Browse Topic: Interiors, Cabins, and Cockpits

Items (7,022)
ABSTRACT For millennia the horse was the primary mode of transportation for mounted soldiers. Ingress and egress from a horse’s back is straightforward, space claims are only related to the size of the saddle, and there were no confining walls to restrict what soldiers carried while on horseback. With the rise of the modern mechanized army, vehicle design became more complex. Critical to the effective design of vehicle interiors is an accurate model of the encumbered operator or passenger. Developments in three-dimensional (3d) scanning, computer-aided design (CAD) and other model creation capabilities make it possible to reproduce accurately the underlying human form and to add equipment encumbrances. This paper relates approaches taken in studies where Soldiers or aviators were modeled to define space requirements or reaches. Details of the modeling process, validation, and study results are given. Future research is discussed
Corner, Brian D.Gordon, Claire C.Zehner, GregoryHudson, JeffreyKozycki, Richard
ABSTRACT Time lags are known to reduce performance in human-in-the-loop control systems. Performance decrements for human-in-the-loop control systems as a result of time lags are generally associated with the operator’s inability to predict the outcome of their control input and are dependent upon the characteristics of the lag (e.g., magnitude and variability). Further, the effects of variable time lags are not well studied or understood, but may exacerbate the effects on human control actions observed with fixed lags. Several studies have demonstrated mechanisms that can help combat the effects of lag including adaptation, mathematical predictors (e.g., filters), and predictive displays. This experiment examined the effects of lag and lag variability on a simulated driving task, as well as a possible mitigation (predictive display) for the effects of lag. Results indicated that lag variability significantly reduced driving performance, and that the predictive display significantly
Davis, JamesSmyth, ChristopherMcDowell, Kaleb
ABSTRACT This paper presents developmental and experimental work beyond the initial presentation of the predictive display technology. Developmental work consisted of the addition of features to the predictive display such as image subsampling, camera stabilization, void filling and image overlay graphics. The paper then describes two experiments consisting of twelve subjects each in which the predictive displays were compared to both the zero latency case (baseline) and the unmitigated high-latency cases (worst case). The predictive display was compared using four objective performance and activity measures of mean speed, lateral deviation, heading deviation and steering activity. The predictive display was also assessed using subjective measures of workload and usability. Citation: M.J. Brudnak, “Predictive Displays for High Latency Teleoperation: Extensions and Experiments”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI
Brudnak, Mark
ABSTRACT This paper presents a method to mitigate high latency in the teleoperation of unmanned ground systems through display prediction and state estimation. Specifically, it presents a simulation environment which models both sides of the teleoperation system in the laboratory. The simulation includes a teleoperated vehicle model to represent the dynamics in high fidelity. The sensors and actuators are modeled as well as the communication channel. The latency mitigation approach is implemented in this simulation environment, which consists of a feed-forward vehicle model as a state estimator which drives a predictive display algorithm. These components work together to help the operator receive immediate feedback regarding his/her control actions. The paper contains a technical discussion of the design as well as specific implementation. It concludes with the presentation of some experimental data which demonstrate significant improvement over the unmitigated case
Brudnak, Mark J.
