Browse Topic: Joining
Parts in automotive exhaust assembly are joined to each other using welding process. When the exhaust is subjected to dynamic loads, most of these weld joints experience high stresses. Hence it should be ensured that the exhaust assembly is designed to meet the requirements of exhaust durability for the estimated life of the vehicle. We also know that all parts used in manufacturing of exhaust system have inherent variations with respect to sheet metal thickness, dimensions and shape. Some parts like flex coupling and isolators have high variations in their stiffness based on their material and manufacturing processes. This all leads to a big challenge to ensure that the exhaust system meets the durability targets on a vehicle manufactured with all these variations. This works aims to evaluate the statistical spread in weld life of an exhaust with respect to inherent variations of its components. For the purpose of variational analysis, a Design of Experiments (DOE) is done where
The initial powder used for the manufacturing of NdFeB permanent magnets is usually prepared through rapid cooling, either by melt spinning or strip casting. The powders produced by these two methods are suitable for different applications: while melt-spun powder is a good initial material for bonded and hot-deformed magnets, strip-cast powder is normally used for sintered magnets. To investigate the suitability of using strip-cast powder to manufacture hot-deformed magnets, NdFeB powder prepared by strip casting was hot pressed (without particle alignment) and compared with melt-spun powder prepared under the same conditions (700 °C, 45 MPa, 90 min). Although the processing parameters are the same (pressed in the same mold), the magnetic properties of the magnets made from the two powders are significantly different. Surprisingly, the magnet made from the strip-cast powder (after ball milling) shows comparable magnetic properties to those of isotropic magnets, with coercivity (HcJ) of
This specification covers a corrosion- and heat-resistant nickel-iron alloy in the form of welding wire.
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
A novel sintering method of bridging the two mechanically polished and oriented single-crystals together face-to-face in a non- environmental controlled atmosphere to fabricate the bicrystal substrate of NaCl of macroscopic thickness, with a common zone axis and having planarity over large areas, has been developed. Epitaxial [001] bicrystalline thin face-centered cubic (fcc) metal film of surface-reactive metal-containing tilt grain boundary across the interface is first grown in high vacuum directly by flash deposition on initially fabricated [001] oriented bicrystalline substrate of NaCl. The [001] tilt boundary, thus produced, and is examined by electron microscopy to characterize grain boundary morphology and structure. The findings of some preliminary investigations are then presented. A distinct atomic structure is observed for 310 and 210 inclination. Both HAADF-STEM and Diffraction images reveal that such fabricated high-angle grain boundary accommodates minor deviations from
Intermetallic Zn-Mo to steel induction brazing was performed in an induction furnace at 1260 degrees Celsius for 0.8 thousand seconds utilising Ni-Cr-Zn filler metal. Base metal atoms such as zinc, molybdenum, and nickel are stated to diffuse to the contact and aggressively react with the filler metal during brazing. This is backed by microstructural research. The reaction layer near Zn-Mo, which is composed of Ni-Cr-Zn compounds and Ni-based solid solutions; the interface's centre zone, which is composed of Ni-based solid solutions with distributed Ni-Cr eutectic phases; and the NiC reaction layer near the steel. The interface is made up of all of these components. The best values for the induction brazing parameters may be calculated by analysing the association between the brazing parameters and the tensile strength of the joints. The joint has a tensile strength of 348 MPa after being brazed at a temperature of 1260 degrees Celsius for 0.8 thousand seconds.
