Browse Topic: Airships

Items (94)
Pipeline inspection is a crucial aspect of maintaining the integrity, safety, and reliability of the planet’s energy infrastructure. However, due to cost and scale challenges, infrastructure operators struggle to conduct accurate, large-scale inspections. A French startup, HyLight, offers a solution to precisely detect issues on the infrastructure, such as methane leaks on pipelines and defects on power lines at an industrial scale, without emitting greenhouse gases.
Unmanned Aerial Vehicles (UAVs) are useful for a multitude of applications in today’s age, covering a wide variety of fields such as defense, environmental science, meteorology, emergency responders, search and rescue operations, entertainment robotics, etc. One such category of UAVs is the lighter-than-air aircraft that provides advantages over the other types of UAVs. Blimps are among the participants of the lighter-than-air category that are expected to offer advantages such as higher endurance and range and safer and more comfortable human-machine interactions, as compared to fixed-wing and rotor-wing UAVs due to their design. This study details the development of a Robot Operating System (ROS)-based control system designed for the autonomous operation of the blimp. The paper explores the integration and implementation of ultrasonic sensors and Inertial Measurement Unit (IMU) technology to enhance collision avoidance capabilities during flight. Furthermore, the research includes an
S, Syam NarayananGangurde, YogeshMarella, HiteshRannee, ThivyaRajalakshmi, P
This paper presents an accurate analysis of an innovative high altitude platform with an unconventional ellipsoidal shape during the most critical operation. The airship is designed accordingly to the specifications, which have been analyzed in terms of the required CONOPS (Concepts of Operations) which are associated with the proposed High Altitude Pseudo-Satellite (HAPS) technology and special operations and to analyze the operational scenarios. An innovative cruiser feeder system is defined and studied. The CONOPS includes communications relays, support of intelligence, surveillance, target acquisition monitor “mobile targets”, and reconnaissance, including long-range ISTAR missions performed by the feeder, combining satellite vision and HAPS vision for a forest fire, disasters, naval accidents, maritime and ground borders. The paper realizes a multidisciplinary analysis that allows creating the design of the HAPS, referring to both cruiser and feeder in different operative
Trancossi, Michele
CIRA is currently designing a HAPS for Earth Observation and Telecommunications named High Altitude Hybrid Airship. The configurations considered, can generate both aerodynamic and aerostatic forces to balance the weight during the different phases of a mission. The design of a hybrid configuration for stratospheric platforms represents a novelty in itself in the aerospace sector while some hybrid platforms have been proposed only for tropospheric applications. In order to carry out the conceptual design, some design tools have been implemented to rapidly obtain a conceptual layout, which can be used to perform CFD, FEM and stability analysis and, at the same time, to compute the relative platform mass breakdown. The proposed conceptual design process is based on two steps. A first coarse exploration algorithm which, starting from some input parameters, determines the best buoyancy ratio and some overall platform parameters (among others: weight, volume and dimensions) using some semi
Baraniello, Vincenzo RosarioPersechino, GiuseppeBorsa, Roberto
This study investigates the physical phenomena that affect a high-altitude airship in the presence of lifting gas losses from the hull. General atmospheric thermodynamics and basic physical principles are adopted to describe the behavior of an airship with envelope failures that generate buoyant gas dispersion or depressurisation phenomena. Overpressure that could grant to maintain some controllability during a large part of the descent is assessed by mean of the thermodynamic model of the envelope in the presence of gas losses. Optimisation of the inflation parameters is provided and the conditions for avoiding dangerous crashes on the ground and the potential recovery of a damaged vehicle, people and its payload. In particular, the requirements for a slow depressurisation is computed by the equilibrium with the atmosphere and then how can it be possible to sustain controlled navigation are determined. A key factor for security relates directly to the capability of preserving some
Trancossi, MichelePascoa, JoseCannistraro, Giuseppe
While operational airships globally number in the low dozens, interest in buoyant or semi-buoyant platforms continues to arouse imaginations of commercial and military planners and developers alike. The airship-as-advertisement business model is the only model that has proven sustainable on any scale since the crash of the initially successful LZ-128 Hindenburg effectively ended regular passenger and cargo transport by airship, and the 1962 termination of the US Naval airship program terminated regular large-scale surveillance from airships. Efforts in the US and Japan during the 2000's to have a self-sustaining sight-seeing business model using the modern semi-rigid Zeppelin NT both failed. In theory, the buoyant nature of airships provides compelling endurance and cost-per-ton-mile capability which fills a niche arguably not currently occupied by other modes of transportation. The potential endurance capability motivated the US Military to fund two nearly-simultaneous airship
