specific blower. The present system is designed keeping condenser at the top of the roof where heavy particles won’t reach easily, So, condenser choking/clogging is observed every 2 hours, this makes the operator to perform repetitive cleaning operations with
Singh, GurpreetSrivastava, ShreekantArumugam, PrabhakaranSharma, Rakesh
Noise, vibration, and harshness (NVH) attribute is needed to be included in the vehicle structure design since improving the NVH characteristics enhances the ride quality experienced by the occupants. In this regard, an efficient method was proposed to investigate the structural dynamic response of an automotive body considering low-frequency NVH performances. Moreover, the improvement of an automotive structure under the constraint of NVH behavior was investigated by using the design of experiments (DOEs) method. The DOEs methodology was for screening of the design space and generating approximation models. Here, the thicknesses of panels consisting of a body-in-white (BIW) of an automotive were employed as design variables for optimization, whose objective was to increase the first torsional and bending natural frequencies. Central composite design (CCD) for DOEs sampling and response surface methodology (RSM) were employed to optimize the dynamic stiffness. Moreover, the effects of
Abbasi, MiladFard, MohammadKhalkhali, Abolfazl
This SAE Standard provides requirements, test procedures, and installation guidelines for clearance, sidemarker, and identification lamps intended for use on vehicles 2032 mm or more in overall width. Sidemarker lamps conforming to the requirements of this document may also be used on vehicles less than 2032 mm in overall width
Heavy Duty Lighting Standards Committee
This paper investigates the optimization of the aerodynamic design of a police car, BMW 5-series which is popular police force across the UK. A Bezier curve fitting approach is proposed as a tool to improve the existing design of the warning light cluster in order to reduce drag. A formal optimization technique based on Computational Fluid Dynamics (CFD) and moving least squares (MLS) is used to determine the control points for the approximated curve to cover the light-bar and streamline the shape of the roof. The results clearly show that improving the aerodynamic design of the roofs will offer an important opportunity for reducing the fuel consumption and emissions for police vehicles. The optimized police car has 30% less drag than the non-optimized counter-part
Taherkhani, Ali RezaGilkeson PhD, CarlGaskell PhD, PhilipHewson PhD, RobToropov PhD, VassiliRezaienia PhD, AminThompson, Harvey
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)). However, improved fuel efficiency cannot be measured in
Jung, HaeyoonSong, MiYeonKim, Sanghak
Sports Utility Vehicles (SUVs) typically have a blunt rear end shape (for design and practicality), however this is not beneficial for aerodynamic drag. Drag can be reduced by a number of passive and active methods such as tapering and blowing into the base. In an effort to combine these effects and to reduce the drag of a visually square geometry slots have been introduced in the upper side and roof trailing edges of a squareback geometry, to take air from the freestream and passively injects it into the base of the vehicle to effectively create a tapered body. This investigation has been conducted in the Loughborough University’s Large Wind Tunnel with the ¼ scale generic SUV model. The basic aerodynamic effect of a range of body tapers and straight slots have been assessed for 0° yaw. This includes force and pressure measurements for most configurations. The slots generate useful, but small, drag reductions with the best configurations giving reductions in drag coefficient (Cd) of
Varney, MaxPassmore, MartinGaylard, Adrian
Although, the implementation of lift-off prevention devices such as the NASCAR roof flaps have greatly reduced the frequency and severity of race vehicle aerodynamic lift-off incidents, airborne incidents still occur occasionally in motorsports. The effectiveness of existing lift-off prevention measures and future trends in lift-off prevention are addressed in this paper. The results and analysis presented in this paper will be of paramount interest to race vehicle designers and sanctioning bodies because the effects of aerodynamics on vehicle lift-off need to be comprehended, but there exists a scarcity of reliable data in this area
Honeycutt, Daniel B.Uddin, Mesbah
Flickering problems in automotive vehicles have been observed from long time. After assessing numerous vehicles it was observed that whenever the hazard lights in a vehicle are activated, it leads to flickering problems in lights/small electrical components. This paper is to provide the solution for flickering snags in electrical components in a vehicle. The lights that are analyzed to be flickering/wavering are generally small loads such as LEDs in the bus roof area, small parking lamps, LEDs used in instrument clusters, cabin lamps, etc. The flickering in lights can turn out to be very unappealing at certain times. This absurd behavior can lead to extreme discomfort to the passengers and can also be a source of major distraction to the driver. This study presents the design & development for a vehicle platform & implementation that assesses the problem. Because of abrupt behavior of flasher circuits, voltage surges are observed, leading to flickering problems. This prevalent problem
Gupta, GauravModi, Ujjwal
The fuel efficiency of a vehicle depends on multiple factors such as engine efficiency, type of fuel, aerodynamic drag, and tire friction and vehicle weight. Analysis of weight and functionality was done, to develop a lightweight and low-cost Roof rack rail. The Roof rack rail is made up of a lightweight material with thin cross section and has the design that allows the fitment of luggage carrier or luggage rack on the car roof. In starting this paper describes the design and weight contribution by standard Roof rack rail and its related parts. Secondly, the selection of material within different proposed options studied and a comparison of manufacturing and design-related factors. Thirdly, it has a description of the design of Roof rack rail to accommodate the luggage carrier fitment on the car roof. Moreover, optimizations of Roof rack rail design by continuous change in position, shape, and parts used. Finally, the detail of the lightweight and cost effective Roof rack rail design
Softa, AbhishekShami, AnujKhurana, Rajdeep Singh