The development of advanced high-strength steels has become essential in the production of lightweight, safe, and more economical vehicles within the context of the automotive industry. Among the advanced high-strength steels, complex phase steels stand out, characterized by their high formability and high energy absorption and deformation capacity. Laser welding is a technique that applies laser using high energy density as a heat source. It has the advantages that the high welding speed and low heat input compared to other welding methods cause a decrease in deformation, and the narrow width of the weld bead and heat-affected zone allows for the welding of complex parts that would be difficult for other welding methods. Based on a study of a complex phase steel, an analysis was made of the microstructures observed by optical microscopy, the grain boundaries and certain phases contained in this microstructure, as well as the microstructures of each area in the laser welding region
Spot welds are integral to automotive body construction, influencing vehicle performance and durability. Spot welding ensures structural integrity by creating strong bonds between metal sheets, crucial for maintaining vehicle safety and performance. It is highly compatible with automation, allowing for streamlined production processes and increased efficiency in automotive assembly lines. The number and distribution of spot welds directly impact the vehicle's ability to withstand various loads and stresses, including impacts, vibrations, and torsion. Manufacturers adhere to strict quality control standards to ensure the integrity of spot welds in automotive production. Monitoring spot weld count and weld quality during manufacturing processes through advanced inspection techniques such as Image processing by YOLOv8 helps identify the number of spots and quality that could compromise safety. Automating quality control processes is paramount, and machine vision offers a promising
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welded and drawn tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness.
This specification covers an aluminum alloy in the form of flash-welded rings 0.062 to 4.499 inches (1.57 to 114.27 mm), inclusive, in radial thickness with cross-sectional areas up to 32 square inches (206 cm2) (see 8.6).
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
This specification covers aluminum and aluminum alloy foil in the form of laminated sheet (see 8.6).
An industry-first 3D laser-based, computer-vision system can monitor and control the application of adhesive beads as tiny in width as two human hairs. This unique inspection system for electronic assemblies operates at speeds of 400 to 1,000 times per second, considerably quicker and more effective than conventional 2D systems. “Difficulty in precisely dispensing adhesives or sealants, especially in extremely small or complex electronic assemblies, can lead to over-application, under-application, bubbles, or incorrect location of the adhesive bead,” Juergen Dennig, president of Ann Arbor, Michigan-headquartered Coherix, told SAE Media. Improper application of joining material on electronic control units (ECUs) and power control units (PCUs) can result in poor adhesion, material voids and short circuits.
Bemis Manufacturing and BASF collaborated to develop a lighter-weight and lower-cost hydraulic tank for compact excavators that was recognized with a lightweighting award traditionally reserved for automotive innovations. Receiving an honorable mention in the Enabling Technology category of this year's Altair Enlighten Awards, the development team leveraged a combination of injection molding and vibration welding techniques to lower costs by approximately 20% and reduce mass by about 5% compared to the traditional roto-molding process. The solution also is more eco-efficient, delivering both environmental savings (reductions in lifecycle CO2 emissions) and reducing lifecycle costs.
This specification covers a gold-palladium-nickel alloy in the form of wire, rod, sheet, strip, foil, pig, powder, shot, chips, preforms, and a viscous mixture (paste) of the powder in a suitable binder.
This specification covers an aircraft quality, corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings.
The purpose of air conditioning (AC) duct packing is multifaceted, serving to prevent condensation, eliminate rattle noise, and provide thermal insulation. A critical aspect of duct packing is its adhesive quality, which is essential for maintaining the longevity and effectiveness of the packing's functions. Indeed, the challenge of achieving adequate adhesivity on AC ducting parts is significant due to the harsh operating conditions to which these components are subjected. The high temperatures and presence of condensation within the AC system can severely compromise the adhesive's ability to maintain a strong bond. Moreover, the materials used for these parts, such as HDPE, often have low surface energy, which further hinders the formation of a durable adhesive bond. The failure of the adhesive under these conditions can lead to delamination of the duct packing, which can result in customer inconvenience due to rattling noises, potential electrical failures if condensed water
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, wire, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
This specification covers a low-alloy steel in the form of welding wire.
This specification covers a corrosion-resistant steel in the form of laminated sheet.
This specification covers a cobalt-nickel-iron alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
This specification covers a low-alloy steel in the form of welding wire.
Items per page:
50
1 – 50 of 4385