ABSTRACT Military ground vehicles are equipped with Automatic Fire Extinguishing Systems (AFES) to protect against enemy threats causing fuel tank ruptures and resulting fuel fires inside military vehicle crew compartments. The fires must be rapidly extinguished without reflash to ensure Soldier protection from burn and toxicity risks. This summary describes the development of a simulation-based acquisition tool which will complement vehicle testing for the optimization of AFES designs for specific vehicles and address their unique clutter characteristics. The simulation-based acquisition tool using Computational Fluid Dynamics (CFD) techniques was validated for an exploratory test box and demonstrated with the evaluation of two different suppressant nozzle configurations for an MRAP vehicle. The result is a cost-savings tool with a negligible development payback period that optimizes Soldier survivability in a fire situation. This modeling tool is currently being applied to predict
Korivi, Vamshi M.Williams, Bradley A.McCormick, Steven J.Deshmukh, Kshitij
ABSTRACT Over the past several years, the rate of advancements in modern computer hardware and graphics computing capabilities has increased exponentially and provided unprecedented opportunities within the Modeling and Simulation community to increase the visual fidelity and quality in new Image Generators (IGs). As a result, IG vendors are continuously reevaluating the best way to make use of these new performance improvements. Some vendors have chosen to increase the resolution of the environment by displaying higher resolution imagery from disk while other vendors have chosen to increase the number of polygons that are capable of being presented in the scene while maintaining 60Hz. While all of these approaches use the latest hardware technology to improve the quality of the simulated environment in the IG, the authors of this paper have chosen to focus on a different approach; to improve the accuracy and realism of the simulated environment. To accomplish this, the authors have
Kuehne, BobHebert, KennyChladny, Brett
ABSTRACT This paper presents a practical and easy to implement method for tracking the position of tele-operated Unmanned Ground Vehicles (UGVs) inside buildings, where GPS is unavailable. In conventional dead-reckoning systems, which typically use odometry combined with a single-axis gyro or an Inertial Measurement Unit (IMU), heading errors grow without bound. For that reason, tracking the position of tele-operated UGVs for more than a few minutes becomes unfeasible. Our method, called Heuristics-Enhanced Dead-reckoning (HEDR), overcomes this problem by completely eliminating heading errors at steady state in tele-operated missions of unlimited duration. As a result, HEDR allows the plotting of very accurate trajectories on the Operator Console Unit (OCU). When overlaid over an aerial photo of a building, the real-time trajectory display gives the operator crucial information about position and heading of the UGV relative to the building. This feature offers the operator much
Borenstein, JohannBorrell, AdamMiller, RussThomas, David
ABSTRACT The CAMEL program focused on force protection and demonstrated the possibility to protect occupants through higher underbelly blast levels than normally or previously observed. This required a holistic vehicle systems engineering approach to mitigate blast injuries that both optimized existing systems as well as developed new technologies. The result was zero injury to all occupants as assessed by 5th, 50th, and 95th percentile encumbered ATDs during survivability blast testing. Twelve full scale objective-level blast tests were performed on over seventy fully-instrumented ATDs without a single lower-extremity injury. The lower limb protection was provided by an isolated floor system. This system was developed from the ground-up and occupant-out during the CAMEL program. This paper chronicles the CAMEL floor system’s creation, design, testing, and development process
Kwiatkowski, KevinWatson, ChristopherKorson, Chantelle
ABSTRACT Latencies as small as 170 msec significantly degrade ground vehicle teleoperation performance and latencies greater than a second usually lead to a “move and wait” style of control. TORIS (Teleoperation Of Robots Improvement System) mitigates the effects of latency by providing the operator with a predictive display showing a synthetic latency-corrected view of the robot’s relationship to the local environment and control primitives that remove the operator from the high-frequency parts of the robot control loops. TORIS uses operator joystick inputs to specify relative robot orientations and forward travel distances rather than rotational and translational velocities, with control loops on the robot making the robot achieve the commanded sequence of poses. Because teleoperated ground vehicles vary in sensor suite and on-board computation, TORIS supports multiple predictive display methods. Future work includes providing obstacle detection and avoidance capabilities to support
Kluge, Karl C.Lacaze, AlbertoCelle, Zach LaLegowik, SteveMurphy, KarlThomson, Rob
