Browse Topic: Hypersonic and supersonic aircraft

Items (193)
The flow structure and unsteadiness of shock wave–boundary layer interaction (SWBLI) has been studied using rainbow schlieren deflectometry (RSD), ensemble averaging, fast Fourier transform (FFT), and snapshot proper orthogonal decomposition (POD) techniques. Shockwaves were generated in a test section by subjecting a Mach = 3.1 free-stream flow to a 12° isosceles triangular prism. The RSD pictures captured with a high-speed camera at 5000 frames/s rate were used to determine the transverse ray deflections at each pixel of the pictures. The interaction region structure is described statistically with the ensemble average and root mean square deflections. The FFT technique was used to determine the frequency content of the flow field. Results indicate that dominant frequencies were in the range of 400 Hz–900 Hz. The Strouhal numbers calculated using the RSD data were in the range of 0.025–0.07. The snapshot POD technique was employed to analyze flow structures and their associated
Datta, NarendraOlcmen, SemihKolhe, Pankaj
Hypersonic platforms provide a challenge for flight test campaigns due to the application's flight profiles and environments. The hypersonic environment is generally classified as any speed above Mach 5, although there are finer distinctions, such as “high hypersonic” (between Mach 10 to 25) and “reentry” (above Mach 25). Hypersonic speeds are accompanied, in general, by a small shock standoff distance. As the Mach number increases, the entropy layer of the air around the platform changes rapidly, and there are accompanying vortical flows. Also, a significant amount of aerodynamic heating causes the air around the platform to disassociate and ionize. From a flight test perspective, this matters because the plasma and the ionization interfere with the radio frequency (RF) channels. This interference reduces the telemetry links' reliability and backup techniques must be employed to guarantee the reception of acquired data. Additionally, the flight test instrumentation (FTI) package needs
Hypersonic propulsion would allow for air travel at speeds of Mach 6 to 17, or more than 4,600 to 13,000 miles per hour, and has applications in commercial and space travel.
The objective of this paper is to identify the optimum supersonic Mach number for expansion–deflection dual-bell nozzle. The numerical analysis is carried for expansion–deflection dual-bell nozzle (EDDBN) with different free stream conditions. Numerical study observes that the transition pressure ratio and Mach contours are studied through inside and outside of the nozzle. The results proved that increasing the Mach number leads to decrease in the static pressure as well as reduce the performance of EDDBN nozzle. The analysis was carried out for four different Mach number, out of which Mach number 1.2 provides the optimum results. In the present study, the influence of Mach number behavior affects the pressure and Mach configuration inside and outside of the EDDBN nozzle. This novel concept is used in supersonic vehicles for higher performances. Also, it provides a way to improve the existing nozzle design configuration.
Balaji, K.Kalekar, YashdeepNaik, AtharvaWalave, GurudasCharapalle, Samruddhi
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum AOA where the lift to drag force ratio is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the AOA is varied from 0° to 20°. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed. It is found that the lift-to-drag ratio increases
Deka, SushmitaKamal, AbhishekPatra, SanjuktaSahoo, Niranjan
This research employs a comprehensive methodology to explore the stability and transition dynamics of hypersonic boundary layers, focusing specifically on the influence of sharp and blunt leading edges. The Stanford University Unstructured (SU2) Computational Fluid Dynamics (CFD) solver is utilised to compute the mean flow over a flat plate, establishing a foundational basis for subsequent stability analysis. The extracted boundary layer profiles undergo validation against existing literature, ensuring accuracy and reliability. The linear stability Solver analysis constitutes a crucial phase wherein the research focuses on the eigenvalue spectra, identifying dominant modes and closely scrutinising the transition process within the hypersonic boundary layers. This investigation into stability characteristics is paramount for designing and optimising hypersonic vehicles, providing valuable insights to enhance their efficiency and security. By comprehending the intricate interplay between
Mehta, Urvi SanjivSivasubramanian, Jayahar
