Browse Topic: Unmanned aerial vehicles

Items (936)
The accident reconstruction community frequently uses Terrestrial LiDAR (TLS) to capture accurate 3D images of vehicle accident sites. This paper compares the accuracy, workflow, benefits, and challenges of Unmanned Aerial Vehicle (UAV) LiDAR, or Airborne Laser Scanning (ALS), to TLS. Two roadways with features relevant to accident reconstruction were selected for testing. ALS missions were conducted at an altitude of 175 feet and a velocity of 4 miles per hour at both sites, followed by 3D scanning using TLS. Survey control points were established to minimize error during cloud-to- cloud TLS registration and to ensure accurate alignment of ALS and TLS point clouds. After data capture, the ALS point cloud was analyzed against the TLS point cloud. Approximately 80% of ALS points were within 1.8 inches of the nearest TLS point, with 64.8% at the rural site and 59.7% at the suburban site within 1.2 inches. These findings indicate that UAV-based LiDAR can achieve comparable accuracy to TLS
Foltz, StevenTerpstra, TobyClarson, Julia
This study presents a novel reinforcement learning (RL)-based control framework aimed at enhancing the safety and robustness of the quadcopter, with a specific focus on resilience to in-flight one propeller failure. This study addresses the critical need of a robust control strategy for maintaining a desired altitude for the quadcopter to save the hardware and the payload in physical applications. The proposed framework investigates two RL methodologies, dynamic programming (DP) and deep deterministic policy gradient (DDPG), to overcome the challenges posed by the rotor failure mechanism of the quadcopter. DP, a model-based approach, is leveraged for its convergence guarantees, despite high computational demands, whereas DDPG, a model-free technique, facilitates rapid computation but with constraints on solution duration. The research challenge arises from training RL algorithms on large dimension and action domains. With modifications to the existing DP and DDPG algorithms, the
Qureshi, Muzaffar HabibMaqsood, AdnanFayyaz ud Din, Adnan
Headquartered in San Juan, Puerto Rico, Unusual Machines describes itself as a “classic American technology company born from garage tinkerers and hobbyists, focused on serving the emerging drone industry with unique and innovative products.” The company recently launched a new low-cost flight controller for drones, the Riot Brave F7, that achieved “Blue UAS” certification from the Department of Defense's (DoD) Defense Innovation Unit (DIU) in August. The Riot Brave F7 - just $58 - features a STMF722RET6 processor equipped with Bosch accelerometer and barometer, and has 16Mb of built in Blackbox Memory. While the company developed Riot Brave F7 primarily as a low cost flight controller option for FPV drones, there are broader possibilities for it, including military applications.
Most autonomous vehicles employ a relatively conservative lane-changing strategy in freeway system. In the diversion areas, autonomous vehicles typically initiate lane-changing to curb lanes at lower speeds at a considerable distance from the diversion point, resulting in a decrease in the overall traffic efficiency within the diversion areas. However, lane-changing decision points excessively close to exit ramps can exacerbate the urgency of the lane-changing process, prompting irrationally forced lane-changing and increasing the collision risk. To provide decision-making references for the safe and rapid diverging of autonomous vehicles in freeway diversion areas, this study proposes a minimum diversion decision distance (MDDD) model for autonomous vehicles through microscopic lane-changing trajectory data. Specifically, the lane-changing process was divided into waiting for the acceptable gap stage and executing the lane-changing stage in this model. Subsequently, UAV aerial
Li, ZhenFaLuo, BaoGuoYang, QiChen, XuPan, BingHong
The swift and relentless progression of drone technology has ushered in novel opportunities within the realm of urban logistics, especially for the potential of drones to modify last-mile delivery and improve customer fulfillment through mobile application integration, offering the potential for delivery systems that are both efficient and environmentally sustainable. This development is not just a technological leap but a transformative shift in how goods are moved within urban spaces, potentially reducing traffic congestion and emissions from traditional vehicles. Nevertheless, the safety issues of drone flights in cities are becoming increasingly serious, and the accountability related to drone accidents is not clear, raising concerns in society regarding the use and safety of drones. Therefore, to fully utilize the potential of drones in urban logistics, the incorporation of drones into the urban airspace environment necessitates the establishment of a strong regulatory and policy
Ma, JieYang, JunjieDiao, WeileDu, YilingChen, Weiqi
