Browse Topic: Interiors, Cabins, and Cockpits
In vehicle design, the H point is a theoretical relative location measured in relation to specific characteristics that determines a group of dimensions to define vehicle interior roominess. Based on theoretical H point automakers concept their vehicle and have to make important decisions on vehicle architectural that could result in a bad product for the future customers and during the early phase of vehicle development, one of the key design attributes to consider is in relation to the interior comfort of the user, so that its design and its components enabling a favorable interaction with the occupant. Vehicle interior roominess is one of the key factors for buyers’ satisfaction with certain features such as the shoulder room, headroom and couple distance, among others, may influence the level of satisfaction of the occupants’ comfort. One of these items refers to the rear chair height (H30-2), which is presented while by the distance of rear H-point to the vehicle floor affecting
The purpose of this SAE Recommended Practice is to establish uniform test procedures for measuring and rating air delivery and cooling capacity of truck and off-road self-propelled work machines used in earth moving, agriculture, and forestry air-conditioner evaporator assemblies. It is the intent to measure only the actual cooling capacity of the evaporator. It is not the intent of this document to rate and compare the performance of the total vehicle air-conditioning system
This Recommended Practice provides a procedure to locate driver seat tracks, establish seat track length, and define the SgRP in Class B vehicles (heavy trucks and buses). Three sets of equations that describe where drivers position horizontally adjustable seats are available for use in Class B vehicles depending on the percentages of males to females in the expected driver population (50:50, 75:25, and 90:10 to 95:5). The equations can also be used as a checking tool to estimate the level of accommodation provided by a given length of horizontally adjustable seat track. These procedures are applicable for both the SAE J826 HPM and the SAE J4002 HPM-II
This SAE Recommended Practice establishes uniform test procedures and performance requirements for engine coolant type heating systems of enclosed truck cabs. The intent is to provide a test that will ensure acceptable comfort for cab occupants. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. There are two options for producing hot coolant in this document. Testing using these two approaches on the same vehicle will not necessarily provide identical results. Many vehicle models are offered with optional engines, and each engine has varying coolant temperatures and flow rates. If the test is being conducted to compare the performance of one heater design to another heater design, then the external coolant source approach (Test A) will yield the most comparable results. If the test is being conducted to validate the heater installation on a specific vehicle model with a specific engine, then using the engine to heat
This SAE Recommended Practice establishes uniform cold weather test procedures and performance requirements for engine coolant type heating systems of bus that are all vehicles designed to transport 10 or more passengers. The intent is to provide a test that will ensure acceptable comfort for bus occupants. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Required test equipment, facilities, and definitions are included. There are two options for producing hot coolant in this recommended practice. Testing using these two approaches on the same vehicle will not necessarily provide identical results. Many vehicle models are offered with optional engines, and each engine has varying coolant temperatures and flow rates. If the test is being conducted to compare the performance of one heater design to another heater design, then the external coolant source approach (Test A) will yield the most comparable results. If the
This SAE Standard applies to dyes intended to be introduced into a mobile air-conditioning system refrigerant circuit for the purpose of allowing the application of ultraviolet leak detection. In order to label any product(s), they shall meet SAE J2297, the certification process as described in SAE J2911 must be followed, and the documentation described in Appendix A shall be submitted to SAE
Head injuries from interior impacts during vehicle accidents are a significant cause of fatalities in India. Data from the National Crime Records Bureau (NCRB) for 2023 reveals that approximately 15% of the total 150,000 road fatalities were due to head impacts on vehicle interiors, resulting in about 22,500 deaths. Thus, head impact protection in a car crash is key during the design of vehicle interiors. IS 15223 and ECE-R21 provide specific guidelines for head impact testing of instrument panels and consoles in vehicles to ensure compliance with safety standards and minimize the risk of head injury during collisions. By systematically addressing each aspect of IS 15223 and ECE- R21 in the design, testing, and documentation phases, manufacturers can ensure that console armrests are optimized for safety. This approach not only helps meet regulatory standards but also enhances overall occupant protection in vehicles during collisions. The objective of this paper is to design a console
This ARP provides design and performance recommendations for emergency exits in the passenger cabin. This ARP does not apply to Crew Emergency Exits
This SAE Aerospace Recommended Practice (ARP) provides guidance for the design and location of cabin crew stations, including emergency equipment installations at or near such stations, to enable the cabin crew to perform effectively in emergency situations, including emergency evacuations. Recommendations regarding design of cabin crew stations apply to all such stations; recommendations regarding location apply to those stations located near or adjacent to floor level exits
Sometimes, I cringe; sometimes, I just listen and wonder. These past few months have given us all a lot to think about in the automotive space, and it's clear now that the coming years will keep the foot down on the accelerator when it comes to the dramatic changes we've experienced this past decade. One thing that stood out to me in various recent conversations is that there's a widening gulf opening between Chinese automakers and the rest of the world. This isn't exactly news, and this column isn't meant to monger any fears. It's just a bit of off-the-cuff reporting that sheds a bit of light on the level of the challenges we face. As you can read in Chris Clonts' excellent report further in this issue about the warning that Voltaiq's CEO gave at The Battery Show this October, the U.S. is in serious danger of falling well behind Chinese competitors in the EV battery race (Michael Robinette tackles similar ground through a tariff lens in this month's Supplier Eye). But that message was
This specification covers a shampoo type carpet cleaner in the form of a liquid
