Browse Topic: Unmanned aerial vehicles

Items (962)
This SAE Aerospace Recommended Practice (ARP) describes terminology specific to unmanned systems (UMSs) and definitions for those terms. It focuses only on terms used exclusively for the development, testing, and other activities regarding UMSs. It further focuses on the autonomy and performance measures aspects of UMSs and is based on the participants’ earlier work, the Autonomy Levels for Unmanned Systems (ALFUS) Framework, published as NIST Special Publication 1011-I-2.0 and NIST Special Publication 1011-II-1.0. This Practice also reflects the collaboration results with AIR5665. Terms that are used in the community but can be understood with common dictionary definitions are not included in this document. Further efforts to expand the scope of the terminology are being planned.
AS-4JAUS Joint Architecture for Unmanned Systems Committee
The development of drones has raised questions about their safety in case of high-speed impacts with the head. This has been recently studied with dummies, postmortem human surrogates and numerical models but questions are still open regarding the transfer of skull fracture tolerance and procedures from road safety to drone impacts. This study aimed to assess the performance of an existing head FE model (GHBMC M50-O v6.0) in terms of response and fracture prediction using a wide range of impact conditions from the literature (low and high-speed, rigid and deformable impactors, drones). The fracture prediction capability was assessed using 156 load cases, including 18 high speed tests and 19 tests for which subject specific models were built. The GHBMC model was found to overpredict peak forces, especially for rigid impactors and fracture cases. However, the model captured the head accelerations tendencies for drone impacts. The formulation of bone elements, the failure representation
Pozzi, ClémentGardegaront, MarcAllegre, LucilleBeillas, Philippe
Researchers have created a 98-milligram sensor system — about one tenth the weight of a jellybean or less than one-hundredth of an ounce — that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination. Then, when a researcher sends a Bluetooth command, the sensor is released from its perch and can fall up to 72 feet — from about the sixth floor of a building — and land without breaking. Once on the ground, the sensor can collect data, such as temperature or humidity, for almost three years.
In November 2024, the U.S. Department of Homeland Security’s (DHS) National Urban Security Technology Laboratory (NUSTL) teamed up with Mississippi State University’s (MSU) Raspet Flight Research Laboratory, and DAGER Technology LLC, to conduct an assessment on selected models of cybersecure “Blue UAS.” The drones, including models from Ascent AeroSystems, Freefly Systems, Parrot Drones, Skydio, and Teal Drones, are cybersecure and commercially available to assist emergency responders with their public safety operations.
The Science and Technology Directorate's (S&T) National Urban Security Technology Laboratory (NUSTL) recently brought together emergency responders from across the nation to test unmanned aircraft systems (UAS) from the Blue UAS Cleared List. By providing an aerial vantage point, and creating standoff distance between responders and potential threats, UAS can significantly mitigate safety risks to responders by allowing them to assess and monitor incidents remotely. U.S. Department of Homeland Security, Washington, D.C. In November 2024, the U.S. Department of Homeland Security's (DHS) National Urban Security Technology Laboratory (NUSTL) teamed up with Mississippi State University's (MSU) Raspet Flight Research Laboratory, and DAGER Technology LLC, to conduct an assessment on selected models of cybersecure “Blue UAS.” The drones, including models from Ascent AeroSystems, Freefly Systems, Parrot Drones, Skydio, and Teal Drones, are cybersecure and commercially available to assist
With the exponential rise in drone activity, safely managing low-flying airspace has become challenging — especially in highly populated areas. Just last month an unauthorized drone collided with a ‘Super Scooper’ aircraft above the Los Angeles wildfires, grounding the aircraft for several days and hampering the firefighting efforts.
As the capabilities of unmanned aerial systems continue to evolve rapidly in response to the tactical and strategic necessities of the modern battlefield, the U.S. Army Aeromedical Research Laboratory is exploring a unique approach to improving their operational effectiveness – by focusing on the protection and performance of UAS operators.
In February, the Joint Interagency Field Experimentation (JIFX) team at the Naval Postgraduate School (NPS) executed another highly collaborative week of rapid prototyping and defense demonstrations with dozens of emerging technology companies. Conducted alongside NPS’ operationally experienced warfighter-students, the event is a win-win providing insight to accelerate potential dual-use applications.
Da Jiang Innovations (DJI)’s AeroScope drone detection platform has proven to be an effective security tool for military and law enforcement. It identifies and tracks drones in real time, providing AeroScope users with information like flight status, path and pilot location for drones up to 50 kilometers away. This data stream enables users to make fast and informed responses as soon as possible, mitigating the potentially harmful effects of consumer drones in and around public spaces, government facilities, infrastructure and other no-fly zones.
