Browse Topic: Assembling

Items (5,862)
This study focuses on the technology for establishing design criteria for the piston pin circlip (hereinafter referred to as "circlip"), which is a component that holds the engine piston pin. During the development of high-revving engines, failure of the piston sometimes becomes a problem, and the main factors are fatigue failure of the piston and falling of the piston pin. The falling of the piston pin is caused by the circlip disengaging from the groove by the inertial force due to the vertical motion of the piston. The circlip is compressed to the size of the piston circlip groove and assembled to the piston. Therefore, in order to prevent the circlip from falling out, it is necessary to compress it more and increase the reaction force acting on the groove. However, this measure raises concerns about the deterioration of the ease of assembly of the circlip. Therefore, it is necessary to establish evaluation criteria that prevent the circlip from disengaging and deterioration of its
Ishizuka, AtsushiWatanabe, Naoto
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Standard (AS) provides the essential minimum design, installation, and removal standard for AS5103 plugs and is applicable when specified on engineering drawing, or in procurement documents.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Standard (AS) establishes the requirements for a grooved clamp coupling and flanges suitable for joining intermediate pressure and temperature ducting in aircraft pneumatic systems. The rigid coupling joint assembly, hereafter referred to as “the joint”, shall operate within the temperature range of -65 °F external ambient to +800 °F internal fluid.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
With the rise of prefabricated metro stations in metro construction, the selection of its block type has become a key issue under specific stratigraphic conditions. In this paper, three types of prefabricated metro stations (Type 1, Type 2 and Type 3) are studied in the stratum of a metro station in Shenzhen as an example. Through MIDAS GTS NX, a single-ring stratum-structure model is established and the same calculation step is set to analyse the mechanical response of precast component assembly to the concrete at the bottom of the pit and the bottom slab. In terms of the concrete at the base of the footing, the stress of Type 3 has an advantage but the overall fluctuation is complicated, the stress of Type 2 fluctuates greatly and the stress of some nodes is high, and the change of Type 1 is relatively smooth; in terms of deformation, Type 2 and Type 3 settle symmetrically, and the influence of Type 2 is small. For precast structural base plate, stress on type 3 part of the stage of
Xie, JunJiang, WeiFan, XiaominZheng, PengpengHuang, ZhumingYang, Zhao
How Cummins used modeling and other advanced design software to create its most efficient engines yet. As AI and other deep-learning tools begin to help shape the transportation industry, they also bring improvements to existing technology. Modeling and simulation software has rapidly become a crucial tool for improving the design process of new diesel engines. More than two decades after the first X15 engines rolled off the assembly line, Cummins has applied today's modeling tools to help create the HELM version of the X15. The HELM architecture (which stands for Higher Efficiency, Lower emissions and Multiple fuels) is the company's basis for a global platform capable of meeting all manners of emissions regulations while still serving customers across a wide variety of use cases.
Wolfe, Matt
This specification covers the engineering requirements for producing brazed joints in parts made of steels, iron alloys, nickel alloys, and cobalt alloys using gold-nickel alloy filler metal.
AMS B Finishes Processes and Fluids Committee
This SAE Standard covers complete general and dimensional specifications for refrigeration tube fittings of the flare type specified in Figures 1 to 42 and Tables 1 to 15. These fittings are intended for general use with flared annealed copper tubing in refrigeration applications. Dimensions of single and double 45 degree flares on tubing to be used in conjunction with these fittings are given in Figure 2 and Table 1 of SAE J533. The following general specifications supplement the dimensional data contained in Tables 1 to 15 with respect to all unspecified details.
Air Brake Tubing and Tube Ftg Committee
The scope of this SAE Aerospace Recommended Practice (ARP) is to establish the procedure for creating titles of aerospace tubing and clamp installation documents generated by SAE Subcommittee G-3E.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers the engineering requirements for producing brazed joints in parts made of steels, iron alloys, nickel alloys, and cobalt alloys by use of silver alloy filler metals and the properties of such joints.