ABSTRACT Through Army SBIR funding, NanoSonic has created and empirically optimized viscoelastic HybridSil polyurethane siloxane seat cushions that provide improved pressure distribution and Multi-Axial Simulation Table (MAST) vibration dampening over currently employed Commercial-Off-The-Shelf (COTS) seat cushions. The foundation of this effort was the synthesis of novel polyurethane siloxane foams and the correlation of their copolymer composition and crosslinking density with vibrational damping, pressure distribution mapping, and mechanical properties. ASTM D 3574 mechanical testing indicates HybridSil seat cushions maintain dimensional stability after extended fatigue testing. H-point testing completed in accordance with FMVSS-202A indicates NanoSonic’s seat cushions afford comparable positional values to the current employed seat cushions and thus have direct integration potential. Citation: V. Baranauskas, H. Hutchinson, G. Litrichin, “High Performance Hybridsil Seat Cushions
Baranauskas, VinceHutchinson, McKenzieLitrichin, Gale
ABSTRACT The inclusion of energy-absorbing (EA) seats in combat vehicles has been shown to greatly reduce the likelihood of upper-body injuries during mine blast events. A drop tower is one of the common low-cost methods of testing an energy-absorbing seat to determine the vehicle acceleration and associated level of blast that it can protect against. However, the lack of a standard drop tower test procedure for mine blast purposes means that different facilities perform tests and analyze and report results in an inconsistent manner. As a consequence, the reported performance of any given seat tested in a drop tower may not accurately reflect the degree to which it would protect a soldier during an actual blast event. This paper describes the nature of the problems associated with current drop tower testing, and proposes a solution to eliminate much of the ambiguity surrounding test results. We will describe proposed test and analysis methods that can lead to a more accurate and
Eridon, JamesCory, Josh
ABSTRACT This paper describes a work in progress on the development of general, Open Architecture multi-resolution software for rapid prototyping and analysis of complex systems using a Co-simulation approach. Although the approach can be used for rapid analysis of a wide class of complex physical systems, the current focus of this work is on the modeling of the engine cooling system in the Ford Escape Hybrid SUV vehicle. The paper discusses two aspects of this work: development of the co-simulation environment, development of models of the cooling system components with focus on the A/C system using the R134a refrigerant. The major component models are based on dimensional reduction of the 3D Navier-Stokes equations. The resulting 1D equations are subsequently partitioned along the axial direction resulting in systems of 0D non-linear ordinary differential equations. The equations are then solved using a very efficient approach using Chebyshev polynomials. We also present preliminary
Malosse, Jean-JacquesPindera, Maciej Z.Sun, YuzhiVosen, Steven R.
Summary Combat vehicle designers have made great progress in improving crew survivability against large blast mines and improvised explosive devices. Current vehicles are very resistant to hull failure from large blasts, protecting the crew from overpressure and behind armor debris. However, the crew is still vulnerable to shock injuries arising from the blast and its after-effects. One of these injury modes is spinal compression resulting from the shock loading of the crew seat. This can be ameliorated by installing energy-absorbing seats which reduce the intensity of the spinal loading, while spreading it out over a longer time. The key question associated with energy-absorbing seats has to do with the effect of various factors associated with the design on spinal compression and injury. These include the stiffness and stroking distance of the seat’s energy absorption mechanism, the size of the blast, the vehicle shape and mass, and the weight of the seat occupant. All of these
Eridon, James
ABSTRACT As U.S. Army leadership continues to invest in novel technological systems to give warfighters a decisive edge for mounted and dismounted operations, the Integrated Visual Augmentation System (IVAS) and other similar systems are in the spotlight. Continuing to put capable systems that integrate fighting, rehearsing, and training operations into the hands of warfighters will be a key delineator for the future force to achieve and maintain overmatch in an all-domain operational environment populated by near-peer threats. The utility and effectiveness of these new systems will depend on the degree to which the capabilities and limitations of humans are considered in context during development and testing. This manuscript will survey how formal and informal Human Systems Integration planning can positively impact system development and will describe a Helmet Mounted Display (HMD) case study
Michelson, StuartRay, Jerry