Buerge, Brandon Todd
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles. First, several vehicle images, taken from different points of view, are transformed using a descriptor of salient
Ceruti, AlessandroCuratolo, SimoneBevilacqua, AlessandroMarzocca, Piergiovanni
The flight simulation of airships and hot air balloons usually considers the envelope geometry as a fixed shape, whose volume is eventually reduced by ballonets. However, the dynamic pressure or helium leaks in airships, and the release of air to allow descent in hot air balloons can significantly change the shape of the envelope leading to potential dangerous situations. In fact, in case of semi-rigid and non-rigid airships a reduction in envelope internal pressure can reduce the envelope bending stiffness leading to the loss of the typical axial-symmetric shape. For hot air balloons thing goes even worse since the lost of internal pressure can lead to the collapsing of the balloon shape to a sort of vertically stretched geometry (similar to a torch) which is not able to sustain the attached basket and its payload. These effect should be considered in simulations, however to compute in real time the envelope shape with Finite Element Methods is a complex and demanding task due to the
Ceruti, AlessandroMarzocca, Piergiovanni
The solution of the both synthesis and implementation problems of high-rapid rates control laws is extremely important for the development of automatic control systems of the aircraft. This is due to the high speed of such vehicles. Along with this, it is imperative that control laws provide that system is asymptotically stable, as the basis for the reliability of their controlled motion. Another important objective of the method of synthesis of control laws for aircraft is compulsory compliance with strict limitations on the values of control inputs at the actuation devices. It is equally important that the control laws provides limitations on the state variables of aircraft, such as velocity, acceleration, etc. Pontryagin's maximum principle is aimed at solving such a time-optimal problem with the limited command variable. However, both the mathematical formalism of this principle, and the mathematical formalism of the methods based on this principle don't provide a solution of the
Neydorf, Rudolf
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface. The comparison results indicated that new shape concept possesses much better
Ceruti, AlessandroMarzocca, PiergiovanniVoloshin, Vitaly
This paper presents a structural analysis of an engine chassis for a disc-shaped airship demonstrator. The objective was to verify such design solutions for application in the European Union's MAAT (Multibody Advanced Airship for Transport) project. In many airship designs, the engines are attached to the airship frame, located inside the balloon, in order to allow for thrust vector control. These airships have aerodynamic control surfaces to improve maneuverability. For the demonstrator, three engines are considered, with a non-rigid internal structure for their attachment. The engines are located on a horizontal plane (the symmetry plane of the balloon), with two lateral engines and one in front of the balloon. The chassis installation allows the engines to be attached either directly to the exterior envelope by using Kevlar connections, or to the central structural pipe. This chassis design has a simple construction, compared to typical structures addressed in the literature. The
Madonia, MauroDi Furia, AntonioBonasia, SamanthaVucinic, Dean
This paper introduces a new equipment, which allows autonomous landing and docking of a VTOL aircraft and any mobile system. It has been studied and developed inside the MAAT (Multibody Advanced Airship for Transport) EU FP7 project to control autonomous docking of manned cruiser and feeder airships in movement. After a detailed analysis it has been verified that It could be considered a technological spin off the MAAT project. It defines a new instrumental system for governing relative positioning between a movable target and VTOL air vehicles, such as helicopters, airships and multi-copters. This solution is expected to become a short time to market equipment for helicopters (both manned and unmanned) ensuring autonomous landing ability even in case of low visibility. Infrared emitters allow controlling both position and yaws angle. It is in advanced testing phase after a preliminary successful testing using a quadcopter. Tests has produced autonomous landing on a small platform
Conte, MassimoTrancossi, Michele
The paper describes methods for control of docking of two moving stratospheric airships. One of them (cruiser) implements cruising flight at the defined altitude with defined velocity. The other one (feeder) fulfills the mission of chasing the cruiser with following docking operations. Mathematical model of exact airships are used in the work. Instances of structural and algorithmic implementation are based on position-trajectory controller. Simulation of docking control was accomplished with proposed methods.