This recommended practice shall apply to all on-highway trucks and truck-tractors equipped with air brake systems and having a GVW rating of 26 000 lb or more
This SAE Aerospace Recommended Practice (ARP) establishes safety recommendations for lavatories in transport category airplanes
This ARP covers three common light sources, incandescent, electroluminescent and light emitting diode that, when NVG filtered, can be used to illuminate NVG compatible aerospace crew stations. It is recognized that many other different light sources can also be used for this purpose. Also see 2.1.1 for other SAE documents that cover particular applications within the crew station environment. This ARP sets forth recommendations for the design of NVG compatible lighting, utilizing these light sources, that will meet the requirements of MIL-L-85762 Lighting, Aircraft, Interior, Night Vision Imaging System (NVIS) Compatible. This also includes the replacement document MIL-STD-3009: Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible. Although this ARP concentrates on lamp light sources for illumination, the information contained within this ARP may be directly applied to incandescent, electroluminescent and light emitting diode information display devices. Regardless of the
ABSTRACT Latencies as small as 170 msec significantly degrade ground vehicle teleoperation performance and latencies greater than a second usually lead to a “move and wait” style of control. TORIS (Teleoperation Of Robots Improvement System) mitigates the effects of latency by providing the operator with a predictive display showing a synthetic latency-corrected view of the robot’s relationship to the local environment and control primitives that remove the operator from the high-frequency parts of the robot control loops. TORIS uses operator joystick inputs to specify relative robot orientations and forward travel distances rather than rotational and translational velocities, with control loops on the robot making the robot achieve the commanded sequence of poses. Because teleoperated ground vehicles vary in sensor suite and on-board computation, TORIS supports multiple predictive display methods. Future work includes providing obstacle detection and avoidance capabilities to support
Summary Combat vehicle designers have made great progress in improving crew survivability against large blast mines and improvised explosive devices. Current vehicles are very resistant to hull failure from large blasts, protecting the crew from overpressure and behind armor debris. However, the crew is still vulnerable to shock injuries arising from the blast and its after-effects. One of these injury modes is spinal compression resulting from the shock loading of the crew seat. This can be ameliorated by installing energy-absorbing seats which reduce the intensity of the spinal loading, while spreading it out over a longer time. The key question associated with energy-absorbing seats has to do with the effect of various factors associated with the design on spinal compression and injury. These include the stiffness and stroking distance of the seat’s energy absorption mechanism, the size of the blast, the vehicle shape and mass, and the weight of the seat occupant. All of these
ABSTRACT The Integrated Bridge currently fielded in the MRAP FoV is a capabilities insertion that provides data integration and visualization services to the vehicle crew. The Integrated Bridge combines displays, data buses, video sensors, switches/routers, radio interfaces, power management components, etc. to provide a unified view as well as a vehicle system control means to its crew members. The Integrated Bridge provides a flexible and modular architecture that can readily be adapted to the variety of Government Furnished Mission Equipment found in the MRAP FoV utilizing developmental hardware and software augmented with VICTORY technology to provide additional standardization and capabilities. This paper describes the continuation and capability extension of the VICTORY Radio Adapter, now called the Integrated Bridge GPIU (General Purpose Interface Unit). Details of the work leading to the fielding of a significantly enhanced version of the GPIU are discussed. GPIU software and
ABSTRACT As U.S. Army leadership continues to invest in novel technological systems to give warfighters a decisive edge for mounted and dismounted operations, the Integrated Visual Augmentation System (IVAS) and other similar systems are in the spotlight. Continuing to put capable systems that integrate fighting, rehearsing, and training operations into the hands of warfighters will be a key delineator for the future force to achieve and maintain overmatch in an all-domain operational environment populated by near-peer threats. The utility and effectiveness of these new systems will depend on the degree to which the capabilities and limitations of humans are considered in context during development and testing. This manuscript will survey how formal and informal Human Systems Integration planning can positively impact system development and will describe a Helmet Mounted Display (HMD) case study
ABSTRACT Currently, fielded ground robotic platforms are controlled by a human operator via constant, direct input from a controller. This approach requires constant attention on the part of the operator, decreasing situational awareness (SA). In scenarios where the robotic asset is non-line-of-sight (non-LOS), the operator must monitor visual feedback, which is typically in the form of a video feed and/or visualization. With the increasing use of personal radios, smart devices/wearable computers, and network connectivity by individual warfighters, the need for an unobtrusive means of robotic control and feedback is becoming more necessary. A proposed intuitive robotic operator control (IROC) involving a heads up display (HUD), instrumented gesture recognition glove, and ground robotic asset is described in this paper. Under the direction of the Marine Corps Warfighting Laboratory (MCWL) Futures Directorate, AnthroTronix, Inc. (ATinc) is implementing the described integration for
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
ABSTRACT Time lags are known to reduce performance in human-in-the-loop control systems. Performance decrements for human-in-the-loop control systems as a result of time lags are generally associated with the operator’s inability to predict the outcome of their control input and are dependent upon the characteristics of the lag (e.g., magnitude and variability). Further, the effects of variable time lags are not well studied or understood, but may exacerbate the effects on human control actions observed with fixed lags. Several studies have demonstrated mechanisms that can help combat the effects of lag including adaptation, mathematical predictors (e.g., filters), and predictive displays. This experiment examined the effects of lag and lag variability on a simulated driving task, as well as a possible mitigation (predictive display) for the effects of lag. Results indicated that lag variability significantly reduced driving performance, and that the predictive display significantly
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
Items per page:
50
1 – 50 of 7043