ABSTRACT This paper focuses on the development of a lightweight, composite floating crew floor designed to withstand the severe loading requirements of an underbody blast. Energy absorbing devices decouple the floor from the surrounding vehicle structure; therefore, in the event of an underbody blast, the impulse is spread out over a longer period of time, thus reducing the loads into the floor where the crew seats are attached. The composite floor development included: characterizing candidate materials for structural and flame/smoke/toxicity characteristics, design optimization of the composite floor geometry, modeling the response of the floor assembly during a simulated underbody blast event, and manufacturing of a physical composite crew floor. Based on this effort, the composite floor was able to meet the structural requirements of the underbody blast event, while reducing weight by more than 55% compared to the baseline aluminum floor. Moreover, due to the significant reduction
Hart, RobertDwyer, BenjaminSmail, AndrewChishti, AmmarErb, DavidLopez-Anido, Roberto
ABSTRACT The successful fielding of occupant protection technologies require understanding their behavior and performance under field-like conditions. To achieve this, the Occupant Protection Laboratory (OPL) at Selfridge Air National Guard Base (SANGB) uses a drop tower, called the Sub-System Drop Tower (SSDT), and a vertical accelerator, called the Crew Compartment Under-Body Blast Simulator (CCUBS). These two systems have the capability to deliver specified acceleration profiles to items, such as blast-mitigating seats under test. To gain confidence that the two systems are producing similar testing conditions for a given system, a series of experiments was designed to determine the existence of a correlation between the two systems. A representative seat and an Anthropomorphic Test Device (ATD) were tested under similar acceleration profiles on both systems. Tests were initially conducted without a payload to determine the testing parameters for each system and to determine the
Foster, Craig DRudek, Matthias
ABSTRACT The AirLift is a novel device that enables rapid stabilized extraction of injured personnel from a ground vehicle. When deployed from its pre-installed position as a seat cover, the AirLift rigidizes for stabilizing the occupant’s spine by pressurizing an inflatable panel. After extraction from the vehicle with the occupant stabilized in the seated position, the AirLift can convert to a backboard so that the occupant can be safely transported in the supine position. The inflatable panel was designed and tested to provide stiffness while also being durable and manufacturable at volume. Pressure mapping tests were also performed to demonstrate that the AirLift did not change seat comfort compared to the standard seat. Citation: A. Purekar, G. Hiemenz, P. Gillis, “AirLift: Enabling Blast Protection and Rapid, Stabilized Vehicle Extraction”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020
Purekar, AshishHiemenz, GregoryGillis, Paula
ABSTRACT Currently, fielded ground robotic platforms are controlled by a human operator via constant, direct input from a controller. This approach requires constant attention on the part of the operator, decreasing situational awareness (SA). In scenarios where the robotic asset is non-line-of-sight (non-LOS), the operator must monitor visual feedback, which is typically in the form of a video feed and/or visualization. With the increasing use of personal radios, smart devices/wearable computers, and network connectivity by individual warfighters, the need for an unobtrusive means of robotic control and feedback is becoming more necessary. A proposed intuitive robotic operator control (IROC) involving a heads up display (HUD), instrumented gesture recognition glove, and ground robotic asset is described in this paper. Under the direction of the Marine Corps Warfighting Laboratory (MCWL) Futures Directorate, AnthroTronix, Inc. (ATinc) is implementing the described integration for
Baraniecki, LisaVice, JackBrown, JonathanNichols, JoshStone, DaveDahn, Dawn
ABSTRACT A comprehensive analysis of data collected during an evaluation of blast energy–attenuation (EA) seats was conducted to review the performance of commercially available and prototype seat assets. This evaluation included twelve models of seats tested at two separate drop severities with three sizes of anthropomorphic test devices (ATDs) to develop test methodologies and assess the appropriateness of using injury assessment reference values (IARVs) for all occupant sizes
Bosch, KellyHarris, KatrinaClark, DavidScherer, RisaMelotik, Joseph
ABSTRACT The Integrated Bridge currently fielded in the MRAP FoV is a capabilities insertion that provides data integration and visualization services to the vehicle crew. The Integrated Bridge combines displays, data buses, video sensors, switches/routers, radio interfaces, power management components, etc. to provide a unified view as well as a vehicle system control means to its crew members. The Integrated Bridge provides a flexible and modular architecture that can readily be adapted to the variety of Government Furnished Mission Equipment found in the MRAP FoV utilizing developmental hardware and software augmented with VICTORY technology to provide additional standardization and capabilities. This paper describes the continuation and capability extension of the VICTORY Radio Adapter, now called the Integrated Bridge GPIU (General Purpose Interface Unit). Details of the work leading to the fielding of a significantly enhanced version of the GPIU are discussed. GPIU software and
Petty, Millard E.Wilson, Chad J.Wong, Michael C.Smith, Michael R.Wright, Ronnie L.
