Browse Topic: Interiors, Cabins, and Cockpits

Items (7,253)
All automotive vehicles with enclosed compartments must pass the shower test standard - IS 11865 (2006). One of the most severe and critical areas of water leakage is “water entry into HVAC (heating, ventilation, and air conditioning) opening”. Excess water flow at high-pressure conditions and seepage during long-time low-pressure conditions could potentially have a significant impact on water entry inside the HVAC suction cutout given on BIW (body in white) and subsequently into the cabin. The present study clearly indicates that for making leak proof HVAC opening (suction interface), it is crucial for the structure of BIW plenum, plenum applique, and its sealing components to be robust enough to effectively collect and divert the water during rainy seasons.
Gunasekaran, MohanrajNamani, PrasadRamaraj, RajasekarJunankar, AshishRaju, Kumar
Electric Vehicles (EVs) are rapidly transforming the automotive landscape, offering a cleaner and more sustainable alternative to internal combustion engine vehicles. As EV adoption grows, optimizing energy consumption becomes critical to enhancing vehicle efficiency and extending driving range. One of the most significant auxiliary loads in EVs is the climate control system, commonly referred to as HVAC (Heating, Ventilation, and Air Conditioning). HVAC systems can consume a substantial portion of the battery's energy—especially under extreme weather conditions—leading to a noticeable reduction in vehicle range. This energy demand poses a challenge for EV manufacturers and users alike, as range anxiety remains a key barrier to widespread EV acceptance. Consequently, developing intelligent climate control strategies is essential to minimize HVAC power consumption without compromising passenger comfort. These strategies may include predictive thermal management, cabin pre-conditioning
Mulamalla, Sarveshwar ReddySV, Master EniyanM, NisshokAnugu, AnilE A, MuhammedGuturu, Sravankumar
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide recommendations which will lead to the standardization of interior door design and operation in all transport aircraft. Interior doors are broadly classified into two main categories which include egress path doors and non-egress path doors. The scope of this ARP does not include crew rest doors, secondary barriers to the flight deck, or doors incorporated in furniture surrounding passenger seats as defined in AS6960.
S-9B Cabin Interiors and Furnishings Committee
This report, in conjunction with other referenced SAE documents, provides recommendations for development of aircraft cabin pressure control systems and equipment, with particular emphasis on performance objectives, requirements definition, operational scenarios, design practices, safety processes, and verification methods. The objective of a Cabin Pressure Control System (CPCS) is to regulate aircraft cabin pressure throughout the operational flight envelope, in order to ensure occupant safety, aircraft safety, and passenger comfort. The system should comply with all relevant certification and safety requirements, particularly in the areas of: Maintaining a breathable environment within occupied compartments Protecting the fuselage structure against excessive positive and negative differential pressure loads Supporting cabin egress on ground The system should have the capability to schedule cabin pressure at rates of change that are comfortable to crew and passengers. Careful
AC-9 Aircraft Environmental Systems Committee
This document provides information on provisions for passengers with disabilities on board commercial aircraft. In this context the term "provision of medical oxygen" shall be understood as application of oxygen on board an aircraft not linked to (post) decompression in the sense of Airworthiness Requirements FAR/CS 25 and Operational Regulations of FAR 121/135. Information about available equipment and physiological treatment in clinical practice will be provided in this document. It covers the use of oxygen concentrators according to guidance of FAR Advisory Circular AC120-95.