In the future, autonomous drones could be used to shuttle inventory between large warehouses. A drone might fly into a semi-dark structure the size of several football fields, zipping along hundreds of identical aisles before docking at the precise spot where its shipment is needed.
This document defines a set of standard application layer interfaces called JAUS Autonomous Capabilities Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Autonomous Behaviors Services represent the platform-independent capabilities commonly found in platforms across domains, including air, maritime, and ground. At present five (5) services are defined in this document. These services are: Comms Lost Policy Manager: Detect and recover from loss of communications with a control station Retrotraverse: Return along a path previously traveled Self-Righting: Attempt to recover from a tip over condition Cost Map 2D: Provides information about the current operating environment of the platform Path Reporter: Provides information about the previous or future planned path of the platform
AS-4JAUS Joint Architecture for Unmanned Systems Committee
The SAE Aerospace Information Report AIR5315 – Generic Open Architecture (GOA) defines “a framework to identify interface classes for applying open systems to the design of a specific hardware/software system.” [sae] JAUS Service (Interface) Definition Language defines an XML schema for the interface definition of services at the Class 4L, or Application Layer, and Class 3L, or System Services Layer, of the Generic Open Architecture stack (see Figure 1). The specification of JAUS services shall be defined according to the JAUS Service (Interface) Definition Language document.
AS-4JAUS Joint Architecture for Unmanned Systems Committee
Drone show accidents highlight the challenges of maintaining safety in what engineers call “multiagent systems” — systems of multiple coordinated, collaborative, and computer-programmed agents, such as robots, drones, and self-driving cars.
U.S. Army Combat Capabilities Development Command Chemical Biological Center (DEVCOM CBC) researchers are developing a way to scan for chemical biological agent on surfaces on the fly. Literally on the fly as it consists of an AI-enabled spectrometer mounted on an unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV) sending back vital data in real time. It is called Hyperspectral Threat Anomaly Detection, or HyperThreAD for short.
The accident reconstruction community frequently uses Terrestrial LiDAR (TLS) to capture accurate 3D images of vehicle accident sites. This paper compares the accuracy, workflow, benefits, and challenges of Unmanned Aerial Vehicle (UAV) LiDAR, or Airborne Laser Scanning (ALS), to TLS. Two roadways with features relevant to accident reconstruction were selected for testing. ALS missions were conducted at an altitude of 175 feet and a velocity of 4 miles per hour at both sites, followed by 3D scanning using TLS. Survey control points were established to minimize error during cloud-to- cloud TLS registration and to ensure accurate alignment of ALS and TLS point clouds. After data capture, the ALS point cloud was analyzed against the TLS point cloud. Approximately 80% of ALS points were within 1.8 inches of the nearest TLS point, with 64.8% at the rural site and 59.7% at the suburban site within 1.2 inches. These findings indicate that UAV-based LiDAR can achieve comparable accuracy to TLS
Foltz, StevenTerpstra, TobyClarson, Julia
This study presents a novel reinforcement learning (RL)-based control framework aimed at enhancing the safety and robustness of the quadcopter, with a specific focus on resilience to in-flight one propeller failure. This study addresses the critical need of a robust control strategy for maintaining a desired altitude for the quadcopter to save the hardware and the payload in physical applications. The proposed framework investigates two RL methodologies, dynamic programming (DP) and deep deterministic policy gradient (DDPG), to overcome the challenges posed by the rotor failure mechanism of the quadcopter. DP, a model-based approach, is leveraged for its convergence guarantees, despite high computational demands, whereas DDPG, a model-free technique, facilitates rapid computation but with constraints on solution duration. The research challenge arises from training RL algorithms on large dimension and action domains. With modifications to the existing DP and DDPG algorithms, the
Qureshi, Muzaffar HabibMaqsood, AdnanFayyaz ud Din, Adnan
Headquartered in San Juan, Puerto Rico, Unusual Machines describes itself as a “classic American technology company born from garage tinkerers and hobbyists, focused on serving the emerging drone industry with unique and innovative products.” The company recently launched a new low-cost flight controller for drones, the Riot Brave F7, that achieved “Blue UAS” certification from the Department of Defense's (DoD) Defense Innovation Unit (DIU) in August. The Riot Brave F7 - just $58 - features a STMF722RET6 processor equipped with Bosch accelerometer and barometer, and has 16Mb of built in Blackbox Memory. While the company developed Riot Brave F7 primarily as a low cost flight controller option for FPV drones, there are broader possibilities for it, including military applications.
