Browse Topic: Fixed-wing aircraft
Electric Vertical Take-Off and Landing (eVTOL) aircraft, conceptualized to be used as air taxis for transporting cargo or passengers, are generally lighter in weight than jet-fueled aircraft, and fly at lower altitudes than commercial aircraft. These differences render them more susceptible to turbulence, leading to the possibility of instabilities such as Dutch-roll oscillations. In traditional fixed-wing aircraft, active mechanisms used to suppress oscillations include control surfaces such as flaps, ailerons, tabs, and rudders, but eVTOL aircraft do not have the control surfaces necessary for suppressing Dutch-roll oscillations.
This SAE Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and the different means that have been used to test for icing. Fuel preparation and icing test procedures for aircraft fuel systems and components are proposed herein as a recommended practice to be used for fixed wing and rotary-wing aircraft within their operational environment. This ARP mostly addresses aircraft fuel system level testing and provides a means to address the requirements of FAR 14 CFR § 23.951(c), § 25.951(c), § 27.951(c), and § 29.951(c). In the context of this ARP, the engine and the auxiliary power unit (APU) are not considered to be components of the aircraft fuel system. However, some of the methods described in this document can be applied to the engine, APU, and other aircraft (system or component level) icing tests. This revision does not completely address new developments in ice accretion and release resulting from internal flow in tubing
Electric vertical takeoff and landing (eVTOL) aircraft, which is used extensively in both military and civilian fields, has the advantages of good maneuverability, high cruising speed, and low requirements for the takeoff and landing modes. Robust and stable control is crucial to ensuring its safety because the dynamics model of an eVTOL aircraft will change significantly between fixed-wing and vertical takeoff and landing mode. In this paper, we first study the structural characteristics of the eVTOL aircraft and establish its dynamic model by considering typical flight modes and mechanical parameters. Then we design a closed-loop controller based on cascade PID technique. Finally, the effectiveness of the control algorithms is verified based on the semi-physical flight simulation platform, which can lower the development cost of control algorithms significantly. The simulation results demonstrate that the cascade PID control scheme accelerates the implementation of the robust
Direct debugging of a vertical takeoff and landing (VTOL) fixed-wing aircraft’s control system can easily result in risk and personnel damage. It is effectively to employ simulation and numerical methods to validate control performance. In this paper, the attitude stabilization controller for VTOL fixed-wing aircraft is designed, and the controller performance is verified by MATLAB and visual simulation software, which significantly increases designed efficiency and safety of the controller. In detail, we first develop the VTOL fixed-wing aircraft’s six degrees of freedom kinematics and dynamics models using Simulink module, and the cascade PID control technique is applied to the VTOL aircraft’s attitude stabilization control. Then the visual simulation program records the flight data and displays the flight course and condition, which can validate the designed controller performance effectively. It can be concluded that the designed VTOL fixed-wing aircraft control visual simulation
This SAE Aerospace Standard (AS) contains landing gear strength and rigidity requirements which, in combination with other applicable specifications, define the structural design, analysis, test, and data requirements for fixed wing piloted airplanes. These requirements include, but are not limited to, the following: a General specifications: 1 The shock-absorption characteristics and strength of landing-gear units and the strength and rigidity of their control systems and of their carry-through structures. Requirements for wheels, tires, and brakes as they affect air vehicle ground loads are also included. 2 The strength of structures integral with the airplane provided for transmitting catapulting forces to the airplanes, and for engaging shipboard and shore-based arresting gear, and barricades. 3 The strength of anchor-line clamps, and the airplane strength for hoisting, jacking, towing, tie-down, and other ground- or deck-handling conditions. 4 Structural design, analysis, and test
This SAE Aerospace Recommended Practice (ARP) provides the qualification test procedure requirements for low wattage halogen lamps (less than 35 watts) intended for use primarily in aircraft applications. The purpose of these tests is to provide a laboratory means of determining the performance characteristics of lamps under airplane power and other environmental conditions and to verify the integrity of the lamp design and production processes.
This SAE Aerospace Recommended Practice (ARP) provides design guidelines for aircraft mechanical control systems and components. Topics contained in this document include design requirements, system design and installation guidelines, and component design practices for primary flight controls, secondary flight controls, and utility controls.
Gust load alleviation is an increasing concern for the design of fixed-wing aircraft with ultra-high aspect wings. It may have detrimental impacts on flight including increased structural and aerodynamic loads, structural deformation, and decreased flight dynamic performance. Innovators at NASA's Langley Research Center have developed a mechanical solution to control gust-load on fixed plane wings enabling significant improvement over alleviation devices currently in use.
This SAE Aerospace Recommended Practice (ARP) covers the recommended criteria and performance requirements for the design and installation of land-based aircraft emergency and operational arresting hooks for use on runway arresting systems. Design criteria for fully operational hooks and for carrier-based aircraft hook installations are contained in specification MIL-A-18717.
This document provides information regarding ice detector technology and design. The SAE document AS5498 provides detailed information regarding the requirements, specifications, qualification, and certification of icing detection systems. This document is not meant to replace AS5498, but to enhance it by considering unique aspects of sensing technology and, in particular, those that may not be certificated at the time of this revision. To that end, an effort has been made not to duplicate information contained in AS5498. Icing rate information is included where applicable. The primary application is associated with ice forming on the leading edges of airfoils and inlets while the aircraft is in flight. Information related to detection of ice over cold fuel tanks and icing at low-velocity operation is included. The material is primarily applicable to fixed-wing aircraft. Unique requirements for engine inlets and rotorcraft are also provided.