A-10 Aircraft Oxygen Equipment Committee
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
There is a scarcity of research in literature regarding the determination of Plenum Opening Area of cowl box. The area of the plenum opening in the cowl box significantly affects the airflow rate in fresh airflow modes, such as face and defrost modes, as well as issues related to water ingress. Primarily, the size of the plenum opening is determined by the necessary HVAC airflow rate. This study aims to investigate how the plenum opening area impacts both airflow discharge and the water ingress issue in the HVAC module. A novel approach is introduced in this research to determine the optimal plenum opening area of the cowl box, taking into account both airflow rate and water ingress concerns. The ANSYS FLUENT software is utilized to analyze airflow discharge in both face and defrost modes, while the SPH (Smooth Particle Hydrodynamics) based Preonlab tool is employed for water ingress analysis. Airflow discharge is evaluated for various plenum opening sizes in both modes, and the area
Baskar, SubramaniyanMahesh, AGopinathan, Nagarajan
Mounting strategies for vehicles with panoramic sunroofs remains a challenge owing to its high complexity to balance cost, performance and assembly efficiency. Achieving efficient and reliable headliner mounting solutions is one of the conundrums where cost optimization must go together with uncompromised performance. Traditional methods like Dual Lock Fasteners (DLFs), have set high benchmarks for robustness but at the cost of increased manufacturing complexity and expense . In pursuit of a more economical and production-friendly alternative, various plastic clip designs were explored. However, these solutions posed significant challenges during validation due to the stringent requirements for mounting feasibility, tolerance management, and long-term durability This paper introduces a novel hybrid plastic-metal clip solution that addresses those challenges comprehensively. [2] The new design achieves precise tolerance control, ensuring reliable headliner installation under varying
D, GowthamKumarasamy, Raj GaneshShoeb, MohdChauhan, Aarti
Polymer compounds used in the manufacturing of automotive interiors are traditionally consist of polymer virgin material, elastomers, additives, pigments, fillers. These compounded polymers are prone to the emission of low molecular weight chemicals over a period of usage and exposure to the environment called volatile organic compounds (VOCs) and carbonyl compounds. These released VOCs and carbonyl compounds consist of chemicals like benzene, toluene, xylene, styrene, acetaldehyde, formaldehyde, acrolein etc. Short term or long-term exposure of these chemicals have adverse health effects like nausea, headache, vomiting, cancer, even death of personnel if found beyond the permissible limits. It has been observed that the majority of passenger have the above symptoms whenever travelled using passenger cars within few minutes of boarding and exchange the car cabin air. The study was planned to understand the reasons for the concerns and further resolution. This paper is focused on the
Shukla, Sandeep KumarBalaji, K VVaratharajan, Senthilkumaran
With the transition from ICE vehicles to EV’s, the dominant noise sources within the vehicle cabin have shifted from engine noise to auxiliary systems, especially HVAC systems. In conventional vehicles with internal combustion engines (ICE), engine noise tends to mask noise from auxiliary sources. However, in electric vehicles (EVs), the lack of engine noise causes these auxiliary noises, such as those from the HVAC system, to become more prominent and potentially uncomfortable for occupants. The primary objective is to understand how the absence of engine noise in EVs influences the perceived HVAC noises. The research methodology involves static and on-road evaluation of both electric and ICE vehicle having common platform, conducted under same testing conditions. The study aims to quantify and compare the acoustic characteristic differences of HVAC noise between ICEs and EVs, primarily focusing on cabin airflow noise, refrigerant flow noise, and AC compressor noise. Based on the
Patra, SubhashreeJoshi, RishiSharma, RachitLingampelly, RajaprasadNeupane, Manoj
Electric vehicles (EVs) have surged in popularity in recent years due to their environmental benefits. The influence of range on air conditioning (AC) power consumption is a critical concern for electric vehicle (EV) owners, particularly in warmer climates. Overcoming obstacles such as a limited vehicle range is necessary for the increased use of electric-powered automobiles. Cabin heating and cooling demand for climate control consumes more energy from the main battery and has been revealed to significantly reduce vehicle range. During peak cooling or heating, the overall power consumption of the AC system takes almost 50% of the energy used for traction. The average reduction in driving range caused by air conditioning (heating and cooling) approximates 33%. The energy usage of an electric vehicle can be considerably decreased by switching the climate control setting to economy mode. The AC system will operate more effectively, enabling the vehicle to save energy and extend its range
Mulamalla, Sarveshwar ReddyAnugu, AnilE A, MuhammedUmmiti, KumarM, NisshokChoudhary, Ankit