AMS B Finishes Processes and Fluids Committee
Bearings are fundamental components in automotive systems, ensuring smooth operation, efficiency, and longevity. They are widely used in various automotive systems such as wheel hubs, transmissions, engines, steering systems etc. Early detection of bearing defects during End-of-Line (EOL) testing and operational phases is crucial for preventive maintenance, thereby preventing system malfunctions. In the era of Industry 4.0, vibrational, accelerometer, and other IoT sensors are actively engaged in capturing performance data and identifying defects. These sensors generate vast amounts of data, enabling the development of advanced data-driven applications and leveraging deep learning models. While deep learning approaches have shown promising results in bearing fault diagnosis, they often require extensive data, complex model architectures, and specialized hardware. This study proposes a novel method leveraging the capabilities of Vision Language Models (VLMs) and Large Language Models
Chandrasekaran, BalajiCury, Rudoniel
The segment manipulator machine, a large custom-built apparatus, is used for assembling and disassembling heavy tooling, specifically carbon fiber forms. This complex yet slow-moving machine had been in service for nineteen years, with many control components becoming obsolete and difficult to replace. The customer engaged Electroimpact to upgrade the machine using the latest state-of-the-art controls, aiming to extend the system's operational life by at least another two decades. The program from the previous control system could not be reused, necessitating a complete overhaul.
Luker, ZacharyDonahue, Michael
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Roller bearings are used in many rotating power transmission systems in the automotive industry. During the assembly process of the power transmission system, some types of roller bearings (e.g., tapered roller bearings) require a compressive preload force. Those bearings' rolling resistance and lifespan strongly depend on the preload set during the installation process. Therefore, accurate preload setting can improve bearing efficiency, increase bearing lifespan, and reduce maintenance costs over the life of the vehicle. A new method for bearing preload measurement has shown potential for high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes
Gruzwalski, DavidMynderse, James
A new method for bearing preload measurement has shown potential for both high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes all appropriate bearing and power transmission system design parameters. During the assembly process, some of the parameters related to the roller positions cannot be controlled. These parameters include the actual position of the first roller compared to the vertical axis, the relative position of the rollers between the bearing rows, and others. This work presents a sensitivity analysis of the effects of those uncontrollable parameters on the analytical model. The sensitivity study determines the percentage change
Gruzwalski, DavidMynderse, James
To investigate the static and dynamic mechanical properties of air springs and their influencing factors, two models were established in this paper to calculate the static and dynamic mechanical properties of air springs, including a simulation model based on the finite element method and a mathematical calculation model based on thermodynamic theory. First, a performance calculation model for rolling lobe air springs with aluminum tubes was established, which considered the thickness of the bellow and the impact of the inflation and assembly process on the state of the bellow. The static and dynamic mechanical properties of air springs were calculated using this model, including static load-bearing capacity and static/dynamic stiffness. The calculation results showed that both the static characteristics of the air spring under isothermal conditions and the dynamic characteristics under adiabatic conditions were able to be calculated accurately. However, the changes in dynamic
Wang, SiruiKang, YingziXia, ZhaoYu, ChaoLi, JianxiangShangguan, Wen-Bin
The final step in manufacturing high-precision parts for internal combustion engines, such as cylinder heads and blocks, is the removal of machining chips from the finished parts. This step is crucial because the machining chips and cutting oil left on the surface after machining can cause quality issues in the downstream engine assembly and affect the cooling system’s performance during engine operation. This chip removal step is especially critical for parts with internal cavities, such as the water jackets in cylinder heads, due to the difficulty of removing chips lodged in the narrow passages of these internal channels. To effectively remove chips from the water jacket, machining chip washing systems typically utilize multiple high-velocity water jets directed into the water jacket, creating flows with substantial kinetic energy to dislodge and evacuate the machining chips. For machining chip washing systems equipped with dozens of water nozzles, optimizing washing efficiency
Jan, JamesTorcellini, SabrinaKhorran, AaronHall, Mark
Vibration qualification tests are indispensable for vehicle manufacturers and suppliers. Carmakers’ specifications are therefore conceived to challenge the mechanical endurance of car components in the face of numerous in-service detrimental phenomena: In automotive industries, components are commonly qualified by means of a test without failure, the goal being to determine whether it will or not "pass" customer requirements. Validation of newly designed components is obtained via bench test and structural simulation. Simulation has gained traction in recent years because it represents the first step of the design validation process. In particular, FEA simulations are powerful to predict the dynamic behavior of physical testing on prototypes, enable engineers to optimize the design and predict the durability. This paper illustrates how FEA simulations were applied to product validation in the pre-serial phase to optimize manufacturing process. In particular, we will focus on the PCB of
Duraipandi, Arumuga PandianLeon, RenanBonato, MarcoRaja, Antony VinothKumar, LalithNiwa, Takehiro
The suspension Kinematics & compliance (K&C) characteristic test bench can simulate the excitation of the road to the wheels under various typical working conditions in a quasi-static manner on the bench, enabling the measurement of the K&C characteristics of the suspension system without knowing the specific suspension structure form, parameters, etc., assisting in the entire design process of the vehicle. In this paper, aiming at various geometric source errors existing in the processing and assembly process of the K&C characteristic test bench, an evaluation method based on the homogeneous transformation matrix is proposed to establish the position error of the center of the end loading disk in the series motion chain. Firstly, the mapping relationship between the position error of the end loading disk in the series mechanism kinematic chain and the assembly error is established by using the homogeneous transformation matrix. Then, the change matrix of the coordinate system from the
Sun, HaihuaDuan, YupengWu, JinglaiZhang, Yunqing
Since the early 1980s, the automotive industry has used hydraulically actuated (servo-hydraulic) test systems to simulate operating speeds and road conditions for testing OEM components and fully assembled vehicles. They have helped unlock vast improvements in the quality, safety, and reliability of the cars and trucks coming off the world’s assembly lines.