ABSTRACT This paper illustrates the effectiveness of using smart displays to further reduce size, weight, and power (SWaP) in ground vehicles while also providing a path to implementing a network for vehicle C4ISR architectures such as VICTORY. This is done by introducing smart displays and how they can be configured and implemented to take on various functions to provide capabilities such as sensor viewing, vehicle health monitoring, and blue force tracking. The smart display’s interfaces and application software allow it to act as network adapter for legacy end nodes in digital backbone architectures
Stokes, Joshua
ABSTRACT A coupled thermal and computational fluid dynamics (CFD) full-vehicle model of a protected combat ground vehicle was developed and validated against measured test data. The measurement dataset was collected under thermally extreme conditions. Air temperatures were sampled inside the crew compartment of the vehicle under tactical idle operating conditions with space heaters substituted for on-board electronics. The results generated from the coupled thermal model correlated with the measured test data with an average absolute error of less than 2 °F for both simulated-electronics on and off conditions. The model was used to analyze thermal sensitivity to armor, insulation, and other factors affecting the efficiency of the HVAC system
Pryor, JoshDitty, AaronMao, JuliaRynes, PeteSmith, Rob
ABSTRACT Computational models are widely used in the prediction of occupant injury responses and vehicle structural performance of ground vehicles subjected to underbody blasts. Although these physics based computational models incorporate all the material and environment data, the classic models are typically deterministic and do not capture the potential variations in the design, testing and operating parameters. This paper investigates the effect of one such variation in physical tests, namely, variations in the position of occupant setup on the occupant injury responses. To study the effects of occupant position, a series of vertical drop tower tests were performed in a controlled setup. A vertical drop tower test involves an Anthropomorphic Test Device (ATD) dummy positioned on a seat and the setup is dropped on an energy attenuating surface, thus producing a desired shock pulse on the seat structure. The experimental data was analyzed for sensitivity of occupant position and ATD
Ramalingam, JaisankarPrall, Nancy
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
Roy, Monica V.
ABSTRACT Maintenance of local security is essential for the lethality and survivability in modern urban conflicts. Among solutions the Army is developing is an indirect-vision display (IVD) based sensor system supporting full-spectrum, 360°local area awareness. Unfortunately, such display solutions only address part of the challenge, with remaining issues spawned by the properties of human perceptual-cognitive function. The current study examined the influence of threat properties (e.g. threat type, distance, etc.) on detection performance while participants conducted a patrol through a simulated urban area. Participants scanned a virtual environment comprised of static and dynamic entities and reported those that were deemed potential threats. Results showed that the most influential variables were the characteristics of the targets; threats that appeared far away, behind the vehicle, and for short periods of time were most likely missed. Thus, if an IVD system is to be effective, it
Metcalfe, Jason S.Cosenzo, Keryl A.Johnson, TonyBrumm, BradleyManteuffel, ChristopherEvans, A. WilliamTierney, Terrance
ABSTRACT Based on the foundation of thermal management system developed by Rocky Research and working closely with TARDEC personnel, this paper addresses design, development, and testing of two delivered environmental control prototypes to TARDEC. The delivered prototypes are electrically driven vapor compression systems enhanced with Rocky Research vector drive for speed control, use of Pulsing Thermal Expansion Valve (PTXV) for precise refrigerant control, and power electronic package capable of running efficiently from both AC and DC power sources seamlessly. These prototypes were fully tested at different ambient temperature conditions at Rocky Research environmental chamber and their performance were logged and documented. The cooling capacity was measured to be in range of 6,000 to 12,000 Btu/hr and the Coefficient of Performance (COP) was measured to be above 1.5 at high ambient temperature conditions. This reflects close to 50% improvement in efficiency, when compared to
Khalili, KavehSpangler, ChrisSchultz, Andrew
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
Roy, Monica V.