Headquartered in San Juan, Puerto Rico, Unusual Machines describes itself as a “classic American technology company born from garage tinkerers and hobbyists, focused on serving the emerging drone industry with unique and innovative products.” The company recently launched a new low-cost flight controller for drones, the Riot Brave F7, that achieved “Blue UAS” certification from the Department of Defense’s (DoD) Defense Innovation Unit (DIU) in August.
Most autonomous vehicles employ a relatively conservative lane-changing strategy in freeway system. In the diversion areas, autonomous vehicles typically initiate lane-changing to curb lanes at lower speeds at a considerable distance from the diversion point, resulting in a decrease in the overall traffic efficiency within the diversion areas. However, lane-changing decision points excessively close to exit ramps can exacerbate the urgency of the lane-changing process, prompting irrationally forced lane-changing and increasing the collision risk. To provide decision-making references for the safe and rapid diverging of autonomous vehicles in freeway diversion areas, this study proposes a minimum diversion decision distance (MDDD) model for autonomous vehicles through microscopic lane-changing trajectory data. Specifically, the lane-changing process was divided into waiting for the acceptable gap stage and executing the lane-changing stage in this model. Subsequently, UAV aerial
Li, ZhenFaLuo, BaoGuoYang, QiChen, XuPan, BingHong
The swift and relentless progression of drone technology has ushered in novel opportunities within the realm of urban logistics, especially for the potential of drones to modify last-mile delivery and improve customer fulfillment through mobile application integration, offering the potential for delivery systems that are both efficient and environmentally sustainable. This development is not just a technological leap but a transformative shift in how goods are moved within urban spaces, potentially reducing traffic congestion and emissions from traditional vehicles. Nevertheless, the safety issues of drone flights in cities are becoming increasingly serious, and the accountability related to drone accidents is not clear, raising concerns in society regarding the use and safety of drones. Therefore, to fully utilize the potential of drones in urban logistics, the incorporation of drones into the urban airspace environment necessitates the establishment of a strong regulatory and policy
Ma, JieYang, JunjieDiao, WeileDu, YilingChen, Weiqi
This work deals with computational investigations of the component performances of Advanced Hexacopters under various maneuverings of the focused mission profiles. The Advanced Hexacopter is a kind of multirotor vehicle that contains more propellers and flexible arms, which makes this multirotor very maneuverable and aerodynamically efficient. This Hexacopter was designed specifically to execute multi-perspective applications along with enhanced payload-carrying capability. This Advanced Hexacopter contains a frame composed of modified arms equipped with coaxial rotors, which servo motors control. By providing specific and simple inputs to the microcontroller, the Hexacopter can autonomously undergo forward and backward maneuverings. The primary objective of this study is to analyze and compare different propeller configurational clearance sets that improve the maneuvering capability of this unmanned aerial vehicle (UAV), specifically emphasizing forward/backward and side maneuvering
Raja, VijayanandhNarayanan, SidharthElangovan, LogeshArumugam, LokeshSourirajan, LaxanaRaji, Arul PrakashKulandaiyappan, Naveen KumarGnanasekaran, Raj KumarMadasamy, Senthil Kumar
The objective of this research is to present a novel variant of an Unmanned Aerial Vehicle (UAV) with an advanced flying wing configuration capable of detecting and rescuing individuals affected by avalanches. This leads to testing of the UAV, to identify if it can operate efficiently at the intended temperature and atmospheric conditions. Typically, UAVs can operate in a broad spectrum of temperatures. Regions prone to avalanches would experience near-cryogenic temperatures. The notion is investigated and tested in this specific scenario. The chosen location is Siachen, where temperatures can become as low as -25 degree Celsius (°C). It has been proven that a thermal camera aids the UAV to detect the distinct body heat signatures of individuals who are trapped under snow. The selection of wing, propeller, and vertical stabilizer airfoils is guided by standard analytical calculations, while the overall model is developed using 3D EXPERIENCE. The computational tests are conducted using
Veeraperumal Senthil Nathan, Janani PriyadharshiniPisharam, Akhila AjithSourirajan, LaxanaBaskar, SundharVinayagam, GopinathStanislaus Arputharaj, BeenaL, NatrayanSakthivel, PradeshRaja, Vijayanandh