Rainwater accumulation in the cowl region, located at the base of the windshield, can lead to serious HVAC performance degradation, corrosion, and passenger discomfort if not effectively drained. Traditional physical validation methods are often time-consuming, costly, and limited in diagnostic insight. This study presents a simulation-driven methodology for evaluating and optimizing HVAC cowl box drainage performance during the early design phase. Using STAR-CCM+, a multiphase Volume of Fluid (VOF) approach was implemented to visualize water flow behavior under static and dynamic conditions. Design variants were assessed by modifying drain tube geometry (shape, size, and placement) and cowl surface features, such as baffle positioning. Results showed that inadequate drainages were primarily due to stagnation zones, shallow slopes, and drain locations prone to clogging. Water film accumulation near the HVAC inlet was accurately predicted, highlighting potential ingress paths under high
Mathew, RonnieIbrahim, SayyafNikumbh, Nayan
A more recent focus on driver comfort and the increasing demand for wide range of information availability make automotive Original Equipment Manufacturers (OEMs) provide advanced features such as Head Up Display (HUD) system. Even though HUD projects vital information onto the windshield/glass, its structural integration comes with significant vibration challenges, leading to display instability and haziness. This paper discusses the significant design parameters influencing the functional effectiveness of HUD system. The structure considered for analysis is the HUD assembly and its integration in vehicle. Cross Car Beam (CCB) turns out to be the critical component of the vehicle structure susceptible to road excitations. Although it’s mass dampens the vibrations inherently, due to the low mass of the HUD, relative oscillation between its projector, mirror, and either the windshield or display causes image distortion This paper investigates in detail the role of HUD structural
Vardhanan K, Aravindha VishnuNaidu, SudhakaraTitave, Uttam
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
The automotive industry is encountering difficulties in balancing occupant thermal comfort with HVAC system energy efficiency, particularly under the hot Indian conditions, to meet user expectations and address range anxiety in electric vehicles. Front-loaded comfort-based approach simulations during the development stages have the potential to increase energy savings compared to the stages required at the end of product design. The focus of the current research targets HVAC energy consumers, such as blower flow rates, temperatures, and Cabin heaters, and investigates how these factors influence occupant overall comfort. Additionally, design elements like glass properties and the impact of solar radiation on human comfort are studied at the early concept stages to adopt an energy-based approach for comfort optimization. Simulations are conducted using GT-SUITE and GT-TAITherm software, integrated with CFD field maps platforms to obtain exact flow field predictions. The simulation
Bavrisetti, Sai Sampath KumarChothave, AbhijeetGummadi, GopakishoreKhan, ParvejThiyagarajan, RajeshRaju, KumarA Sr, Mahesh
In pursuit of a distinct sporty interior sound character, the present study explores an innovative strategy for designing intake systems in passenger vehicles. While most existing literature primarily emphasizes exhaust system tuning for enhancing vehicle sound quality, the current work shifts the focus toward the intake system’s critical role in shaping the perceived acoustic signature within the vehicle cabin. In this research work, target cascading and settings were derived through a combination of benchmark and structured subjective evaluation study and aligning with literature review. Quantitative targets for intake orifice noise was defined to achieve the desired sporty character inside cabin. Intake orifice targets were engineered based on signature and sound quality parameter required at cabin. Systems were designed by using advanced NVH techniques, Specific identified acoustic orders were enhanced in the intake system to reinforce the required signature in acceleration as well
Sadekar, Umesh AudumbarTitave, UttamPatil, JitendraNaidu, Sudhakara
There is an increasing trend of using polymeric materials in the vehicle interior compartment. While the polymers provide benefits in terms of flexibility in profiling, lighter weight and aesthetics but one of the challenges with the polymers is emission of volatile organic compounds (VOCs) during their usage and particularly at a temperature prevailing in the vehicle cabin. VOCs adversely impact the vehicle interior air quality and can pose a risk to occupants’ health. However, there is a lack of information on volatile organic compound (VOC) emissions from automotive interior materials. There are two types of methods, a whole vehicle chamber method (ISO 12219-1) and a bag method (ISO 12219-2) for evaluation of VOCs emissions from materials used in vehicle interior parts. ISO 12219-2 method describes quantitative testing of VOCs and semi-VOCs. This test method is quick and cost effective for analysis of materials for quick emission checks and can prove to be very effective in
PAtil, Yamini JitendraThipse, SukrutBawase, Moqtik