Pshikhopov, ViacheslavMedvedev, MikhailKrukhmalev, VictorFedorenko, RomanGurenko, Boris
Airship dimensions define the application of the computer modeling methods under their development and investigation. Herein, the need to simulate the flight environment state - the atmospheric conditions of their traffic route - arises. The atmospheric parameters have both regular and random components, which is due to the nonstationarity of the atmospheric phenomena. Hence, it is essential to define the actual ranges, and the representative values of the atmospheric effects. Weather data are used for the analysis and the airflow performance computation in the operational area. Through their statistical processing, we need to obtain the most informative characteristics of the weather conditions in whole, and of their trends. The investigation has shown that the weather data gathering system is nonperfect. The sampling frequency is irregular and not high, test values in the specific parameters are obtained asynchronously. At this, altitude is the most critical parameter under measuring
Neydorf, RudolfSigida, YouriyKudinov, NikitaPortnova, Elena
Airship designers research application versions of systems with several ballonets for adjustment of airship roll and/or pitch as a whole. This requires effective automatic status management of each separate ballonet. But multi-ballonet system control issue encounters the absence of industrially measurable variables of each separate ballonet status. Thus status control issue of the system becomes uncertain. The fact requires the issue studying and shaping new scientific and technical solutions. This publication represents research results implying that fairly simple implementation and effective result can be achieved by application of fuzzy control concept. Its application is built on generating the representative quantity of fuzzy production rules. They are based on present set evaluation of known parameters and measured variables. This results in fuzzy but meaningful image of ballonet system status and airship as a whole. Thus achieving fairly good control over multi-ballonet system
Neydorf, RudolfNovikov, SergeyKudinov, Nikita
Saturn’s moon Titan is of high interest for in situ study due to its many intriguing features. This moon has a dense atmosphere; rough, icy terrain; and low surface winds that make it the ideal place to send a controlled aerial robotic platform, such as a conceptual Aerobot Airship. An important feature of a self-propelled, lighter-than-air aerial vehicle is that it must be autonomously controlled to navigate and avoid obstacles because of a 2.6-hour communication delay between the Earth and Titan. Developing a dynamic model that can be tuned will enable robust and reliable control of the Aerobot Airship.
Typical lighter-than-air vehicles utilizing a superpressure design such as balloons, aerostats, or blimps, have one or more fittings attached to the gas containment skin that can serve as load attachment points or inflation/vent ports. These fittings are often sealed to the skin with a silicone gasket and a room temperature vulcanizing (RTV) adhesive. This type of seal works very well over the temperature range encountered in the Earth’s atmosphere (–60 to +40 °C). However, balloons designed to operate at Titan or Mars would encounter temperatures much colder than those found on Earth, making this type of seal inadequate.
Added masses computation is a crucial aspect to be considered when the density of a body moving in a fluid is comparable to the density of the fluid displaced: added mass can be defined as the inertia added to a system because an accelerating or decelerating body displaces some volume of neighboring fluid as it moves through it. The motion of vehicles like airships and ships can be addressed only by keeping into account the effect of added masses, while in case of aircrafts and helicopters this contribution is usually neglected. Lighter Than Air flight simulation, unmanned airships flight control system, airships flight dynamics are typical applications in which added masses are fundamental to achieve an effective and realistic modeling. A panel based method using the mesh of an airship external shape is developed to account for the added massed. While the mathematical background of the methodology is described in literature, what is missing is a proper description suitable for
Tuveri, MarcoCeruti, AlessandroPersiani, FrancoMarzocca, Piergiovanni
Scaled models are often used to check the aerodynamic performance of full scale aircraft and airship concepts, which have gone through a conceptual and preliminary design process. Results from these tests can be quite useful to improve the design of unconventional airships whose aerodynamics might be quite different from classical configurations. Once the airship geometry has been defined, testing is required to acquire aerodynamic data necessary to implement the mathematical model of the airship needed by the flight control system to develop full autonomous capabilities. Rapid prototyping has the great potential of playing a beneficial role in unconventional autonomous airship design similarly to the success obtained in the design process of conventional aircrafts. By reducing model cost, build time, difficulty of construction, and maintaining acceptable surface quality and finish, designers have greater ability to analyze several configurations of airships and to change the geometry
Ceruti, AlessandroMarzocca, PiergiovanniStockbridge, Casey
It is possible to define a novel optimization method, which aims to overcome the traditional Multidisciplinary Design Optimization. It aims to improve Constructal design method to optimize complex systems such as vehicles. The proposed method is based on the constructal principle and it is articulated in different stages: 1 preliminary top-down design process to ensure that the full system has one of the best configurations for the specified goals (contour conditions for constructal optimization could be stated ensuring an effective optimization at full-system level). 2 constructal optimization of the elemental components of the system to maximize the system performances; 3 eventually a competitive comparison between different configurations choosing the better one. The definition of an optimized flying vehicle (an airship) has been produced an example of this improved design method with the objective of minimizing the energy consumption during flight. Following this method, this paper
Trancossi, MicheleDumas, AntonioMadonia, Mauro
The flow around the nacelles of high altitude airships is very important in order to assess the inlet conditions and losses associated to their propulsion systems. The aerodynamics prediction of low Re number flows is a problem usually associated to the lack of accuracy of most of the turbulence models in everyday use. Herein we present a laminar kinetic energy transitional model that is then applied on the analysis of the flow around an example of the MAAT airship nacelle. The model is also validated using several well known test cases from the literature. Results indicate the effects of accurate transition prediction in the redesign of the nacelle for improvement in efficiency.