This work deals with computational investigations of the component performances of Advanced Hexacopters under various maneuverings of the focused mission profiles. The Advanced Hexacopter is a kind of multirotor vehicle that contains more propellers and flexible arms, which makes this multirotor very maneuverable and aerodynamically efficient. This Hexacopter was designed specifically to execute multi-perspective applications along with enhanced payload-carrying capability. This Advanced Hexacopter contains a frame composed of modified arms equipped with coaxial rotors, which servo motors control. By providing specific and simple inputs to the microcontroller, the Hexacopter can autonomously undergo forward and backward maneuverings. The primary objective of this study is to analyze and compare different propeller configurational clearance sets that improve the maneuvering capability of this unmanned aerial vehicle (UAV), specifically emphasizing forward/backward and side maneuvering
Raja, VijayanandhNarayanan, SidharthElangovan, LogeshArumugam, LokeshSourirajan, LaxanaRaji, Arul PrakashKulandaiyappan, Naveen KumarGnanasekaran, Raj KumarMadasamy, Senthil Kumar
The objective of this research is to present a novel variant of an Unmanned Aerial Vehicle (UAV) with an advanced flying wing configuration capable of detecting and rescuing individuals affected by avalanches. This leads to testing of the UAV, to identify if it can operate efficiently at the intended temperature and atmospheric conditions. Typically, UAVs can operate in a broad spectrum of temperatures. Regions prone to avalanches would experience near-cryogenic temperatures. The notion is investigated and tested in this specific scenario. The chosen location is Siachen, where temperatures can become as low as -25 degree Celsius (°C). It has been proven that a thermal camera aids the UAV to detect the distinct body heat signatures of individuals who are trapped under snow. The selection of wing, propeller, and vertical stabilizer airfoils is guided by standard analytical calculations, while the overall model is developed using 3D EXPERIENCE. The computational tests are conducted using
Veeraperumal Senthil Nathan, Janani PriyadharshiniPisharam, Akhila AjithSourirajan, LaxanaBaskar, SundharVinayagam, GopinathStanislaus Arputharaj, BeenaL, NatrayanSakthivel, PradeshRaja, Vijayanandh
Exploration vehicles on Titan are to be developed with considerations on the atmosphere present, especially the abundance of Nitrogen. This study focuses on identification of optimum materials for the propellers supporting an airship specifically created for Titan exploration. The base airship is designed to accommodate the coaxial propeller. The base of this airship is to be developed with four weather stations for collection of data samples. The stations are installed on inflatable platforms and have storage devices for recording and transmitting data collected by the aerobot. The airship will operate in Titan's atmosphere and atmospheric conditions, focusing on its design and computational analysis of structural effects and fluid dynamics. The Titan aerobot is built with a co-axial 4-blade propeller, horizontal and vertical fins, and a reaction wheel for yaw maneuvers. The co-axial propulsive system is capable of overcoming drag during steady level flight in the Titan atmosphere
Baskar, SundharVinayagam, GopinathPisharam, Akhila AjithGnanasekaran, Raj KumarRaji, Arul PrakashStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
This work focuses on the design and multi-parametric analysis of a designed propeller for a Pentacopter unmanned aerial vehicle (UAV). The basic and secondary design inputs, along with performance data like propeller diameter, pitch angle, chord length, and lift coefficient, are established using a standard analytical method. Approximately ten distinct airfoils, specifically NACA 2412, NACA 4109, NACA 4312, NACA 4409, NACA 4415, NACA 5317, NACA 6409, NACA 6412, NACA 23024, and NACA 25012, are evaluated over 13 Reynolds Numbers with the angle of attacks (AOA) of 20, varying from -5 to 15 degrees, for the purpose of detailed propeller design. The lift and drag coefficient values for ten distinct airfoils, utilizing a Reynolds number of 13 and 20 angles of attack, are obtained from the XFOIL software. Three sophisticated airfoils are selected from a pool of ten based on their high Lift-to-Drag (L/D) ratio performance. The selected airfoils with a high L/D ratio are NACA 6409, NACA 4109
Veeraperumal Senthil Nathan, Janani PriyadharshiniArumugam, ManikandanRajendran, MahendranSolaiappan, Senthil KumarKulandaiyappan, Naveen KumarMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Human-wildlife conflicts pose significant challenges to both conservation efforts and community well-being. As these conflicts escalate globally, innovative technologies become imperative for effective and humane management strategies. This paper presents an integrated autonomous drone solution designed to mitigate human-wildlife conflicts by leveraging technologies in drone surveillance and artificial intelligence. The proposed system consists of stationary IR cameras that are setup within the conflict prone areas, which utilizes machine learning to identify the presence of wild animals and to send the corresponding location to a drone docking station. An autonomous drone equipped with high-resolution IR cameras and sensors is deployed from the docking station to the provided location. The drone camera utilizes object detection technology to scan the specified zone to detect the animal and emit animal repelling ultrasonic sound from a device integrated to the drone to achieve non