This work focuses on the design and multi-parametric analysis of a designed propeller for a Pentacopter unmanned aerial vehicle (UAV). The basic and secondary design inputs, along with performance data like propeller diameter, pitch angle, chord length, and lift coefficient, are established using a standard analytical method. Approximately ten distinct airfoils, specifically NACA 2412, NACA 4109, NACA 4312, NACA 4409, NACA 4415, NACA 5317, NACA 6409, NACA 6412, NACA 23024, and NACA 25012, are evaluated over 13 Reynolds Numbers with the angle of attacks (AOA) of 20, varying from -5 to 15 degrees, for the purpose of detailed propeller design. The lift and drag coefficient values for ten distinct airfoils, utilizing a Reynolds number of 13 and 20 angles of attack, are obtained from the XFOIL software. Three sophisticated airfoils are selected from a pool of ten based on their high Lift-to-Drag (L/D) ratio performance. The selected airfoils with a high L/D ratio are NACA 6409, NACA 4109
Veeraperumal Senthil Nathan, Janani PriyadharshiniArumugam, ManikandanRajendran, MahendranSolaiappan, Senthil KumarKulandaiyappan, Naveen KumarMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Human-wildlife conflicts pose significant challenges to both conservation efforts and community well-being. As these conflicts escalate globally, innovative technologies become imperative for effective and humane management strategies. This paper presents an integrated autonomous drone solution designed to mitigate human-wildlife conflicts by leveraging technologies in drone surveillance and artificial intelligence. The proposed system consists of stationary IR cameras that are setup within the conflict prone areas, which utilizes machine learning to identify the presence of wild animals and to send the corresponding location to a drone docking station. An autonomous drone equipped with high-resolution IR cameras and sensors is deployed from the docking station to the provided location. The drone camera utilizes object detection technology to scan the specified zone to detect the animal and emit animal repelling ultrasonic sound from a device integrated to the drone to achieve non
Sadanandan, VaishnavSadique, AnwarGeorge, Angeo PradeepVinod, VishalRaveendran, Darshan Unni
This study focuses on developing and deploying an Unmanned Aquatic Vehicle (UAV) capable of underwater travel. The primary objectives of this project are to detect the presence of dimethyl sulfide and toluene, as well as to identify any potential oil leakage in underwater pipelines. The UAV has a maximum operating depth of 300 m below the water surface. The design of this UAV is derived from the natural design of Rhinaancylostoma, an underwater kind of fish. The maximum operational setting for this mission is fixed at a depth of approximately 300 m beneath the surface of the sea, and the choice of this species is suitable for fulfilling the objectives of this undertaking. This technology will mitigate the risk associated with human interaction in inspection processes and has the potential to encompass various other resources in the future. The initial design data of the UAV is determined using analytical processes and verified formulas. The selection of the airfoil is done by comparing
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Exploration vehicles on Titan are to be developed with considerations on the atmosphere present, especially the abundance of Nitrogen. This study focuses on identification of optimum materials for the propellers supporting an airship specifically created for Titan exploration. The base airship is designed to accommodate the coaxial propeller. The base of this airship is to be developed with four weather stations for collection of data samples. The stations are installed on inflatable platforms and have storage devices for recording and transmitting data collected by the aerobot. The airship will operate in Titan's atmosphere and atmospheric conditions, focusing on its design and computational analysis of structural effects and fluid dynamics. The Titan aerobot is built with a co-axial 4-blade propeller, horizontal and vertical fins, and a reaction wheel for yaw maneuvers. The co-axial propulsive system is capable of overcoming drag during steady level flight in the Titan atmosphere
Baskar, SundharVinayagam, GopinathPisharam, Akhila AjithGnanasekaran, Raj KumarRaji, Arul PrakashStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
British soldiers have successfully trialed for the first time a game-changing weapon that can take down a swarm of drones using radio waves for less than the cost of a pack of mince pies.
Nowadays, there are many technologies emerging like firefighting robots, quadcopters, and drones which are capable of operating in hazardous disaster scenarios. In recent years, fire emergencies have become an increasingly serious problem, leading to hundreds of deaths, thousands of injuries, and the destruction of property worth millions of dollars. According to the National Crime Records Bureau (NCRB), India recorded approximately 1,218 fire incidents resulting in 1,694 deaths in 2020 alone. Globally, the World Health Organization (WHO) estimates that fires account for around 265,000 deaths each year, with the majority occurring in low- and middle-income countries. The existing fire-extinguishing systems are often inefficient and lack proper testing, causing significant delays in firefighting efforts. These delays become even more critical in situations involving high-rise buildings or bushfires, where reaching the affected areas is particularly challenging. The leading causes of
Karthikeyan, S.Nithish, U.Sanjay, S.Sibiraj, T.Vishnu, J.