Vizinho, RuiPascoa, Jose C.Silvestre, Miguel
This paper presents a mathematical model of the vertical forces acting on an airship during vertical motion. The main effort is the definition of an airship model, which move only vertically by ballast, and buoyancy effects, with a much reduced energy consumption for take-off and landing operations. It has been considered a disc-shaped airship, which can operate using the open balloon airship architecture defined to operate safely with hydrogen. This architecture does not require internal ballonets, because of the connected increased fire dangers that they create even if vented. Several models of airship based on vertical forces have been presented in literature. They often consider only the US or International Standard Atmosphere models and they neglect effects of weather conditions. The latter are connected with the location and with the season. These environmental and climatic factors have a large influence on behaviors of the airship system, because it is well known that the
Dumas, AntonioMadonia, MauroTrancossi, Michele
This paper investigates the ancient idea of augmenting the thrust produced by a rotating fan by producing a thermal gradient by heating the outflow. Some of the pioneers of aeronautics have originally conceived this idea: the indirect jet (Bleriot Coanda Monoplane, 1910) and the “thermojet” (Caproni-Ciampini CC2, 1942). They were abandoned because of the better performances by traditional jets such as the ones developed in Germany and USA during 2nd World War. Antony Colozza (NASA), one of the modern fathers of high altitude airships, has recently proposed it again to be used on fuel cells powered airplanes and airships. Most fuel cells have a large thermal dispersion at high temperature (about 40%), but it could be possible to use it for heating the propulsive stream of high-speed air produced into ducted fan propulsive units. The actual state of the research is only introductory and aims to verify the feasibility of this energy recovery, which could in future enhance the energy
Trancossi, MichelePascoa, Jose
This paper is devoted to a method of creating of the automated ballonet system for pressure control inside an airship envelope. Along with the study of the effects of the positional control system parameters, the authors develop novel control scheme. It is based on a new hybrid controller, which combines positional approach to forming the output control signal with a contour of continuous correction of input signal, which defines the pressure drop on the surface of the envelope as a function of the flight altitude. This approach allows reducing the effect of self-oscillations of airship envelope internal pressure on the flight altitude. In order to prove the new approach the mathematical model is being obtained. The results of the derivation and simulations of the control system operation are presented in this paper.
Neydorf, RudolfNovikov, SergeyFedorenko, Roman
The European project MAAT (Multi-body Advanced Airship for Transport) is producing the design of a transportation system for transport of people and goods, based on the cruiser feeder concept. This project defined novel airship concepts capable of handling safer than in the past hydrogen as a buoyant gas. In particular, it has explored novel variable shape airship concepts, which presents also intrinsic energetic advantages. It has recently conduced to the definition of an innovative design method based on the constructal principle, which applies to large transport vehicles and allows performing an effective energetic optimization and an effective optimization for the specific mission. While the traditional constructal method performs an optimization with a down-to-top approach, it produces an optimization process in two stages: the first one defines the optimal characteristics of the system understood as a unitary system to achieve the desired performances; the second analyzes the
Dumas, AntonioMadonia, MauroTrancossi, MicheleVucinic, Dean
This paper presents a model of energetic consumption and photovoltaic production for a large airship which acts as feeder connecting the ground with a large cruiser. The analysis of energy needs and productivity allows defining both an ideal sizing and operative mission profiles. The specialised mission of this airship is to ascent and descent. It includes also the connection with the airport buildings on the ground and with the cruiser at high altitude. Photovoltaic production has evaluated in terms of hydrogen and electric propulsion. They have estimated both and a calculation methodology has proposed. The evaluation has supported by CFD evaluations on aerodynamic behaviour of the system at various altitudes.