Sadanandan, VaishnavSadique, AnwarGeorge, Angeo PradeepVinod, VishalRaveendran, Darshan Unni
Nowadays, there are many technologies emerging like firefighting robots, quadcopters, and drones which are capable of operating in hazardous disaster scenarios. In recent years, fire emergencies have become an increasingly serious problem, leading to hundreds of deaths, thousands of injuries, and the destruction of property worth millions of dollars. According to the National Crime Records Bureau (NCRB), India recorded approximately 1,218 fire incidents resulting in 1,694 deaths in 2020 alone. Globally, the World Health Organization (WHO) estimates that fires account for around 265,000 deaths each year, with the majority occurring in low- and middle-income countries. The existing fire-extinguishing systems are often inefficient and lack proper testing, causing significant delays in firefighting efforts. These delays become even more critical in situations involving high-rise buildings or bushfires, where reaching the affected areas is particularly challenging. The leading causes of
Karthikeyan, S.Nithish, U.Sanjay, S.Sibiraj, T.Vishnu, J.
Systems Engineering is a method for developing complex products, aiming to improve cost and time estimates and ensure product validation against its requirements. This is crucial to meet customer needs and maintain competitiveness in the market. Systems Engineering activities include requirements, configuration, interface, deadlines, and technical risks management, as well as definition and decomposition of requirements, implementation, integration, and verification and validation testing. The use of digital tools in Systems Engineering activities is called Model-Based Systems Engineering (MBSE). The MBSE approach helps engineers manage system complexity, ensuring project information consistency, facilitating traceability and integration of elements throughout the product lifecycle. Its benefits include improved communication, traceability, information consistency, and complexity management. Major companies like Boeing already benefit from this approach, reducing their product
Azevedo, Marcos PauloLahoz, Carlos Henrique Netto
The purpose of this study is to analyze different airfoils using various tools like X-Foil and Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamic (CFD) analysis (ANSYS Fluent) and compare both the results with wind tunnel experimental data to choose an aerodynamically efficient airfoil, which is suitable for an unmanned aerial vehicle/micro aerial vehicle (UAV/MAV) and its operational domain of Reynolds number. The main objective of this analysis is to identify and give us an understanding of the airfoil that has a higher value of Cl max and minimum possible value of Cd. This article discusses various low Reynolds number airfoils, i.e., for the range of Reynolds number between 50,000 and 200,000, which is mostly used for MAVs. Also, between the range of 100,000 and 200,000 for UAVs, which have displayed considerable performance in the past. The article also presents an effort to understand the phenomenon of laminar separation bubbles.
Roy, IndranilRao, Sameera
Researchers at Caltech took an important step toward using reinforcement learning to adaptively learn how turbulent wind can change over time, and then uses that knowledge to control a UAV based on what it is experiencing in real time. California Institute of Technology, Pasadena, CA In nature, flying animals sense coming changes in their surroundings, including the onset of sudden turbulence, and quickly adjust to stay safe. Engineers who design aircraft would like to give their vehicles the same ability to predict incoming disturbances and respond appropriately. Indeed, disasters such as the fatal Singapore Airlines flight this past May in which more than 100 passengers were injured after the plane encountered severe turbulence, could be avoided if aircraft had such automatic sensing and prediction capabilities combined with mechanisms to stabilize the vehicle. Now a team of researchers from Caltech's Center for Autonomous Systems and Technologies (CAST) and NVIDIA has taken an
Deliberate RF jamming of drones has become one of the most common battlefield tactics in Ukraine. But what is jamming, how does it work and how can it be countered by unmanned aerial vehicles (UAVs) in the field? Radio frequency (RF) jamming of drones involves deliberate interference with the radio signals used for communication between drones and their operators.