Hypersonic flight vehicles have potential applications in strategic defence, space missions, and future civilian high-speed transportation systems. However, structural integration has significant challenges due to extreme aero-thermo-mechanical coupled effects. Scramjet-powered air-breathing hypersonic vehicles experience extreme heat loads induced by combustion, shock waves and viscous heat dissipation. An active cooling thermal protection system for scramjet applications has the highest potential for thermal load management, especially for long-duration flights, considering the weight penalty associated with the heavier passive thermal insulation structures. We consider the case of active cooling of scramjet engine structural walls with endothermic hydrocarbon fuel. We have developed a semi-analytical quasi-2D heat transfer model considering a prismatic core single cooling channel segment as a representative volume element (RVE) to analyse larger-scale problems. The model includes
Mukherjee, RaginiRoy Mahapatra, Debiprosad
The urgent need to combat global warming has spurred legislative efforts within the transport sector to transition away from fossil fuels. Hydrogen is increasingly being utilised as a green energy vector, which can aid the decarbonisation of transport, including internal combustion engines. Computational fluid dynamics (CFD) is widely used as a tool to study and optimise combustion systems especially in combination with new fuels like hydrogen. Since the behaviour of the injection event significantly impacts combustion and emissions formation especially in direct injection applications, the accurate modelling of H2 injection is imperative for effective design of hydrogen combustion systems. This work aims to evaluate unsteady Reynolds-Averaged Navier Stokes (URANS) modelling of the advective transport process and related numerical methods. Measurements of H2 injection forming supersonic jets inside of constant volume chamber carried out at wide range of relevant conditions are utilised
Kaczmarczyk, Kacper OskarLiu, XinleiIm, Hong G.Turner, James W.G.Yuan, HaoAkehurst, SamEsposito, Stefania
The air-breathing hypersonic vehicle (AHV) holds the potential to revolutionize global travel, enabling rapid transportation to low-Earth orbit and even space within the next few decades. This study focuses on investigating the nonlinear dynamic simulation, trim, and stability analysis of a three-degrees-of-freedom (3DOF) longitudinal model of a generic AHV for variable control surface deflection, δe and δr . A simulation is developed to analyze the burstiness of the AHV’s nonlinear longitudinal behavior, considering the complete flight envelope across a wide range of Mach numbers, from M = 0 to 24, for selected stable M. The presented simulation assesses trim analysis and explores the dynamic stability of the AHV through its flight envelope and bifurcation method analysis is carried out to gain insight and validate the dynamic stability using eigen value approach.
Singh, RiteshPrakash, OmJoshi, SudhirSharma, Rakesh Chandmal
Boom Supersonic, the company building supersonic planes, is developing Symphony, a new propulsion system designed and optimized for its Overture supersonic airliner. Boom will be teaming with three industry leaders to develop Symphony including Florida Turbine Technologies (FTT) for engine design, GE Additive for additive technology design consulting, and StandardAero for maintenance.
The flow fields around a flight vehicle at hypersonic speeds are markedly different from those at both subsonic and supersonic speeds. The hypersonic regime is not at a discrete speed but evolves over a continuum as speed increases, but is generally defined as a speed of Mach 5 or higher. The flow fields around a vehicle cause the resultant high temperatures and high heat fluxes for the flight system/materials during hypersonic flight, and these stressors in hypersonic flight are called “The Heat Barrier.” Real gas effects come into play at hypersonic speeds due to these high temperatures, and include vibrational excitation, dissociation, chemical reactions, and ionization. The underlying cause of this change in the flow fields is that the pressure waves created by the body moving through the atmosphere can only travel at the speed of sound. It is these pressure waves that travel ahead of the body and shape the flow field far from the body of a subsonic vehicle. At hypersonic speeds
To assist in initializing the conceptual design of hypersonic aircraft, we outline a new, systematic framework based on historical aircraft data and primarily composed of design data and regression models. It is a rapid, low-fidelity analysis to provide a starting point for the conceptual design process by (1) assessing the performance capabilities of four types of high-speed aircraft, (2) providing initial estimates for weights and geometry with uncertainty, and (3) exploring how changes in these affect performance within design spaces. Using this framework, an initial set of reasonable aircraft configurations is obtained based on speed, altitude, and payload requirements, which can serve to accelerate the design process and avoid unforeseen problems later in the design cycle. An example is provided to demonstrate the application of the framework to launch the conceptual design of a new hypersonic aircraft with a given set of mission requirements.
