Browse Topic: Interiors, Cabins, and Cockpits
This study evaluates the effectiveness of two hybrid computational aeroacoustic methods—Lighthill wave model and perturbed convective wave model—in simulating HVAC duct noise in the automotive industry. Using component-level acoustic testing of a Ford HVAC duct, simulations were conducted at varying airflow rates to assess the accuracy of both models in predicting duct noise. The Lighthill wave model, suitable for noise analysis in regions outside turbulent flow areas, showed a good correlation with experimental data, especially in the frequency range of 100 Hz–5000 Hz, but sometimes struggled with pseudo-noise effects at low frequencies near turbulent regions. The perturbed convective wave model, which is suitable for noise analysis anywhere in the flow domain, underpredicted sound pressure levels at low frequencies as well. Both models underpredicted high-frequency noise (>5 kHz) due to insufficient mesh and time-step sizes. Despite these limitations, the Lighthill wave model
Ride comfort is an important factor in the development of vehicles. Understanding the characteristics of seat components allows more accurate analysis of ride comfort. This study focuses on urethane foam, which is commonly used in vehicle seats. Soft materials such as urethane foam have both elastic and viscous properties that vary with frequency and temperature. Dynamic viscoelastic measurements are effective for investigating the vibrational characteristics of such materials. Although there have been many studies on the viscoelastic properties of urethane foam, no prior research has focused on dynamic viscoelastic measurements during compression to simulate the condition of a person sitting on a seat. In this study, dynamic viscoelastic measurements were performed on compressed urethane foam. Moreover, measurements were conducted at low temperatures, and a master curve using the Williams–Landel–Ferry (WLF) formula (temperature–frequency conversion law) was created.
This practice presents methods for establishing the driver workspace. Methods are presented for: Establishing accelerator reference points, including the equation for calculating the shoe plane angle Locating the SgRP as a function of seat height (H30) Establishing seat track dimensions using the seating accommodation model Establishing a steering wheel position Application of this document is limited to Class-A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100.
At present, electric head restraints have been developed locally, so overseas mechanisms are used. In this study, two concept mechanisms were developed, and in addition, one patent for a wing-out head restraint mechanism was additionally applied. The new mechanism has had an excellent effect on cost reduction and improvement of operating noise compared to the current one.
Plasticized polyvinyl chloride (PVC) has many applications in automotive industry including electrical harnesses, door handles, seat and head rest covers, and instrument panel (IP) and other interior trim. In IP applications, the PVC skin plays a critical role in passenger airbag deployment (PAB) by tearing along the scored edge of the PAB door and allowing the door to open and the airbag to inflate to protect the occupant. As part of the IP, the PVC skin may be exposed to elevated temperatures and ultraviolet (UV) radiation during the years of the vehicle life cycle which can affect the PVC material properties over time and potentially influence the kinematics of the airbag deployment. Chemical and thermal aging of plasticized PVC materials have been studied in the past, yet no information is found on how the aging affects mechanical properties at high rates of loading typical for airbag deployment events. This paper compares mechanical properties of the virgin PVC-based IP skin
The focus on thermal system efficiency has increased with the introduction of electric vehicles (EV) where the heating and cooling of the cabin represents a major energy requirement that has a direct impact on vehicle range in hot and cold ambient conditions. This is further exacerbated during heating where EVs do not have an engine to provide a source of heat and instead use stored electrical energy from the battery to heat the vehicle. This paper considers two approaches to reduce the energy required by the climate control and hence increase the range of the vehicle. The first approach considers minimizing the energy to keep the passengers comfortable, whilst the second approach optimizes the heating and ventilation system to minimize the energy required to achieve the target setpoints. Finally, these two approaches are combined to minimize both the passenger’s demand and the energy required to meet the demand. This paper covers the development process from simulation to
The increased importance of aerodynamics to help with overall vehicle efficiency necessitates a desire to improve the accuracy of the measuring methods. To help with that goal, this paper will provide a method for correcting belt-whip and wheel ventilation drag on single and 3-belt wind tunnels. This is primarily done through a method of analyzing rolling-road only speed sweeps but also physically implementing a barrier. When understanding the aerodynamic forces applied to a vehicle in a wind tunnel, the goal is to isolate only those forces that it would see in the real-world. This primarily means removing the weight of the vehicle from the vertical force and the rolling resistance of the tires and bearings from the longitudinal force. This is traditionally done by subtracting the no-wind forces from the wind at testing velocity forces. The first issue with the traditional method is that a boundary layer builds up on the belt(s), which can then influence a force onto the vehicle’s
Automotive seating systems have become increasingly sophisticated, providing consumers with more flexible configurations and comfort functionalities. Traditional power seating, which relied on a few motors to adjust the seat position, has evolved into more technically advanced reconfigurable systems equipped with additional feedback sensors and actuators. These advancements include features such as Easy Entry, Zero Gravity, Stadium Swivel, IP Nesting, Auto Lumbar/Bolster Adjustment and Power Long Rails. All the features indicate that the overall control of seating systems now resembles robotic arm control or multi-body control, involving numerous coordinated movements. In this paper, we propose a novel control strategy for the coordinated speed control of multiple motors. Unlike traditional seating controls, which typically use direct switches or open-loop systems, we introduce a feedback approach that incorporates Kalman-filter-based speed estimation using raw signals directly from
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
This SAE Edge Research Report explores advancements in next-generation mobility, focusing on digitalized and smart cockpits and cabins. It offers literature review, examining current customer experiences with traditional vehicles and future mobility expectations. Key topics include integrating smart cockpit and cabin technologies, addressing challenges in customer and user experience (UX) in digital environments, and discussing strategies for transitioning from traditional vehicles to electric ones while educating customers. User Experience for Digitalized and Smart Cockpits and Cabins of Next-gen Mobility covers both on- and off-vehicle experiences, analyzing complexities in developing and deploying digital products and services with effective user interfaces. Emphasis is placed on meeting UX requirements, gaining user acceptance, and avoiding trust issues due to poor UX. Additionally, the report concludes with suggestions for improving UX in digital products and services for future
Items per page:
50
1 – 50 of 7177