ABSTRACT Increasing power requirements along with weight and space constrains requires implementation of more intelligent thermal management systems. The design and development of such systems can only be possible with a thorough understanding of component and system level thermal loads. The present work implements 1-D and 3-D unsteady CFD based simulation tools in vehicle design process. Both under-the-hood cooling and HVAC systems are simulated in various operating conditions on a HPC Computer Cluster. System variables are optimized with gradient based BCSLIB and SciPy optimization libraries. The simulation results are compared and validated with experimental tests
Bayraktar, Ilhan
ABSTRACT Over the last several years all branches of the United States military have experienced an increased number of orthopedic and internal injuries to knees lower back, neck, and digestive system. Additionally the level of severity has also been increasing. Primary cause factors contributing to the overall increase in injuries to US military personnel include the increase in overall individual loads being carried by the individual soldier which at times can approach 150 pounds, higher operations tempo which results in greater exposure to higher levels of impact forces and for a greater duration. The greater impact forces are a result of the poor design of the current bench deployed on United States tactical vehicles, and the brutal nature of the third world transportation networks in Afghanistan and Iraq. This paper documents the engineering approach utilized by AOM Engineering Solutions to achieve the following primary design objectives; improved ergonomic design for injury
Micheli, JohnDonovan, LTC Ken
This study compared modern vehicle and booster geometries with relevant child anthropometries. Vehicle geometries (seat length, seat pan height, shoulder belt outlet height, and roof height) were obtained for 275 center and outboard rear seating positions of US vehicles (MY 2009–2022). Measurements of 85 US boosters (pan height and pan length) and anthropometries of 80 US children between 4–14yo (seated height, thigh length, leg length, and seated shoulder height) were also collected. Comparisons were made between vehicles, boosters, and child anthropometries. Average vehicle seat lengths exceeded child thigh lengths (+9.5cm). Only 16.4% of seating positions had seat lengths less than the child thigh length mean+1SD. Even for children at least 145cm, only 18.8% had thigh lengths greater than the average vehicle seat length. Child thigh lengths were more comparable with average booster seat pan lengths for all multi-mode and high-back designs (-2.0cm) and low-back boosters (+3.1cm). The
Baker, Gretchen H.Connell, Rosalie R.Rhodes, Carrie A.Mansfield, Julie A.
This SAE Recommended Practice describes the test procedures for conducting free-motion headform testing of heavy truck cab interior surfaces and components. A description of the test setup, instrumentation, impact configuration, target locations, and data reduction is included
Truck Crashworthiness Committee
The parametric variation study will be very useful for understanding the design performance of any product based on the input parameters. This type of case study will be done using Design of experiments and generate several design points. Conventionally DoE solver will be working with geometry variation with CAD interface, meshing with appropriate tool then solver, finally with post processing. If a solver itself has workflow of change the geometry variation with mesh deflection method and automated post processing, then no need of geometry variation and meshing will lead to lot of time reduction in doing parametric study. Here HVAC parametric study used to show the performance of solver and accuracy of results generated. This approach can be used to optimize the design using parametric variation. This paper will show how to move Horizontal and vertical vanes using mesh morphing and what is the reduction in timeline in new product development. Here, Ansys Fluent solver is used to
Palanisamy, Vadivel
In the context of Battery Electric Vehicles (BEVs), airborne noise from Heating, Ventilation and Air Conditioning (HVAC) ducts becomes a prominent concern in the view of passenger comfort. The automotive industry traditionally leverages Computational Fluid Dynamic (CFD) simulation to refine HVAC duct design and physical testing to validate acoustic performance. Optimization of the duct geometry using CFD simulation is a time-consuming process as various design configurations of the duct have to be studied for best acoustic performance. To address this issue effectively, the proposed a novel methodology uses Gaussian Process Regression (GPR) to minimize duct noise. Present solution demonstrates the power of machine learning (ML) algorithms in selecting the optimal duct configuration to minimize noise. Utilizing both real test data and CFD results, GPR achieves remarkable accuracy in design validation, especially for HVAC air ducts. The adoption of GPR-based ML algorithms significantly