Surface roughness is a key factor in different machining processes and plays an important role in ergonomics, assembly process, wear and fatigue life of components. Other factors like functionality, performance and durability of parts are also affected by surface roughness. Although maintaining an optimum surface roughness is a major challenge in many manufacturing industries. Surface roughness during machining depends upon machining parameters such as tool geometry, feed rate, depth of cut, rotational speed, lubrication, tool wear, etc. Tool vibrations during machining also have significant influence in surface roughness. In this work an attempt is made to predict the surface roughness of machined components made by the turning process by using machine learning of tool vibration signals. By varying different machining parameters and keeping other tooling and material properties same, a range of surface roughness values can be obtained. For each condition, corresponding tool vibration
S S, SafeerSadique, AnwarD, Navaneeth
Electric vehicles (EVs) are paving the way for future mobility, with drive motors playing a central role in their efficiency and performance. Motor testing machines are crucial for validating EV motors, yet flaws in testing equipment, such as gear issues, often lead to operational disruptions. This study aims to enhance motor testing by implementing machine learning and vibration signal analysis to detect gear faults early. Using statistical feature extraction and classifiers like Quadratic SVM and Bagged Trees, the collected vibration signals are categorized as normal or faulty under loaded (0.275 kW) and no-load conditions. Performance comparison reveals the Bagged Trees algorithm's superior accuracy of 95.3%. This approach offers an intelligent, preventive maintenance solution, improving the motor test bench’s reliability.
S, RavikumarSyed, ShaulV, MuralidharanD, Pradeep Kumar
Spot welds are integral to automotive body construction, influencing vehicle performance and durability. Spot welding ensures structural integrity by creating strong bonds between metal sheets, crucial for maintaining vehicle safety and performance. It is highly compatible with automation, allowing for streamlined production processes and increased efficiency in automotive assembly lines. The number and distribution of spot welds directly impact the vehicle's ability to withstand various loads and stresses, including impacts, vibrations, and torsion. Manufacturers adhere to strict quality control standards to ensure the integrity of spot welds in automotive production. Monitoring spot weld count and weld quality during manufacturing processes through advanced inspection techniques such as Image processing by YOLOv8 helps identify the number of spots and quality that could compromise safety. Automating quality control processes is paramount, and machine vision offers a promising
Kadam, Shubham NarayanDolas, AniketMishra, Jagdish
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
In the pursuit of carbon emission reduction, hybridization has emerged as a significant trend in powertrain electrification. As a crucial aspect of hybrid powertrain system development, achieving high brake thermal efficiency (BTE) and a wide operating range with high efficiency are essential for hybrid engines to effectively integrate with the hybrid system. When developing dedicated hybrid engines (DHE), several design considerations come into play. First, in order to make efficient use of available resources and enable engine production on the same assembly line as conventional engines, it is crucial to maintain consistency in key design parameters of the cylinder head and block, thus extending the platform-based design approach. Among the key measures to achieve high BTE, cooled exhaust gas recirculation (EGR) has been extensively explored and proven effective in improving efficiency by mitigating knocking and reducing engine cooling heat loss. Fast combustion, acting as a
Xu, ZhengQiu, JieZhang, ZiQingCheng, ChuanhuiZhang, YaJunYang, YangWang, YingzhenLu, YuanZhou, ZhouLi, XiaoYang
In electric vehicle applications, the majority of the traction motors can be categorized as Permanent Magnet (PM) motors due to their outstanding performance. As indicated in the name, there are strong permanent magnets used inside the rotor of the motor, which interacts with the stator and causes strong magnetic pulling force during the assembly process. How to estimate this magnetic pulling force can be critical for manufacturing safety and efficiency. In this paper, a full 3D magnetostatic model has been proposed to calculate the baseline force using a dummy non-slotted cylinder stator and a simplified rotor for less meshing elements. Then, the full 360 deg model is simplified to a half-pole model based on motor symmetry to save the simulation time from 2 days to 2 hours. A rotor position sweep was conducted to find the maximum pulling force position. The result shows that the max pulling force happens when the rotor is 1% overlapping with the stator core. The impact of asymmetric