The rising importance of sustainability in the automotive sector has led to increased interest in circular and environmentally responsible materials, particularly for plastic trims parts, both interior and exterior. This study focuses on developing textile solutions using recycled polyethylene terephthalate (r-PET) sourced from post-consumer plastic waste, along with bio-based fibres such as bamboo. These materials made into woven and knitted fabrics are studied to suit different vehicle interior applications. r-PET textiles show promising strength, aesthetic appeal, and durability performance. Bamboo fabrics are known for their natural antimicrobial properties and enhanced breathability. Extensive testing is performed to validate explored sustainable materials performance against key automotive requirements. With this study, we gain an understanding of the performance of variedly sourced sustainable raw materials for automotive specific textile applications by different manufacturing
Deshpande, SanjanaBorgaonkar, Subodh
The inclusion of the cabin in HVAC simulations gained more importance with the introduction of BEV’s. Thermal management and efficiency being in the forefront, exploration for the possible opportunities to reduce the energy consumption for meeting the comfort of passengers gained importance. The energy consumed by the Electric coolant or air heaters for heating the cabin at extreme cold ambient temperatures to deliver similar comfort to that of an ICE version is 2 to 3 times that of the energy required for cooling the cabin in a high ambient condition. Even during the sizing of HVAC system, if traditional method of ambient or fresh air conditions is considered for calculating the requirements, the result is we would require a product which will have unrealistic performance demand. Hence to explore different possibilities for studying the system, usage of recirculation air was considered as one of the options. This paper talks about the approach followed in creating the cabin model in
Veerla, EswarSubramanian, Karthik
The automotive industry is advancing rapidly with the integration of cutting-edge technology, aesthetics, and performance. One area that has remained relatively underexplored in the pursuit of sleek, minimalistic interiors is the packaging of Sunshade in door trim system. Traditional sunshade design, often bulky and increasingly incompatible with the trend towards compact design and packaging. The car sunshade is a shield that is placed on a car side window and used for regulating the amount of light entering from the car window and helps improve the passenger comfort inside the cabin. Car Interior components, specifically plastic and seats are based on thermal stress properties. When we expose these parts to direct contact with sunlight, humidity and ambient temperature above threshold limit, the interior plastic parts can start to soften and melt. Due to this, they start emitting harmful chemicals which cause anemia and poor immune systems. So, the Sunshade, in addition to protecting
Palyal, NikitaD, GowthamBhaskararao, PathivadaBornare, HarshadRitesh, Kakade
Electric buses (e-buses) are essential to sustainable public transport, but their real-world efficiency and range are heavily affected by auxiliary systems, particularly the Heating, Ventilation, and Air Conditioning (HVAC) system. This study investigates how ambient temperature variations and HVAC loads influence energy consumption, range, and efficiency in e-buses operating under diverse climatic conditions. The methodology combines field data collection from urban e-buses across seasons—including extreme summer and winter—with controlled laboratory testing. Field measurements included ambient temperature, HVAC demand, vehicle speed, state of charge (SOC) variation, and energy consumption. These inputs were used to develop real-world duty cycles, replicating actual thermal loads, passenger profiles, idling periods, and driving patterns. In the laboratory, these cycles were simulated using a chassis dynamometer and environmental chamber, with HVAC systems tested at controlled ambient
Vishe, PrashantDalela, SaurabhSaraswat, ShubhamJoshi, Madhusudan
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical
Muchchandi, VinodAkula, Satya JayanthMahindrakar, PramodG S, Sharath
Seats of modern cars should necessarily meet the regulatory safety norms along with aesthetics and comfort. In the existing passenger cars prevailing across the Indian subcontinent, the measure of safety has been a challenging one. The stringent regulatory norms thereby make the Airbag very promising. In the Automotive industry, safety features are very important, one of the topmost features which falls in this category is airbags. The driver and passenger safety during high impact collisions and sudden crashes is the key objective of airbag. This safety is provided by the airbag with its automatic deployment. The inflatable airbag is engineering in a way to respond very quickly during a collision and furnish necessary cushioning to decrease the impulse and enhance the safety of the passenger. The technology has been practiced widely upon many vehicles' seats. However, the present work highlights a novel approach of packaging the HPTS air bag in second row seat. This Air bag unit is