Dumas, AntonioTrancossi, MicheleMadonia, Mauro
In this paper we consider one of the problems in the development of control system for the feeder for MAAT transportation system. This problem is connected with estimation of inboard energy requirements. Traditionally such estimation is made on the basis of static relations. They allow assessing the power required to move a solid body with a constant air speed. However a contribution from aerodynamic forces and moments can vary depending on a regime of motion (value of linear and angular accelerations, angle of attack, etc). Because of that fact, this work investigates the estimation of the total required inboard energy and contribution of aerodynamic forces and moments to it in specified feeder motion regimes. The method of assessment is based on the feeder model, which is built on the equations of the rigid body. This paper contains general structure of feeder mathematical model, which includes equations of statics, dynamics and control mechanisms. The example of the exact feeder
Pshikhopov, ViacheslavMedvedev, MikhailNeydorf, RudolfKrukhmalev, VictorKostjukov, VladimirGaiduk, AnatoliyVoloshin, Vitaly
Functional and energetic issues of control of feeder-airship of MAAT system are considered in the paper. MAAT (Multibody Advanced Airship for Transport) [1,2] is an environmentally friendly system for transportation of passengers and cargos. It consists of cruiser and a few feeders. Cruiser flies in stratosphere at almost fixed altitude. Feeder acts like an elevator, it delivers passengers and cargos from airport to cruiser and in opposite direction. Paper shows, that wide altitude range feeder flies through, strong and dynamic wind loads at various tropospheric and stratospheric altitudes, makes definition of control strategies and energy requirements for control a nontrivial task. That is why this work pays much attention to assessment and mathematical description of feeder flight environment, existing and potential wind profiles, essentially influencing at feeder flight trajectory. Energy efficiency increase is considered in the paper.
Pshikhopov, ViacheslavKrukhmalev, VictorMedvedev, MikhailNeydorf, Rudolf
This paper explores a novel structural design concept for a demonstrator of a high altitude photovoltaic feeder airship. The presented structural design concept aims to minimize the use of strategic materials in the structure of the airship, but also to maximize the ease of construction of the structure. The proposed design concept and method an effective analysis of historic airship structures considering their efficiency vs. weight and desired performances. By this analysis a novel structural design has been defined to reach the ambitious goal of a lighter and cheaper structure concept which can ensure comparable performances with traditional rigid airships. A discoid shaped airship with a central column has been taken into account. Structural calculations and constructive design has been presented in depth.
Madonia, MauroTrancossi, MicheleCoppola, Agostino
This paper presents the new Hydrogen Fire-safe Airship system that overcomes the limitations present in previous airships designs of that kind, when considering their functioning at advanced operative position. Hydrogen is considered to be more effective than helium because of its low-cost production by hydrolysis, which process is nicely driven only by the photovoltaic energy. This paper presents a novel architectural concept of the buoyant balloon designed to increase the fire related safety, when applying hydrogen as the buoyant gas. The proposed buoyant volume is designed as a multi-balloon structure with a naturally ventilated shape, to ensure that hydrogen cannot reach the dangerous concentration level in the central airship balloon. This concept is expected to be the start of a novel hydrogen airship type, to be much safer than preceding ones. It permits to reduce the traditional economic costs, when compared with helium inflated airships, due to the helium scarcity in the world
Trancossi, MicheleDumas, AntonioMadonia, MauroPascoa, JoseVucinic, Dean
Nautilus S.p.A. and the Polytechnic of Turin, in cooperation with Blue Engineering, have developed a very versatile product, the ELETTRA Twin Flyers [6] (ETF), which consists in a very innovative remotely-piloted airship equipped with high precision sensors and communication devices. This multipurpose platform is particularly suitable for border and maritime surveillance missions and for telecommunication, both in military and civil area. To assess the actual maneuver capabilities of the airship [14], a prototype of reduced size and complexity has been assembled [16]. Before the flight tests a further assessment on the flight simulator is needed, because the first version of the software is tuned on the full scale prototype. Steady state performance and static stability of the demonstrator have been evaluated with CFD analysis. The dynamic stability have been evaluated using CFD as well, because the classical methods to calculate dynamic derivatives, using USAF Datcom or wind tunnel
Gili, PieroLerro, AngeloVazzola, MatteoVisone, Michele