Gong, ChengChang, LeHe, SongZhang, PengMuir, Michael
In order to realize the series-parallel switching control of hybrid electric vehicle (HEV) with dual-motor hybrid configuration, a method of unpowered interrupt switching based on the coordinated control of three power sources was proposed by analyzing the series-parallel driving mode of the dual-motor hybrid configuration. The series to parallel switching process is divided into three stages: speed regulation stage, clutch combination and power source switching. The distribution control of speed regulating torque is carried out in the speed regulating stage. The speed adjustment torque is preferentially allocated to the power source of the input shaft (engine and P1) to carry out the lifting torque. Due to the high speed adjustment accuracy and fast response of the P1 motor, the input shaft is preferentially allocated to P1 for speed adjustment, that is, the torque intervention of P1. If the speed control torque exceeds the intervention capacity of P1, then it is allocated to the
Jing, JunchaoZhang, JunzhiLiu, YiqiangHuang, WeishanDai, Zhengxing
Side doors are pivotal components of any vehicle, not only for their aesthetic and safety aspects but also due to their direct interaction with customers. Therefore, ensuring good structural performance of side doors is crucial, especially under various loading conditions during vehicle use. Among the vital performance criteria for door design, torsional stiffness plays an important role in ensuring an adequate life cycle of door. This paper focuses on investigating the impact of several door structural parameters on the torsional stiffness of side doors. These parameters include the positioning of the latch, the number of door side hinge mounting points on doors (single or double bolt), and the design of door inner panel with or without Tailor Welded Blank (TWB) construction. The findings of this study reveal that the change in latch position has the most significant influence on torsional stiffness, followed by the removal of TWB from the inner panel, upon implementation of suitable
Goyal, Vinay KumarSelvan, VeeraPandurangan, VenugopalUnadkat, SiddharthAlmeida, Neil Ricardo
The process of assembling the bearing and crimp ring to the steering pinion shaft is intricate. The bearing is pressed into its position via the crimp ring, which is tipped inward and fully fitted into a groove on the pinion shaft. Only when the bearing is pressed to a low surface on the pinion shaft, the caulking force for the crimp ring is achieved. The final caulking distance for the crimp ring confirms the proper bearing position. Simulating this transient fitting process using CAE is a challenging topic. Key factors include controlling applied force, defining contact between bearing and pinion surface, and defining contact between crimp ring and bearing surface from full close to half open transition. The overall CAE process is validated through correlation with testing.
Song, GavinVlademar, MichaelVenugopal, Narayana
The need for eco-friendly vehicle powertrains has increased drastically in recent years. The most critical component of an electric vehicle is the battery pack/cell. The choice of the appropriate cell directly determines the size, performance, range, life, and cost of the vehicle. Lithium-ion batteries with high energy density and higher cycle life play a crucial role in the progress of the electric vehicle. However, the packaging of lithium-ion cells is expected to meet lots of assembly demands to increase their life and improve their functional safety. Due to their low mechanical stability, the lithium-ion cell modules must have external pressure on the cell surface for improved performance. The cells must be stacked in a compressed condition to exert the desired pressure on the cell surface using compression foam/pads. The compression pads can be either packaged between each cell or once in every set of cells based on the cell assembly requirements. This paper describes the need for
Sithick Basha, AbubakkerChalumuru, MadhuSasikumar, K
One of the important aspects to consider at the design stage is the condensation of water vapor inside the lighting system, under specific weather conditions of temperature and humidity, which may compromise the device functionality. Condensation of water vapor is an issue affecting functional and aesthetics of Head Lamp. The current paper analyses the process of water vapor condensation inside an automotive LED head lamp. This paper also discusses the design methodology to avoid condensation under certain conditions. Design methodology includes design considerations for better air movement for thermal management, material selection, ease of moisture exchange, breather or vent selection, Vent placement. Additionally, this paper would also discuss about effective use of simulations tools, test methods and assembly process guidelines to avoid impact due to condensation. This paper would consist of one example with application of above methodology, its test and field results.