Althi, Tirupathi RaoManuel, NaveenK, Manu
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) provides information on air quality and some of the factors affecting the perception of cabin air quality in commercial aircraft cabin air. Also a typical safety analysis process utilizing a Functional Hazard Assessment approach is discussed
AC-9 Aircraft Environmental Systems Committee
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms
AC-9 Aircraft Environmental Systems Committee
This Aerospace Information Report (AIR) outlines the design considerations and criteria for the control of water carryover from the environmental control system (ECS) with respect to causes and indicated corrective or preventative action. In addition, condensation on structure will be reviewed with possible preventative action described
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749
AC-9 Aircraft Environmental Systems Committee
From televisions to smartphones, organic light-emitting diodes (OLEDs) are finding their way into many everyday devices. For use in displays, blue OLEDs are also required to supplement the primary colors — red and green. Especially in blue OLEDs, impurities give rise to strong electrical losses, which could be partly circumvented by using highly complex and expensive device layouts
This SAE Recommended Practice is intended for stakeholders of the automotive industry that are conducting emission testing on materials, parts, or components used in automotive interiors. Testing methods may specifically define the handling and packaging conditions for the material to be analyzed. In these cases, follow the method as closely as possible. Use this document as a guide where the protocol for handling and packaging the samples between production and testing may be undefined or ambiguous
Volatile Organic Compounds
Energy efficiency in both internal combustion engine (ICE) and electric vehicles (EV) is a strategic advantage of automotive companies. It provides a better user experience that emanates amongst others from the reduction in operation expenses, particularly critical for fleets, and the increase in range. This is especially important in EVs where customers may experience range anxiety. The energetical impact of using the air conditioning system in vehicles is not negligible with power consumptions in the range of kilowatts, even with a stopped vehicle. This becomes particularly important in areas with high temperature and humidity levels where the usage of the air conditioning systems becomes safety factor. In such areas, drivers are effectively forced to use the air conditioning system continuously. Hence, the air conditioning system becomes an ideal choice to deploy control strategies for optimized energy usage. In this paper, we propose and implement a control strategy that allows a
Jaybhay, SambhajiKapoor, SangeetKulkarni, Shridhar DilipraoPalacio Torralba, JavierLocks, Olaf
In automotive air conditioning systems, compressor is used to convert low pressure low temperature refrigerant into high pressure high temperature refrigerant. Various types of compressors like swash plate, rotary vane, scroll etc. are widely used in the automotive industry for air conditioning applications. In rotary vane compressors, thermal protector is used as a safety device, designed to prevent the compressor from overheating during refrigerant compression process. When the discharge temperature exceeds the preset limit of thermal protector, the thermal protector will activate and stop the electrical supply to compressor clutch to stop the compressor operation thereby preventing potential damage to air conditioning system, engine, and other nearby parts of the vehicle. This technical paper explores the various real-world scenarios for a hot country like India, which may result into higher discharge temperatures of compressor resulting into activation of thermal protector. The
Mittal, SachinSaha, AniketKumar, MukeshUmbarkar, Shriganesh