Airbus Marignane, France laurence.petiard@airbus.com
Northrop Grumman San Diego, CA jacqueline.rainey@ngc.com
Deliberate RF jamming of drones has become one of the most common battlefield tactics in Ukraine. But what is jamming, how does it work and how can it be countered by unmanned aerial vehicles (UAVs) in the field?
Anduril Industries Orange County, CA Contact@anduril.com
Navigating Unmanned Aerial Vehicles (UAVs) in urban airspace poses significant challenges for fast and efficient path planning due to the environment's complexity and dynamism. However, the existing research on UAV path planning has ignored the speed of algorithmic convergence and the smoothness of the generated path, which are critical for adapting to the dynamic changing of the urban airspace as well as for the safety of ground personnel, and the UAV itself. In this study, we propose an enhanced Ant Colony Optimization (ACO) algorithm that incorporates two heuristic functions: the compass heuristic and the inertia heuristic. These functions guide the ant agents in their movement towards the destination, aiming for faster convergence and smoother trajectories. The algorithm is evaluated using a gray-scale lattice map generated from ground personnel risk data in Suzhou City. The results indicate that the improved ACO path planning algorithm demonstrates both efficiency and quality
Wang, BofanZhao, ZhouyeHu, BoyaLiu, YufanRu, XiaoyuTong, ZiyueJia, Qing
The development of low-altitude economy driven by aircraft has garnered significant attention from both academia and industry. The hexacopter unmanned aerial vehicle (UAV) is an important component of low-altitude aircraft. Although it has not been as widely used as the quadcopter UAV, the greater delivery capacity and enhanced fault tolerance sustain its promising development prospects. However, the trajectory tracking control, a fundamental task of hexacopter UAV, remains challenging if the control algorithm is required to work on the dynamics level with theoretical performance guarantees, since its position control has to be realized by its attitude control. This study proposes a novel trajectory tracking control with prescribed performance for the hexacopter UAV that works on the dynamic model. The proposed approach is established by a dual-loop constraint-following control with the state-transformation technique, where equality and inequality constraints are used to describe the
Wang, NingningLi, XiangYin, Hui
In non-cooperative environments, unmanned aerial vehicles (UAVs) have to land without artificial markers, which is a key step towards achieving full autonomy. However, the existing vision-based schemes have the common problems of poor robustness and generalization, and the LiDAR-based schemes have the disadvantages of low resolution, high power consumption and high weight. In this paper, we propose an UAV landing system equipped with a binocular camera to preform 3D reconstruction and select the safe landing zone. The whole system only consists of a stereo camera, and the innovation of the solution is fusing the stereo matching algorithm and monocular depth estimation(MDE) model to get a robust prediction on the metric depth. The whole landing system consists of a stereo matching module, a monocular depth estimation (MDE) module, a depth fusion module, and a safe landing zone selection module. The stereo matching module uses Semi-Global Matching (SGM) algorithm to calculate the
Zhou, YiBiaoZhang, BiHui
With the rapid advancement of Unmanned Aerial Vehicle (UAV) technology, their assigned missions have become significantly more intricate. Individual UAVs are no longer sufficient to meet these diverse and demanding requirements. There is now a shift towards employing multiple UAVs operating collaboratively to address complex tasks, replacing the reliance on singular units. This study focuses on the complexities of coordinated flight within UAV formations. A dynamic consensus optimal control algorithm is proposed for distributed formations, grounded in optimal control theory. Furthermore, the enhanced control method is validated via simulation on a semi-physical visualization platform, effectively closing the gap between real-world formation requirements and simulation outcomes. The results from these simulations underscore that the proposed method effectively preserves UAV formation integrity and demonstrates exceptional applicability in real-world scenarios.