This paper deals with the ground testing of the technological demonstrator of the innovative remotely controlled ETF airship1. The testing activities are intended to validate the flight control system of the ETF, which is based on the thrust vectoring technology and represents one of the major innovations of the ETF design, together with the airship architecture. A research team of the Aeronautical and Space Department of the Polytechnic of Turin, in collaboration with Nautilus, a small Italian private company, has been working since a few years on the ETF (Elettra Twin Flyers). This airship is remotely-piloted, with high maneuverability capabilities and good operative features also in adverse atmospheric conditions2. The Nautilus new concept airship features architecture and appropriate command system, which should enable the vehicle to maneuver in forward, backward and sideward flight and hovering with any heading, both in normal and severe wind conditions. To achieve these
Gili, PieroBattipede, ManuelaVazzola, MatteoCassino, Piero
MAAT project is a large airship project presented to the last European 7 Framework Program Transport including Aeronautics 2011 deadline. MAAT project is an airship based cruiser-feeder transport system. This paper analyzes the criticalities of the project and the way to upfront these problems which have different natures and possible solutions. Most important criticalities are analyzed both on a methodological point of view and on a direct point of view. Enhanced design methodologies are analyzed in depth to analyze problems, upgrade the project design status continuously and to examine different design options and solutions. An innovative design method has been defined to avoid that problems can produce show stoppers and minimize time delays during project definition.
Dumas, AntonioMadonia, MauroGiuliani, IlariaTrancossi, Michele
The MAAT project (Multibody Advanced Airship for Transport) aims to investigate aerial transportation possibility by airship based cruiser-feeder system. MAAT is composed by two modules: The cruiser, named PTAH, (acronym of Photovoltaic Transport Aerial High altitude system); the feeder, named ATEN (Aerial Transport Elevator Network feeder), is a VTOL system (Vertical Take Off and Landing) which ensure the connection between the cruiser and the ground. They can lift up and down by the control of buoyancy force and displace horizontally to join to cruiser. The project aims to: 1 identify and design the most functional cruiser/feeder airship architecture based on a discoid innovative airship able to remain airborne for long periods and to travel great distances; 2 design the best type of propulsion both for cruiser and feeder so they can contribute together to the propulsion of an innovative modular airship; 3 minimize the environmental air transport impacts by annulling the fossil fuels
Dumas, AntonioTrancossi, MicheleMadonia, MauroGiuliani, Ilaria
In this paper a control system design for robotic airship is developed. The nonlinear multilinked mathematic model of airship is considered. The results of aerodynamic analysis, parametric and structure disturbances estimation, nonlinear control algorithms are presented. Airship motion simulator is developed and successfully applied. Airship is implemented on experimental robotic mini-airship.
Pshikhopov, ViacheslavMedvedev, MikhailKostjukov, VladimirFedorenko, RomanGurenko, BorisKrukhmalev, Victor
An affordable technology designed to facilitate extensive global atmospheric aerosol measurements has been developed. This lightweight instrument is compatible with newly developed platforms such as tethered balloons, blimps, kites, and even disposable instruments such as dropsondes.
A winch system provides a method for launch and recovery capabilities for kites and tethered blimps or balloons. Low power consumption is a key objective, as well as low weight for portability. This is accomplished by decoupling the tether-line storage and winding/ unwinding functions, and providing tailored and efficient mechanisms for each. The components of this system include rotational power input devices such as electric motors or other apparatus, line winding/unwinding reel(s), line storage reel(s), and independent drive trains.
The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center.
In a new airship, a Vacua Dirigible, vacuum bags displace air with a vacuum more buoyant than helium or hydrogen dirigibles. New graphite ultrathin nanomembranes made of layered graphene make vacuum bags gastight. An electric swing cycle is applied across nanomembranes to reduce air density on selected outside dirigible surfaces to gracefully control buoyancy. A vacuum bag comprises a gastight nanomembrane film wrapped around a three-dimensional (3D) frame to displace air. At rest, the partial vacuum "vacua" is air buoyant and will remain an airship. Air buoyancy is an instant on or off state controlled by reducing air density on the outside of the dirigible surface by applying electricity to surface electric swing circuits. Complete control of buoyancy, altitude, and orientation, including free fall, is provided by electrically flashing xenon from small voltage inputs within each vacuum bag surface. Batteries can be charged from airborne-generated static electricity to power the
Zornes, David
Items per page:
1 – 50 of 94