Wilson, DanielFigliola, RichardStrasser, WayneCamberos, José
At hypersonic speed, severe aerodynamic heating is observed, and temperatures are too high to cool by radiation cooling; active cooling such as ablative cooling is helpful in this situation. The Thermal Protection System (TPS) consists of a layer of an ablative material, followed by an insulating material to lower the temperature at the inside wall of the lifting body. The surface area (considering the inside volume of the vehicle constant) of the TPS plays a vital role in heat transfer to the vehicle and heat transferred through the vehicle body. The minimum area sweepback angle (ΛArea-min) is the function of the principal radius (R) and the ratio of the principal radii of the forward bi-curvature stagnation surface (R/r). The ΛArea-min = 80° is obtained for R = 2 m and R/r = 2. The aerothermal analysis of the lifting body is of fundamental interest while designing the TPS. A Computational Fluid Dynamics (CFD) simulation of a two-dimensional (2D) lifting body against thermally perfect
Shilwant, RohanMahulikar, Shripad Prabhakar
Ultra-efficient catalysts were developed that are cost-effective to make and simple to scale. The 3D-printed catalysts could potentially be used to in future to power hypersonic flight while simultaneously cooling the system.
This document includes recommendations of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet e Military high performance fighter and attack f Helicopter which are subject to the following CFR Parts certification: Part 23 – Airworthiness Standards: Normal, Utility, Acrobatic and Commuter Aircrafts Part 25 – Airworthiness Standards: Transport Category Aircrafts Part 27 – Airworthiness Standards: Normal Category Rotorcraft Part 29 – Airworthiness Standards: Transport Category Rotorcraft
A-20B Exterior Lighting Committee
In recent years, NASA, along with partners Boeing and Area-I Inc., have developed the spanwise adaptive wing (SAW). SAWs leverage a thermally triggered actuator made from a NASA-developed shape memory alloy (SMA) to allow outer portions of aircraft wings and control surfaces to be folded to achieve optimal angles during flight. For supersonic aircraft, SAWs can reduce drag and increase performance during the transition from subsonic to supersonic speeds. For subsonic aircraft, SAWs offer increased control and reduced dependency on the tail rudder and associated hydraulic systems, a particularly heavy part of the aircraft.
Hypersonic weapons, unlike ballistic missiles, take unpredictable paths and can evade missile defense systems. To counter hypersonic technologies, radar engineers must build systems that have no holes in coverage and can track such high-speed vehicles. The obstacles radar developers face require collaboration across the board and strategic methods of adapting to evolving advancements.
At supersonic aircraft speeds, aerodynamically heated surfaces, e.g., nose, wing leading edges, are infrared (IR) signature sources from the tactically crucial frontal aspect. This study numerically predicts and then illustrates the minimization of IR contrast between the nose and background sky radiance by the emissivity optimization (εw,opt) technique, which has the least performance penalties. The IR contrast between the aircraft nose and its replaced background in 1.9-2.9 μm short-wave IR (SW-IR), 3-5 μm medium-wave IR (MW-IR), and 8-12 μm long-wave IR (LW-IR) bands are obtained. The IR contrast especially in LW-IR (i) increases with flight Mach number (M ∞) for a given flight altitude (H) and εw (ii) decreases with increasing H for a given M ∞ and εw. The εw,opt for a flight altitude of 5 km is found to decrease from 0.99 at M ∞ = 0.001 (low subsonic) in all three bands to 2 × 10−4 in MW-IR and 0.0213 in LW-IR bands at M ∞ = 3 (high supersonic). Maximum contrast radiance due to
V., KajalMahulikar, Shripad P.
With hypersonics vital to national security, LIFT, the Detroit-based Department of Defense manufacturing innovation institute, along with the Department of Defense (DoD), recently awarded ATC Materials, Inc. one of the institute’s nationwide Hypersonics Challenge projects. The challenge goal: To demonstrate the repeatable and reliable production of their RIPS molded radio frequency (RF) material. Operating at speeds of Mach 5 or higher, hypersonic and counter-hypersonic vehicles are among the Department of Defense’s top priorities, as well as the development of a safe and secure domestic supply base.