Li, WeiZhou, HanyunShi, JiekaiCheng, WeinanWang, FangBai, Jie
In the context of insufficient international management experience, this study combines the current situation of Chinese aviation and the characteristics of unmanned aircraft (UA) operation, adopts the specific operations risk assessment (SORA) method, and conducts in-depth research on the trial operation risks of UA in urban low-altitude logistics scenarios, conducting effective evaluations and project practices. This study starts from two dimensions of ground risk and air risk, determines the boundaries required for safe operation of UA, and improves the robustness level of UA operation through ground risk mitigation measures and air risk mitigation measures. At the same time, a series of compliance verification methods are provided to meet 24 operational safety objectives (OSO) (including design characteristics, operational limitations, performance standards, safety characteristics, communication requirements, emergency response plans, etc.), ensuring that UA operation does not pose
Li, LiLiu, WeiweiFu, Jinhua
The advent of the low-altitude economy represents a novel economic paradigm that has emerged in recent years in response to technological advancement and an expanding social demand. The low-altitude economy is currently undergoing a period of rapid development, which underscores the importance of ensuring the safety of airfield operations. To enhance operational efficiency, unmanned aerial vehicles (UAVs) can be utilized for the inspection of the surrounding area, runway inspection, environmental monitoring, and other tasks. This paper employs TurMass technology, the TurMass gateway is miniaturised as the communication module of FT24, and the TK8620 development board replaces the LoRa RF module in the ELRS receiver to achieve the communication transmission between the remote control and the receiver. Additionally, a TurMass chip is integrated into the UAV to transmit beacons, while an airfield management aerial vehicle is employed to receive nearby UAV data, thereby preventing
Zhang, XiaoyangChen, Hongming
Yaw control for aircraft using the rudder faces challenges in resisting fast time-varying uncertainty due to the relatively slower response of the rudder. In hybrid unmanned aerial vehicles equipped with both rudders and rotors, the introduction of powered yaw control offers novel solutions for addressing fast time-varying uncertainty by leveraging the quicker response of rotors compared to traditional rudders. This paper presents a hierarchical yaw control approach for hybrid unmanned aerial vehicles, comprising a nominal control for rudders to achieve the desired yaw tracking and a constrained powered yaw control for rotors to resist fast time-varying uncertainty. Given the constrained amplitude of powered yaw control, it is imperative that the designed auxiliary input guarantees adherence to its constraint. Firstly, a nonlinear control for nominal hybrid unmanned aerial vehicle system is formulated to deal with the nonlinearity model, rendering a modest nominal control for rudders
Dai, JiawenLiu, JiaojiaoYang, YiBai, JieZhang, Zheshuo
With the rapid advancement in unmanned aerial vehicle (UAV) technology, the demand for stable and high-precision electro-optical (EO) pods, such as cameras, lidar sensors, and infrared imaging systems, has significantly increased. However, the inherent vibrations generated by the UAV’s propulsion system and aerodynamic disturbances pose significant challenges to the stability and accuracy of these payloads. To address this issue, this paper presents a study on the application of high-static low-dynamic stiffness (HSLDS) vibration isolation devices in EO payloads mounted on UAVs. The HSLDS system is designed to effectively isolate low-frequency and high-amplitude vibrations while maintaining high static stiffness, ensuring both stability during hovering and precise pointing capabilities. A nonlinear dynamic system model with two degrees of freedom is formulated for an EO pod supported by HSLDS isolators at both ends. The model’s natural frequencies are determined, and approximate
Tian, YishenGuo, GaofengWang, GuangzhaoWei, WanBao, LingcongDong, GuanLi, Liujie
This document provides guidance for ECS design for UA primarily by reference to existing applicable SAE AC-9 documents with indication of how they would apply and how they may need to be adapted for UA. This document provides guidance related to environmental control for onboard equipment, cargo, animals, and passengers. This document cannot provide detail design guidance for all potential types of UA. Limited information is available for ECS requirements for UA that may carry passengers, but it should be expected that the same comfort and safety standards would be applied to UA as prescribed in current civil aviation authority rules and military specifications. Additional requirements unique to UA can be expected for totally autonomous UA operation with no provision for flight or ground crew monitoring and intervention in the event of ECS failures or malfunctions. This document does not pertain to the related ground stations that may be controlling the UA.
AC-9 Aircraft Environmental Systems Committee
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases. Capable of downing dangerous drone swarms with instant effect, at only 10p per shot, the RFDEW is a highly capable and cost-effective alternative to traditional missile-based air defense systems. It will be able to effect targets up to 1 km away, with further development in extending the range ongoing. Its high level of automation also means the system can be operated by a single person.
Carbon-fiber structural batteries are not entirely new, but now Sinonus, a company spun out of Chalmers Technical University in Gothenburg, Sweden, is further developing the technology with carbon fibers that double as battery electrodes. The technology has already been demonstrated in low-power applications, and Sinonus will now develop it for use in a range of larger applications including, first, IoT devices and then drones, computers, electric vehicles and airplanes. By integrating the battery into carbon-fiber structures, Sinonus believes that an EV's weight could be reduced while the driving range could increase by as much as 70%. The carbon-fiber technology used by Sinonus originated at Oxeon, another Chalmers spin-off.