Rane, Sandeep BaluPawar, Nishant
Automotive industry is a major contributor to global carbon dioxide (CO2) emissions and waste generation. Not only do vehicles produce emissions during usage, but they also generate emissions during production phase and end of life disposal. There is an urgent need to address sustainability and circularity issues in this sector. This paper explores how circularity and CO2 reduction principles can be applied to design and production of automotive parts, with the aim of reducing the environmental impact of these components throughout their life cycle. Also, this paper highlights the impact of design principles on End-of-Life Management of vehicles. As Design decisions of Component impacts up to 80% of emissions [1], it is important to focus on this phase for major contribution in reduction of emissions. Various factors such as material selection, quantity and weight of materials used in parts, design for durability, aerodynamic characteristics, design strategies, design for recycling
Ali, Rifat FahmidaHarel, SamarthShaikh, TahaChakraborty, Pinka
When deploying robots in an industrial setting, one of the primary goals is performance. In an industrial robot workcell, performance is often measured as cycle time: the time required to complete a set of tasks. Typical tasks include painting, welding, and inspecting. Regardless of the tasks, the goal is to complete them as fast as possible, so that the workcell can begin work on the next set of tasks. A long cycle time for a given cell can cause that cell to become the bottleneck on an assembly line.
When asked about the most dreaded tasks on the manufacturing floor, many teams point to sanding, grinding, or polishing. These unforgiving tasks can be tedious, time-consuming, and hazardous, leading to respiratory illnesses and repetitive motion injuries. In today’s economic climate, finding workers willing to perform these taxing jobs can be challenging. Yet, they are often necessary when assembling metal, composite, or other parts into manufactured products.
A team of researchers from Heidelberg University and Max Planck Institute for Medical Research have created a new technology to assemble matter in 3D. Their concept uses multiple acoustic holograms to generate pressure fields with which solid particles, gel beads, and even biological cells can be printed. These results pave the way for novel 3D cell culture techniques with applications in biomedical engineering.
In an air brake system, compressed air is used as an energy medium for braking applications, ensuring a good seal between the components is critical. The sealing performance of gaskets are significant for the product with joint features as it affects functionality and can cause a breakdown of the entire system; hence, finite element simulation of the sealing performance of gaskets is important for any product development. To simulate fluid interacting with gasket, a fluid-structure interaction (FSI) simulation is necessary by co-simulating a computation fluid dynamics (CFD) and finite element analysis (FEA) solvers to capture complex behavior of seal deformation under dynamic conditions during leakage, but it is a time-consuming process. In this article, the sealing performance of gaskets is studied in detail only till the start of leakage. It is not necessary to simulate the dynamic behavior of the seal beyond leakage to validate the sealing performance; hence, static nonlinear
Dinesh Kumar, J.Vasanth Bharath, S.Hariharan, R.Suresh, S.
NVH (Noise, Vibration and Harshness) of the electric drive axle (EDA) is a key attribute in electric-vehicle development. The NVH attributes of the EDA directly determines the driving comfort and customer feeling of the vehicle. Especially in pure electric working condition, the EDA noise is more perceptible by people without the engine noise masking. This paper investigates the abnormal noise in the vehicle caused by EDA. First, the filtered playback method is used to identify abnormal noise frequency between 330Hz and 430Hz.Adopted modal analysis, MASTA simulation, modulation noise analysis to identify problematic critical parts. The validity of the results is verified using the DOE method by part exchange, and finally locked to the source of gear parameters Rs and Fr. By adjusting the production process of gear and the second shaft, the assembly process error was avoided, and the gear parameter targets are formulated. The verification results of the whole vehicle assembly of small
Lun, WangQingshuang, ChenChengping, ZhongGuo, FengDeng, Xin
This paper investigates the problem of whine in the E-axle (Electric Drive Axle) system during acceleration of a light bus. The problem is identified as motor and reducer whine by the noise spectrum feature analysis method. Under the condition of ensuring motor performance and low cost, the motor whine is solved by optimizing the air tightness and sound insulation of the vehicle. Starting from gear microscopic shaping research, gear manufacturing and assembly process optimization was used to control gear whine. After testing and analysis, the means to effectively solve the E-axle system whine problem. The whine noise is optimized by about 8 dB (A). The results provide key technical support for the smooth production of the vehicle. It has certain guiding significance for the NVH (Noise, Vibration and Harshness) performance design and development of the E-axle system project.
Chengping, ZhongGuo, FengSenhai, LiuQingshuang, ChenPing, XiaoDeng, XinXianzhong, Yu
Items per page:
1 – 50 of 5862