This document contains minimum operational performance specification (MOPS) of active on-board INFLIGHT ICING DETECTION SYSTEMS (FIDS). This MOPS specifies FIDS operational performance which is the minimum necessary to satisfy regulatory requirements for the design and manufacture of the equipment to a minimum standard and guidance towards acceptable means of compliance when installed on an AIRCRAFT. Detection of ICE accreted on the AIRCRAFT during ground operations is not considered in this document. This MOPS was written for the use of FIDS on AIRCRAFT as defined in 1.3 and 2.3. Expected minimum performance specifications for FIDS and their functions are provided in Section 3. The minimum performance requirements as defined in Section 3 do not consider SYSTEM performance as installed on the AIRCRAFT. Performance in excess of the minimum performance may be required by the SYSTEM installed on an AIRCRAFT in order to meet regulatory or operational requirements. This topic is considered
Over the last decade the numbers, types, and capabilities of unmanned aerial vehicles (UAVs) available to military forces, domestic security forces, non-state actors, commercial interests, and even private citizens have grown substantially. Offerings range from large, expensive fixed-wing high-altitude/long- endurance UAVs, which are affordable only to nation states, down to low-cost, low-flying small and micro vertical take-off- and-landing (VTOL) models available to everyone. Both armed and unarmed models are marketed. Some unarmed models are being upgraded with aftermarket lethal capabilities by third parties or private individuals using do-it-yourself techniques.
This SAE Aerospace Information Report (AIR) provides descriptions of trimmable horizontal stabilizer actuators that are installed on a variety of transport and business aircraft systems.
This document deals with ground and flight test of airplane installed Environmental Control Systems (ECS), Figure 1. The ECS provide an environment, controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include the following: pressure, temperature, humidity, ventilation air velocity, ventilation rate, wall temperature, audible noise, vibration, and environment composition (ozone, contaminants, etc.). The ECS are composed of equipment, controls, and indicators that supply, distribute, recycle and exhaust air to maintain the desired environment.
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the installation, inflation, inspection, and maintenance of aircraft tires and the maintenance of the operating environment to ensure the safety of support personnel and the safe operation of the aircraft.
This SAE Aerospace Recommended Practice (ARP) reviews the basics of NVIS compatibility and discusses the specific illuminated pushbutton switch and indicator requirements for sunlight readability, color, luminance, and NVIS radiance when used in NVIS compatible cockpits. The recommendations and special considerations set forth in this document are made to give the design engineer a better understanding of MIL-L-85762A and MIL-STD-3009 NVIS compatibility requirements and to provide information on the visual characteristics of NVIS compatible pushbutton switch and indicators. The recommendations are primarly for military aircraft since civilian aircraft FAR requirements typically do not cover NVIS applications with the exception of those covered by RTCA/DO-275.
This document is applicable to civil aerospace airframe structural applications where stakeholders are seeking guidance on the definition, development, and certification of structural health monitoring (SHM) technologies for aircraft health management applications. Inputs to the structural health management are obtained from SHM equipment and/or from onboard sensors, delivering the detection and characterization of damage, load, or environmental parameters for operational and damage monitoring. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to characterize the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors, as well as new sensors to be defined in the future.
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
This Glossary is designed to serve persons who need to know the accepted meanings, within specific contexts, of the terminology used in reports, articles, regulations, and other materials dealing with aviation safety -- with particular reference to terms specific to human factors in aviation safety. It is assumed that some users of the Glossary will be familiar with the nomenclature of aviation, but will need information on the language of human factors in engineering as they apply to aviation safety. Others (for example, engineers and psychologists) will have fairly extensive knowledge of the terminology of their own and related disciplines, but will need authoritative definitions of technical terms specific to aviation. Within the foregoing general framework, the following guidelines for the inclusion of terms to be defined have been observed:
This specification covers the installation of aircraft interior lighting for military aircraft.
This SAE Aerospace Standard (AS) provides minimum performance and design standards for a handheld, high-intensity, flashing Aviation Visual Distress Signal (AVDS) based on light-emitting-diode (LED) technology operating simultaneously in visible (white) and near infrared (NIR) spectra designed to facilitate location and rescue of aviation accident/ditching survivors in open sea conditions.
This document covers survivor locator lights as follows: a Steady type lights (Type I) b Flashing-type lights (Type II)
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
This SAE Aerospace Recommended Practice (ARP) provides information and guidance for the control of hazardous laser energy in the navigable airspace. This ARP does not address techniqies that pilots can apply to mitigate laser illuminations during a critical phase of flight. Such mitigation strategies are described in ARP6378.
The purpose of this document is to provide reference material for establishing compatibility of electronic gas turbine engine control systems and associated components with the electromagnetic environment and achieving compliance with associated airworthiness requirements.
This Aerospace Standard, (AS), specifies minimum performance standards for _____________ (Instrument or instrument systems) which are primarily intended for use with (vehicles capable of flight), ((fixed wing, rotary wing) aircraft)), (other special modifiers); (and whose purpose is to display _____________ information).
Items per page:
50
1 – 50 of 325