Kendall, John
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases.
Paris, June 18, 1914: Crowds gathered at the “Concours de la Sécurité en Aéroplane” to witness 21-year-old Lawrence Sperry demonstrate his newly invented gyroscopic stabilizer. With his hands in the air, the device flew his Curtiss C-2 flying boat. Only a decade after the Wright brothers’ initial flight, the first n “autopilot” made its public debut. As impressive as this public demonstration was, it was merely a humble, although spectacular moment of foreshadowing. Even today—110 years later—the process of automating aspects of flight has not yet fully concluded, leading to deteriorating insight into the automatic behavior of aircraft systems, and even the waning of human instincts and intuition. Controlling Aircraft—From Humans to Autonomous Systems: Rise of the Machines covers the distancing of humans from their flying machines through more than a century-long process of “assisting” systems introduction, the positive and negative consequences of this process, and mitigation
David, Aharon
The emergence of the flying ad hoc network (FANET) has gained popularity after COVID-19 pandemic. Due to disruptions in ground-based monitoring, aerial monitoring has become the preferred approach. Aerial communication has become essential, with multiple aerial vehicles equipped with sensors forming a FANET in a specific geographical area. These vehicles communicate autonomously in an ad-hoc fashion using hello packets, but the periodic transmission of these packets consumes a significant amount of energy. This type of aerial communication is particularly useful in infrastructure-fewer conditions, and the transition from 4G to 5G infrastructure has further facilitated aerial communication. To address limited flight periodicity of aerial vehicles due to onboard battery constraints, a new deep hello routing, GeNp-ODHR has been proposed to optimize the battery consumption and performance, which indirectly extended the flight time by saving the energy. Through simulation-based testing
Saini, Hemant Kumar
A team of researchers at Delft University of Technology has developed a drone that flies autonomously using neuromorphic image processing and control based on the workings of animal brains.
This article aims to conduct a comprehensive performance analysis of various propeller configurations and motors for uncrewed aerial vehicles. The experimental method is used for this study through the performance analysis of the motors and propellers at various conditions. In this study, the test rig has been manufactured specially to test the propeller and motor configuration as per the standard to obtain the thrust at various supplied voltage. This study proved that the increase in the size of propeller leads to increase in the thrust, as well as it can be used for specific applications of the drone like racing drone. It reveals that the maximum diameter of a propeller is 14 inches, which produces the thrust in the range of 2400 g to 361 g depending on motor capacity compared to the other size of the propellers. The novelty of the work is to analyze the performance of propellers and motors for optimization and application of drones through experimental methods. This method can be
Ajay Vishwath, N.C.Balaji, K.Vaishampayan, VibhavPatil, DeepMehta, ParshvaDonde, Gaurangi
A team of researchers at Delft University of Technology has developed a drone that flies autonomously using neuromorphic image processing and control based on the workings of animal brains.
Unmanned Aerial Vehicles (UAVs) are useful for a multitude of applications in today’s age, covering a wide variety of fields such as defense, environmental science, meteorology, emergency responders, search and rescue operations, entertainment robotics, etc. One such category of UAVs is the lighter-than-air aircraft that provides advantages over the other types of UAVs. Blimps are among the participants of the lighter-than-air category that are expected to offer advantages such as higher endurance and range and safer and more comfortable human-machine interactions, as compared to fixed-wing and rotor-wing UAVs due to their design. This study details the development of a Robot Operating System (ROS)-based control system designed for the autonomous operation of the blimp. The paper explores the integration and implementation of ultrasonic sensors and Inertial Measurement Unit (IMU) technology to enhance collision avoidance capabilities during flight. Furthermore, the research includes an
S, Syam NarayananGangurde, YogeshMarella, HiteshRannee, ThivyaRajalakshmi, P
In the architecture of an Unmanned Aerial Vehicle (UAV), a crucial component responsible for the propulsion system is the electric motor. Over the years, different types of electric motors, including Brushless Direct Current (BLDC), have supported the UAV’s propulsion system in diverse configurations. However, in the context of flux flow, the Radial Flux Permanent Magnet Motor (RFPMM) has been given more priority than the Axial Flux Permanent Magnet Motor (AFPMM) due to its sustainability in design and construction. Nevertheless, the AFPMM boasts higher speed, power density, lower weight, and greater efficiency than the RFPMM, because of its shorter flux path and the absence of end-turn winding. Therefore, this paper focuses to conduct a suitability analysis of an AFPMM as a shaft-connected propeller-mounted motor, with the intention of replacing the RFPMM in UAV applications. The design of the AFPMM, incorporating topologies featuring a one-rotor, one-stator configuration, is