Systems Engineering is a method for developing complex products, aiming to improve cost and time estimates and ensure product validation against its requirements. This is crucial to meet customer needs and maintain competitiveness in the market. Systems Engineering activities include requirements, configuration, interface, deadlines, and technical risks management, as well as definition and decomposition of requirements, implementation, integration, and verification and validation testing. The use of digital tools in Systems Engineering activities is called Model-Based Systems Engineering (MBSE). The MBSE approach helps engineers manage system complexity, ensuring project information consistency, facilitating traceability and integration of elements throughout the product lifecycle. Its benefits include improved communication, traceability, information consistency, and complexity management. Major companies like Boeing already benefit from this approach, reducing their product
Azevedo, Marcos PauloLahoz, Carlos Henrique Netto
The purpose of this study is to analyze different airfoils using various tools like X-Foil and Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamic (CFD) analysis (ANSYS Fluent) and compare both the results with wind tunnel experimental data to choose an aerodynamically efficient airfoil, which is suitable for an unmanned aerial vehicle/micro aerial vehicle (UAV/MAV) and its operational domain of Reynolds number. The main objective of this analysis is to identify and give us an understanding of the airfoil that has a higher value of Cl max and minimum possible value of Cd. This article discusses various low Reynolds number airfoils, i.e., for the range of Reynolds number between 50,000 and 200,000, which is mostly used for MAVs. Also, between the range of 100,000 and 200,000 for UAVs, which have displayed considerable performance in the past. The article also presents an effort to understand the phenomenon of laminar separation bubbles.
Roy, IndranilRao, Sameera
Researchers at Caltech took an important step toward using reinforcement learning to adaptively learn how turbulent wind can change over time, and then uses that knowledge to control a UAV based on what it is experiencing in real time. California Institute of Technology, Pasadena, CA In nature, flying animals sense coming changes in their surroundings, including the onset of sudden turbulence, and quickly adjust to stay safe. Engineers who design aircraft would like to give their vehicles the same ability to predict incoming disturbances and respond appropriately. Indeed, disasters such as the fatal Singapore Airlines flight this past May in which more than 100 passengers were injured after the plane encountered severe turbulence, could be avoided if aircraft had such automatic sensing and prediction capabilities combined with mechanisms to stabilize the vehicle. Now a team of researchers from Caltech's Center for Autonomous Systems and Technologies (CAST) and NVIDIA has taken an
Northrop Grumman San Diego, CA jacqueline.rainey@ngc.com
Anduril Industries Orange County, CA Contact@anduril.com
Deliberate RF jamming of drones has become one of the most common battlefield tactics in Ukraine. But what is jamming, how does it work and how can it be countered by unmanned aerial vehicles (UAVs) in the field? Radio frequency (RF) jamming of drones involves deliberate interference with the radio signals used for communication between drones and their operators.
Airbus Marignane, France laurence.petiard@airbus.com
Deliberate RF jamming of drones has become one of the most common battlefield tactics in Ukraine. But what is jamming, how does it work and how can it be countered by unmanned aerial vehicles (UAVs) in the field?
In the context of insufficient international management experience, this study combines the current situation of Chinese aviation and the characteristics of unmanned aircraft (UA) operation, adopts the specific operations risk assessment (SORA) method, and conducts in-depth research on the trial operation risks of UA in urban low-altitude logistics scenarios, conducting effective evaluations and project practices. This study starts from two dimensions of ground risk and air risk, determines the boundaries required for safe operation of UA, and improves the robustness level of UA operation through ground risk mitigation measures and air risk mitigation measures. At the same time, a series of compliance verification methods are provided to meet 24 operational safety objectives (OSO) (including design characteristics, operational limitations, performance standards, safety characteristics, communication requirements, emergency response plans, etc.), ensuring that UA operation does not pose
Li, LiLiu, WeiweiFu, Jinhua
The advent of the low-altitude economy represents a novel economic paradigm that has emerged in recent years in response to technological advancement and an expanding social demand. The low-altitude economy is currently undergoing a period of rapid development, which underscores the importance of ensuring the safety of airfield operations. To enhance operational efficiency, unmanned aerial vehicles (UAVs) can be utilized for the inspection of the surrounding area, runway inspection, environmental monitoring, and other tasks. This paper employs TurMass technology, the TurMass gateway is miniaturised as the communication module of FT24, and the TK8620 development board replaces the LoRa RF module in the ELRS receiver to achieve the communication transmission between the remote control and the receiver. Additionally, a TurMass chip is integrated into the UAV to transmit beacons, while an airfield management aerial vehicle is employed to receive nearby UAV data, thereby preventing
Zhang, XiaoyangChen, Hongming
Items per page:
1 – 50 of 962