Electric Vehicles (EVs) have rapidly grown as a means for clean mobility, as they zero down tail pipe emission of greenhouse gases. Additionally, greenhouse gases such as Hydro-Fluoro-Carbon (HFCs) based refrigerants used in Mobile Air-Conditioning (MAC) are under global scrutiny for their high Global Warming Potential (GWP). To prevent earth environment to pass the climate tipping point that will be irreversible within human capacity, actions such as rapid phase down of high GWP rated HFCs under Kigali Amendment to Montreal Protocol are enacted. India being amongst signatory nations is now working to fast track phase-down use of high GWP refrigerant and transit to low GWP refrigerant options. Nearly half of national HFCs use and emissions are for manufacture and service MAC. Vehicle OEMs supplying to markets in developing countries (e.g. European nation and non-Article 5 Parties) have already phased out HFC-134a (GWP=1400) through alternate refrigerant solutions. The work presented
Maurya, AnuragVenu, SantoshKapoor, SangeetKhan, Farhan
The proposed smart, efficient eco-cooling strategy leverages the AC system's efficiency sensitivity to the vehicle speed and the thermal storage of the cabin to coordinate the AC operation with the vehicle speed profile by actively shifting the AC thermal load toward the more efficient region at higher vehicle speeds. An investigation is now being conducted on vehicle cabin climate control systems to lower energy consumption and enhance battery electric vehicle range when in pure electric mode. OEMs of electric vehicles are always searching for novel concepts that will extend the driving range of their vehicles. Basically, an air conditioning system needs high-voltage power from high-voltage battery packs to keep the interior of the cabin in a comfortable temperature range during the summer. In order to meet these demands, the AC system in electric vehicles becomes an additional power consumer. This smart ECO AC system consists of the importance and impact of the various components of
Agalawe, KIRAN R.Nagarhalli, Prasanna VHAJGUDE, NIKHIL
Electric Vehicles and Battery-Fuel_Cell hybrid vehicles are increasingly becoming popular in the market, especially in the commercial vehicle segment. Range estimation and control is of paramount importance as it is the main cause of anxiety among the vehicle owners. This paper discusses application of Reinforcement Learning (RL) to achieve range control. In RL, the learning agent choses actions dependent on the state of the environment and gets a reward in return. Ultimately the agent will learn the policy of choosing the actions for each state such that his long-term reward is maximized. The technique of RL has been applied for various scenarios where in a look up table (between the states of a system and actions to be taken) needs to be developed for optimal performance. In this paper, we use RL to manipulate other energy sources and sinks like Fuel Cell and HVAC (in addition to the battery which is the main energy source) for range control, and thereby achieve the optimal
Changavar, Ganesh
India features diverse climatic zones, spanning from tropical in south to alpine in north. Since most of the regions are hot, vehicle cabin cooling analysis dominates over heating analysis, creating a notable technology gap that exists in cabin heating. Nonetheless, in colder regions of India and Europe, maintaining optimal cabin heating is crucial for human comfort. Furthermore, in climates prone to mist and frost formation, ensuring the accuracy and effectiveness of cabin heating mechanisms becomes crucial, as it directly correlates with safety considerations that comes prior to mere comfort requirements. To reduce the technology gap and physical testing in cold climatic conditions this work is proposed, which will enable us to predict cabin heating performance of vehicle on highway running as well as in stationary condition for Electric Vehicles (EV) and Internal Combustion Engine Vehicles (ICEV) in 1D Computer Aided Engineering (CAE) software. A detailed Transient Cabin Heating
Soni, RahulShah, GeetKulkarni, ShridharM, ChandruVangala, Sai KrishnaJaybhay, SambhajiNayakawadi, Uttam
Over the past few decades, there has been a notable increase in stakeholder’s attention on Earth's climate. The automotive industry, being a major contributor to this phenomenon, has been endeavoring to mitigate its impact through various measures. These efforts include reducing emissions in existing internal combustion engine (ICE) vehicles and promoting electric vehicles (EVs) as a feasible alternative for consumers. Despite these initiatives, there remains a persistent challenge in improving the fuel economy and driving range of vehicles. India, located along the Tropic of Cancer, experiences both tropical and subtropical climates. As a result, a substantial portion of the total heat absorbed is from solar radiation. The higher heat load necessitates extensive use of air conditioning (AC) systems, which significantly contributes to the overall power consumption of vehicles. Various measures are being implemented to mitigate this heat load and enhance the efficiency of AC operations
Kumar, SunnyVenu, SantoshRaj, ShivamKandekar, Ambadas
Items per page:
1 – 50 of 7022