C, CarunaiselvaneKumar, Rajesh
Unmanned Aerial Vehicles (UAVs), or drones, are aerial platforms with diverse applications. Their design is shaped by specific constraints, driving a multidisciplinary, iterative process encompassing aerodynamics, structures, flight mechanics and other domains. This paper describes the design of a fixed-wing UAV tailored to competition requirements. The requirements included maintaining a thrust-to-empty weight ratio of less than 1 and achieving a high payload fraction, calculated as the ratio of payload weight to total UAV weight. A modified sizing approach was introduced, altering the conventional UAV sizing process to enhance the payload fraction. This was achieved by adjusting the design points within the solution space derived from constraint analysis. Furthermore, a novel structural optimization method was applied, utilizing critical points from the V-n diagram as design points, where the primary emphasis was on reducing the airframe weight while ensuring an acceptable level of
G, ChandanaGowda, G ShashankSayeeganesh, AdithyaVannarth, Ram Rohit
Collins Aerospace Arlington, VA 781-522-3000
This SAE Aerospace Information Report (AIR) describes the Architecture Framework for Unmanned Systems (AFUS). AFUS comprises a Conceptual View, a Capabilities View, and an Interoperability View. The Conceptual View provides definitions and background for key terms and concepts used in the unmanned systems domain. The Capabilities View uses terms and concepts from the Conceptual View to describe capabilities of unmanned systems and of other entities in the unmanned systems domain. The Interoperability View provides guidance on how to design and develop systems in a way that supports interoperability.
AS-4JAUS Joint Architecture for Unmanned Systems Committee
Creating a 3-dimensional environment using imagery from small unmanned aerial systems (sUAS, or unmanned aerial vehicles -UAVs, or colloquially, drones) has grown in popularity recently in accident reconstruction. In this process, ground control points are placed at an accident scene and an sUAS is flown over an accident site and a series of overlapping, high resolution images are taken of the site. Those images and ground control points are then loaded onto a computer and processed using photogrammetric software to create a 3-dimensional point cloud or mesh of the site, which then can be used as a tool for recreating an accident scene. Many software packages have been created to perform these tasks, and in this paper, the authors examine RealityCapture, a newer photogrammetric software, to evaluate its accuracy for the use in accident reconstruction. It is the authors’ experience that RealityCapture may at times produce point clouds with less noise that other software packages. To do
Barreiro, EvanCarter, Neal
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles. These components, in conjunction
Lu, DuoHaines, SamJammula, Varun ChandraRath, Prabin KumarYu, HongbinYang, YezhouWishart, Jeffrey
Emergency personnel and first responders have the opportunity to document crash scenes while evidence is still recent. The growth of the drone market and the efficiency of documentation with drones has led to an increasing prevalence of aerial photography for incident sites. These photographs are generally of high resolution and contain valuable information including roadway evidence such as tire marks, gouge marks, debris fields, and vehicle rest positions. Being able to accurately map the captured evidence visible in the photographs is a key process in creating a scaled crash-scene diagram. Image rectification serves as a quick and straightforward method for producing a scaled diagram. This study evaluates the precision of the photo rectification process under diverse roadway geometry conditions and varying camera incidence angles.
Hashemian, AlirezaTerpstra, Toby
With the development of hardware and control theory, the application of quadcopters is constantly expanding. Quadcopters have emerged in many fields, including transportation, exploration, and object grabbing and placement. These application scenarios require accurate, stable, and rapid control, and a suitable dynamic model is one of the prerequisites. At present, many works are related to it, most of which are modeled using the Newton-Euler method. Some works have also adopted other methods, including the Lagrangian and Hamiltonian methods. This article proposes a new method that solves the Hamiltonian equation of a quadcopter expressed in quasi-coordinate. The external forces and motion of the body are expressed in the quasi-coordinate system of the body, and solved through the Hamiltonian equation. This method simplifies operations and improves computational efficiency. Additionally, a single pendulum is attached to the quadcopter to simulate application scenarios. For the
Zhang, HanwenDuan, YupengWu, JinglaiZhang, Yunqing
Items per page:
1 – 50 of 936