Browse Topic: Forming
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.6).
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) produced with nominal thickness up to 3.000 inches (76.20 mm), inclusive, and having a cross-sectional area of 42 square inches (271 cm2) maximum and a circumscribing circle diameter (circle size) of 15 inches (38 cm) maximum (see 2.4.1 and 8.8).
The present research explores the potential of high-performance thermoplastics, Polymethyl Methacrylate and Polyurethane, to enhance the passive safety of automotive instrument panels. The purpose is to evaluate and compare the passive safety of these two materials through the conduct of the Charpy Impact Test, Tensile Strength Test, and Crush Test —. For this, five samples were prepared in the case of each material via injection moulding, which enabled reliability, and consistency of the findings. As a result, it was found that in the case of the Charpy Impact Test, the average impact resistance varies with PMMA exhibiting a level of 15.08 kJ/m2 as opposed to the value of 12.16 kJ/m2 for PU. The Tensile Strength Test produced the average tensile strength of 50.16 for PMMA and 48.2 for PU, which implied superior structural integrity under tension for the first type of thermoplastic. Finally, the Crush Test showed that PMMA is more resistant to crushes on average than PU with the
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.6).
This specification covers a magnetic nickel-iron alloy in the form of sheet and strip.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing produced with cross-sectional area of 32 square inches (206 cm2) maximum (see 8.6).
This specification covers a magnetically soft nickel-iron alloy in the form of sheet and strip.
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, and tubing 0.040 to 4.499 inches (1.01 to 114.27 mm), inclusive, in nominal diameter or least thickness and with areas up to 32 square inches (206 cm2), inclusive (see 8.6).
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.5).
December is a good time to reflect on the past year - to celebrate successes and consider opportunities for improvement - but it is also an opportune time to look to the future. As I think about the year ahead and appraise the tradeshow landscape that'll provide significant content for this magazine, mobilityengineeringtech.com, our e-newsletters and other multimedia products, none is bigger than Bauma in Munich, Germany, particularly in terms of the global construction and mining vehicle industries. The triennial event will cover an area that's equivalent to 86 soccer fields, according to Stefan Rummel, CEO of Messe München GmbH. Speaking to the press during an October virtual preview of Bauma 2025, which takes place from April 7-13, Rummel said that the number of exhibitors - expected to be about 3,600 - will be closer to the 2019 event versus the post-COVID-19 edition that was pushed back from its usual spring timeslot to the fall of 2022.
Whether for vascular catheters or implantable devices, medical tubing must meet tough standards for flexibility, strength, and biocompatibility. That’s why more manufacturers are turning to thermoplastic polyurethanes (TPUs) that strike the ideal balance between these key properties, making them an excellent choice for high-performance medical tubing. Unlocking the best that TPUs have to offer means optimizing the extrusion process. This article looks at why TPUs are a top pick, the common obstacles in extrusion, and the ways manufacturers can fine-tune their process to get the most out of different grades.
This work aims to define a novel integration of 6 DOF robots with an extrusion-based 3D printing framework that strengthens the possibility of implementing control and simulation of the system in multiple degrees of freedom. Polylactic acid (PLA) is used as an extrusion material for testing, which is a thermoplastic that is biodegradable and is derived from natural lactic acid found in corn, maize, and the like. To execute the proposed framework a virtual working station for the robot was created in RoboDK. RoboDK interprets G-code from the slicing (Slic3r) software. Further analysis and experiments were performed by FANUC 2000ia 165F Industrial Robot. Different tests were performed to check the dimensional accuracy of the parts (rectangle and cylindrical). When the robot operated at 20% of its maximum speed, a bulginess was observed in the cylindrical part, causing the radius to increase from 1 cm to 1.27 cm and resulting in a thickness variation of 0.27 cm at the bulginess location
This specification covers a discontinuously reinforced aluminum alloy (DRA) made by mechanical alloying 2124A aluminum powder and silicon carbide particulate (SiC). It is produced in the form of extruded bar, rod, wire, and shapes with cross section inclusive of 1-inch (25.4-mm) diameter or less (see 8.7).
This specification covers a discontinuously reinforced aluminum alloy (DRA) made by mechanical alloying 2124A aluminum powder and silicon carbide (SiC) particulate. It is produced in the form of extruded bar, rod, wire, and shapes with cross section inclusive of 1-inch (25.4-mm) diameter or less (see 8.7).
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) with a maximum cross-sectional area of 25 square inches (161 cm2), a maximum circle size of 12 inches (305 mm), and a nominal thickness up to 3.250 inches (82.54 mm), inclusive (see 8.6).
Bemis Manufacturing and BASF collaborated to develop a lighter-weight and lower-cost hydraulic tank for compact excavators that was recognized with a lightweighting award traditionally reserved for automotive innovations. Receiving an honorable mention in the Enabling Technology category of this year's Altair Enlighten Awards, the development team leveraged a combination of injection molding and vibration welding techniques to lower costs by approximately 20% and reduce mass by about 5% compared to the traditional roto-molding process. The solution also is more eco-efficient, delivering both environmental savings (reductions in lifecycle CO2 emissions) and reducing lifecycle costs.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing (see 8.6).
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles up to 0.499 inches (12.67 mm) in nominal diameter, or least thickness, and under 10 in2 (65 cm2) in cross-sectional area.
This specification covers an aluminum alloy procured in the form of extruded bars, rods, wire, profiles (shapes), and tubing up to 1.499 inches (38.07 mm), inclusive, in nominal diameter or least thickness (bars, rods, wire, or profiles) or nominal wall thickness (tubing) (see 8.6).
Aitiip is a leading Spanish research and development institute and serves companies in the aeronautics, automation, industrial, and packaging sectors. The institute possesses strong platforms for the characterization of materials and processes and is known as a powerful integrator of technologies, which is constantly on the lookout for the next transformative technology. A year ago, Aitiip implemented an NXE 400 industrial resin 3D printer platform from Nexa3D to explore integrations of additive manufacturing and injection molding. Nexa3D is the Ventura, California-based provider of high-speed industrial printing technologies whose portfolio continues to grow, reflected in its acquisition of Essentium, one of the world's most well-known providers of extrusion 3D printing, earlier this year. Liebherr is one of the world's largest providers of a variety of industrial goods, services and products. Aerospace and transportation systems is one of 13 different product segments supplied by the
Items per page:
50
1 – 50 of 5602