This SAE Recommended Practice describes the test procedures for conducting quasi-static modular body strength tests for ambulance applications. Its purpose is to establish recommended test practices which standardize the procedure for Type I and Type III bodies, provide ambulance builders and end-users with testing procedures and, where appropriate, provide acceptance criteria that, to a great extent, ensures the ambulance structure meets the same performance criteria across the industry. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included
Truck Crashworthiness Committee
To hear the powerful and spectrally rich sound in a car is costly, because the usual car audio system adopts small loudspeakers. Also, the available positions of the loudspeakers are limited, that may cause the reactive effect from the backing cavity and the sound distortion. In this work, a part of the roof panel of a passenger car is controlled by array actuators to convert the specified large area to be a woofer. An analogous concept of the acoustic holography is employed to be projected as the basic concept of an inverse rendering for achieving a desired vibration field. The vibration of the radiating zone is controlled to be in a uniform phase, and the other parts outside it are to be made a no-change zone in vibration. The latter becomes a baffle for the woofer, and the backing cavity is virtually infinite if the sound radiation into the passenger cabin is only of concern. Small array actuators are located in the periphery of the target roof panel avoiding the stiffener members
Woo, Jung-HanKim, Da-YoungIh, Jeong-Guon
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method. The main advantages over other flow
Wieser, DirkBonitz, SabineLofdahl, LennartBroniewicz, AlexanderNayeri, ChristianPaschereit, ChristianLarsson, Lars
The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements. After building the model of three kinds of solar collectors
Zhan, RuobingTan, GangfengYang, BoZhang, ZhiweiWang, TieLiu, CenyiWu, XintongRen, YanjunXu, Haobo
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed. Using FEM (finite element method) models, the thicknesses and materials of laminated constitutions were determined which satisfy the target area density, impact resistance based on JIS R 3212 standard, whose energy is similar to IEC 61215 hail test, and which no significant thermal deformation at -30 degrees Celsius is observed. 600 mm by 1000 mm in size and
Kudo, YukiSato, AkinoriKimura, KazutakaIwamoto, ShoichiOhba, HiroyukiSakabe, MotoyaShirai, Yasuhiro
When the vehicle parks in direct sunlight conditions, the cabin will form a high-temperature thermal environment in hot weather. Drivers would turn on the air-conditioning with relatively high gear in the most conditions to reduce the cabin temperature, which could affect the life of equipment, resulting in energy waste and increasing emissions. This study adopted solar energy in the ventilation system. When the car parks the cabin blower was driven by a solar panel mounted on the car roof to discharge heat inside the cabin real time, achieving the purpose of pre-cooling. Firstly, heat transfer model and ventilation cooling model for the cabin were established according to the theory of heat transfer, and models were modified through experiments. Besides, the impact of ventilation flow rate on the pre-cooling effect was studied based on simulation analysis. Finally, comprehensively considering the solar panel power and cooling effect, a reasonable range of ventilation flow rate was
Huang, Weicheng
The limits of tailpipe CO2 emissions are getting lower worldwide and the automobile manufacturers are looking for both on-cycle and off-cycle technologies to reduce these emissions. Some new innovative technologies are being studied to help reduce emissions. The use of the so called eco-innovations such as a battery charging solar roof to claim off-cycle credits of CO2, is already regulated in Europe by the document “Technical Guidelines for the preparation of applications for the approval of innovative technologies pursuant to Regulation (EC) No 443/2009 of the European Parliament and of the Council”. According to this document, the average solar radiation in Europe is 120W/m2. In Brazil, in which the latitudes are lower than in Europe, the weighted average solar radiation, according to the licensing trend has not been calculated yet. This work presents a weighted average solar radiation for Brazil, according to the state licensing trend for 2015-2025 and typical meteorological year
Noce, ToshizaemomPaoli, FelipeMartins, Amandade Morais Hanriot, SergioMaia, Cristiana BrasilSodré, Ricardo
Since the Brazilian government established the Inovar-Auto programme in 2012, the automotive industry has pursued tax savings by signing up for the programme. This new plan (from 2013 to 2017) has three main objectives: fortification of the industry and domestic market; increase incentives for investment and innovation; and enhance energy efficiency of vehicles produced in Brazil. For instance, manufacturers can gain up to 2% extra in IPI tax credits (aside 30% from Inovar-Auto achievements) by producing even more fuel-efficient models. In relation to energy efficiency, the aerodynamic drag over a vehicle contributes to the share of energy requested to promote its movement in high speed. Thus, the drag forces are the major reasons of fuel consumption. In this context, this paper presents a profile comparison of Hatch 2015 cars models produced in Brazil, in regards to drag and geometry features as roof end angle, rear slant angle and rear-end spoiler. The 2015 best-seller model of each
Soares, Renan Franciscode Souza, Francisco José
Nowadays, OEM’s challenge is to harmonize vehicle’s performance, design and cost. Furthermore, all of these antagonistic key performance factors must be integrated in a much faster pace than ever before in the automotive industry. Thinner parts and low cost materials Body-in-White (BIW) systems struggles to deliver the same/higher performance and quality levels as the previous generations. On top of that, considering that BIW structures typifies almost 30% in a vehicle mass, and almost 40% of a vehicle cost, focusing in this system, this paper will study the body upper structure, more specifically its roof panels. Currently, almost all small vehicles are composed by three to four roof bows (figure 1) within its structure. A Roof Bow is a sheet metal part, usually spot welded to the BIW inner frame, forming the inner structure of the vehicle body. Its primary function is to supporting the roof panel loads, such as Oil Canning and local stiffness. Considering roof bows perform minor role
Pereira, André LuizBennati, BrunoKuba, CarlosMarcial, MauroAmoroso, PercioYamada, William
Items per page:
1 – 50 of 288