Buradkar, RajatBose, KarthikJadhav, DeepikaBalakrishnan, Gangadharan
The automotive industry has undergone significant transformation with the adoption of electric vehicles (EVs). However, the inadequate driving range is still a major limitation and to tackle range anxiety, the focus has shifted to energy management strategies for optimal range under different driving conditions. Developing an optimal energy management algorithm is crucial for overcoming range anxiety and gaining a competitive edge in the market. This paper introduces Dynamic Energy Management Strategy (DEMS) for electric vehicles (EVs), designed to optimize battery usage and extend the driving range. Utilizing vehicle digital twin model, DEMS estimates energy consumption across Eco, Normal, and Sports driving modes by analyzing vehicle velocity profiles and pedal inputs. By calculating actual battery consumption and identifying excess power usage, DEMS operates in a closed loop to periodically assess the power gap based on real-time vehicle conditions, including HV components like the
Dey, SupriyoVenugopal, Karthick BabuPenta, AmarKumar, RohitArya, Harshita
This research paper investigates the failure of an isolator clip used in the seat slider assembly, which guides and restricts the sliding motion of the tooth bracket within the seat. The component is made of C80 high-carbon spring steel, known for its high strength. According to the manufacturing process details, zinc plating was applied to the component for corrosion protection, as confirmed by EDS analysis. A fractographic examination of the failed part revealed a brittle, intergranular fracture morphology with visible cracks. Certain areas also exhibited micro-void coalescence, indicating a dimpled fracture surface. The primary failure mode was intergranular (IG) fracture. The delayed fracture was attributed to intergranular fracture mechanisms, micro-void coalescence, and the high strength of the steel, which made the component susceptible to hydrogen embrittlement. Hydrogen embrittlement occurs when hydrogen atoms become trapped along the grain boundaries, where they form hydrogen
Saindane, Mehul KishorBali, Shirish
This invention solves a significant safety issue where drivers have low visibility of the Outside Rear View Mirror (ORVM) in the case of rain, fog, dust or ice formation on the Side Door Window Glass (SDWG). Currently developed methods, such as hydrophobic finishing or films and heated window glass on the doors, provide temporary or weak results, and thus, a more successful and dependable method is demanded. In order to address this problem, we have modified the Outer Waist Seal, which includes a Glass Wiping Mechanism in it. Outer Waist Seal is a type of weather strip fixed on the bottom of the side window of a vehicle on the panel of the door. It does not allow the flow of heavy water, dust and debris into the door cavity, besides supporting the glass on the window when it is in a movement process. The stationary fixed arm of this system is coupled with a rotating arm and an attached wiper blade powered by a low-speed-high-torque motor and interfaced with the Body Control Module (BCM
Neelam, RajatChowdhury, AshokPanchal, GirishKumar, Saurav
The integration of Advanced Driver Assistance Systems (ADAS) into modern vehicles necessitates innovative solutions for interior packaging that balance out safety, performance, and ergonomic considerations. This paper introduces an inverted U-shaped steel tube cross car beam (CCB) as a superior alternative to traditional straight tube designs, tailored for premium vehicle instrument panels. The U-shaped geometry overcomes the limitations of straight tube beams by creating additional packaging space for components such as AR-HUDs, steering columns, HVAC systems, and electronic control units (ECUs). This geometry supports efficient crunch packaging while accommodating ergonomic requirements like H-point, eyeball trajectory, and cockpit depth for optimal ADAS component placement. The vertical alignment of the steering column within the U-shaped design further enhances space utilization and structural integrity. This study demonstrates that the inverted U-shaped CCB is a transformative
Mahajan, Ajay SenuRegatte, GaneshNagarjuna, KamisettiSahoo, SandeepUdugu, KumaraswamyJC, Sudheera
The HVAC (Heating, Ventilation, and Air conditioning) system is designed to fulfil the thermal comfort requirement inside a vehicle cabin. Human thermal comfort primarily depends upon an occupant’s physiological and environmental condition. Vehicle AC performance is evaluated by mapping air velocity and local air temperature at various places inside the cabin. There is a need to have simulation methodology for cabin heating applications for cold climate to assess ventilation system effectiveness considering thermal comfort. Thermal comfort modelling involves human manikin modeling, cabin thermal model considering material details and environmental conditions using transient CAE simulation. Present study employed with LBM (Lattice-Boltzmann Method) based PowerFLOW solver coupled with finite element based PowerTHERM solver to simulate the cabin heat up. Human thermal comfort needs physiological modelling; thus, the in-built Berkeley human comfort library is used in simulation. Human
Baghel, Devesh KumarKandekar, AmbadasKumar, RaviDimble, Nilesh
Items per page:
1 – 50 of 7253