This Aerospace Information Report (AIR) addresses the subject of aircraft inlet-swirl distortion. A structured methodology for characterizing steady-state swirl distortion in terms of swirl descriptors and for correlating the swirl descriptors with loss in stability pressure ratio is presented. The methodology is to be considered in conjunction with other SAE inlet distortion methodologies. In particular, the combined effects of swirl and total-pressure distortion on stability margin are considered. However, dynamic swirl, i.e., time-variant swirl, is not considered. The implementation of the swirl assessment methodology is shown through both computational and experimental examples. Different types of swirl distortion encountered in various engine installations and operations are described, and case studies which highlight the impact of swirl on engine stability are provided. Supplemental material is included in the appendices. This AIR is issued to bring together information and ideas
S-16 Turbine Engine Inlet Flow Distortion Committee
Researchers developed a propulsion system that could pave the way for hypersonic flight, such as travel from New York to Los Angeles in less than 30 minutes. They developed a way to stabilize the detonation needed for hypersonic propulsion by creating a special hypersonic reaction chamber for jet engines.
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
A-5B Gears, Struts and Couplings Committee
Aerospace innovators from government, commercial, and university arenas are developing technologies that would make supersonic flight over land possible, dramatically reducing travel time anywhere in the world. With these advances, engineers also are working to make aircraft more environmentally friendly, eliminating toxic emissions and reducing the amount of energy required for flight.
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
A-5B Gears, Struts and Couplings Committee
“An Assessment of Planar Waves” provides background on some of the history of planar waves, which are time-dependent variations of inlet recovery, as well as establishing a hierarchy for categorizing various types of planar waves. It further identifies approaches for establishing compression-component and engine sensitivities to planar waves, and methods for accounting for the destabilizing effects of planar waves. This document contains an extensive list and categorization (see Appendix A) of references to aid both the newcomer and the practitioner on this subject. The committee acknowledges that this document addresses only the impact of planar waves on compression-component stability and does not address the impact of planar waves on augmenter rumble, engine structural issues, and/or pilot discomfort.
S-16 Turbine Engine Inlet Flow Distortion Committee
The primary challenge with supersonic flight remains the mitigation of the sonic boom to levels that will be acceptable to humans on the ground. As industry progresses towards realizing a commercial supersonic aircraft, the push from regulators to reduce noise levels has intensified. Innovators at NASA Langley Research Center have developed a system for predicting sonic boom propagation of supersonic aircraft. The sBOOMTraj tool enables efficient computation and mitigation of sonic boom loudness across the entire duration of a flight mission.
This work aims to expand the applicability of an open-source numerical tool to solve hypersonic gas dynamic flows for space propulsion geometries. This is done by validating the code using two well-known hypersonic test cases, the double cone and the hollow cylinder flare, used by the NATO Research and Technology Organization for the validation of hypersonic flight for laminar viscous-inviscid interactions (D. Knight, “RTO WG 10 - Test cases for CFD validation of hypersonic flight,” in 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002). The Computational Fluid Dynamic (CFD) simulation is conducted using the two-temperature solver hy2Foam that is capable to study external aerodynamics in re-entry flows. In the present work the assessment of hy2Foam to solve hypersonic complex flow features with strong interactions including non-equilibrium effects was demonstrated. Freestream conditions with stagnation enthalpy of 5.44 MJ/kg and Mach number of 12.2, for the double cone case, and
Teixeira, OdelmaPascoa, Jose
This document includes requirements of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet/turbofan e Military high-performance fighter and attack f Helicopter This document will cover general requirements and recommended practices for all types of landing and taxi lights. More specific recommendations for LED lights in particular can be found in ARP6402.
A-20B Exterior Lighting Committee
This report covers engine tests performed in Altitude Test Facilities (ATFs) with the primary purpose of determining steady state thrust at simulated altitude flight conditions as part of the in-flight thrust determination process. As such it is complementary to AIR1703 and AIR5450, published by the SAE E-33 Technical Committee. The gross thrust determined using such tests may be used to generate other thrust-related parameters that are frequently applied in the assessment of propulsion system performance. For example: net thrust, specific thrust, and exhaust nozzle coefficients. The report provides a general description of ATFs including all the major features. These are: Test cell air supply system. This controls the inlet pressure and includes flow straightening, humidity and temperature conditioning. Air inlet duct and slip joint. Note that the report only covers the case where the inlet duct is connected to the engine, not free jet testing. Thrust stand force measurement system
E-33 In Flight Propulsion Measurement Committee
Items per page:
1 – 50 of 193