Browse Topic: Interiors, Cabins, and Cockpits

Items (7,000)
ABSTRACT A coupled thermal and computational fluid dynamics (CFD) full-vehicle model of a protected combat ground vehicle was developed and validated against measured test data. The measurement dataset was collected under thermally extreme conditions. Air temperatures were sampled inside the crew compartment of the vehicle under tactical idle operating conditions with space heaters substituted for on-board electronics. The results generated from the coupled thermal model correlated with the measured test data with an average absolute error of less than 2 °F for both simulated-electronics on and off conditions. The model was used to analyze thermal sensitivity to armor, insulation, and other factors affecting the efficiency of the HVAC system
Pryor, JoshDitty, AaronMao, JuliaRynes, PeteSmith, Rob
ABSTRACT This paper illustrates the effectiveness of using smart displays to further reduce size, weight, and power (SWaP) in ground vehicles while also providing a path to implementing a network for vehicle C4ISR architectures such as VICTORY. This is done by introducing smart displays and how they can be configured and implemented to take on various functions to provide capabilities such as sensor viewing, vehicle health monitoring, and blue force tracking. The smart display’s interfaces and application software allow it to act as network adapter for legacy end nodes in digital backbone architectures
Stokes, Joshua
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
Roy, Monica V.
ABSTRACT Computational models are widely used in the prediction of occupant injury responses and vehicle structural performance of ground vehicles subjected to underbody blasts. Although these physics based computational models incorporate all the material and environment data, the classic models are typically deterministic and do not capture the potential variations in the design, testing and operating parameters. This paper investigates the effect of one such variation in physical tests, namely, variations in the position of occupant setup on the occupant injury responses. To study the effects of occupant position, a series of vertical drop tower tests were performed in a controlled setup. A vertical drop tower test involves an Anthropomorphic Test Device (ATD) dummy positioned on a seat and the setup is dropped on an energy attenuating surface, thus producing a desired shock pulse on the seat structure. The experimental data was analyzed for sensitivity of occupant position and ATD
Ramalingam, JaisankarPrall, Nancy
ABSTRACT Increasing power requirements along with weight and space constrains requires implementation of more intelligent thermal management systems. The design and development of such systems can only be possible with a thorough understanding of component and system level thermal loads. The present work implements 1-D and 3-D unsteady CFD based simulation tools in vehicle design process. Both under-the-hood cooling and HVAC systems are simulated in various operating conditions on a HPC Computer Cluster. System variables are optimized with gradient based BCSLIB and SciPy optimization libraries. The simulation results are compared and validated with experimental tests
Bayraktar, Ilhan
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
Roy, Monica V.
ABSTRACT Based on the foundation of thermal management system developed by Rocky Research and working closely with TARDEC personnel, this paper addresses design, development, and testing of two delivered environmental control prototypes to TARDEC. The delivered prototypes are electrically driven vapor compression systems enhanced with Rocky Research vector drive for speed control, use of Pulsing Thermal Expansion Valve (PTXV) for precise refrigerant control, and power electronic package capable of running efficiently from both AC and DC power sources seamlessly. These prototypes were fully tested at different ambient temperature conditions at Rocky Research environmental chamber and their performance were logged and documented. The cooling capacity was measured to be in range of 6,000 to 12,000 Btu/hr and the Coefficient of Performance (COP) was measured to be above 1.5 at high ambient temperature conditions. This reflects close to 50% improvement in efficiency, when compared to
Khalili, KavehSpangler, ChrisSchultz, Andrew
ABSTRACT Maintenance of local security is essential for the lethality and survivability in modern urban conflicts. Among solutions the Army is developing is an indirect-vision display (IVD) based sensor system supporting full-spectrum, 360°local area awareness. Unfortunately, such display solutions only address part of the challenge, with remaining issues spawned by the properties of human perceptual-cognitive function. The current study examined the influence of threat properties (e.g. threat type, distance, etc.) on detection performance while participants conducted a patrol through a simulated urban area. Participants scanned a virtual environment comprised of static and dynamic entities and reported those that were deemed potential threats. Results showed that the most influential variables were the characteristics of the targets; threats that appeared far away, behind the vehicle, and for short periods of time were most likely missed. Thus, if an IVD system is to be effective, it
Metcalfe, Jason S.Cosenzo, Keryl A.Johnson, TonyBrumm, BradleyManteuffel, ChristopherEvans, A. WilliamTierney, Terrance
ABSTRACT Over the last several years all branches of the United States military have experienced an increased number of orthopedic and internal injuries to knees lower back, neck, and digestive system. Additionally the level of severity has also been increasing. Primary cause factors contributing to the overall increase in injuries to US military personnel include the increase in overall individual loads being carried by the individual soldier which at times can approach 150 pounds, higher operations tempo which results in greater exposure to higher levels of impact forces and for a greater duration. The greater impact forces are a result of the poor design of the current bench deployed on United States tactical vehicles, and the brutal nature of the third world transportation networks in Afghanistan and Iraq. This paper documents the engineering approach utilized by AOM Engineering Solutions to achieve the following primary design objectives; improved ergonomic design for injury
Micheli, JohnDonovan, LTC Ken
This SAE Recommended Practice describes the test procedures for conducting free-motion headform testing of heavy truck cab interior surfaces and components. A description of the test setup, instrumentation, impact configuration, target locations, and data reduction is included
Truck Crashworthiness Committee
The parametric variation study will be very useful for understanding the design performance of any product based on the input parameters. This type of case study will be done using Design of experiments and generate several design points. Conventionally DoE solver will be working with geometry variation with CAD interface, meshing with appropriate tool then solver, finally with post processing. If a solver itself has workflow of change the geometry variation with mesh deflection method and automated post processing, then no need of geometry variation and meshing will lead to lot of time reduction in doing parametric study. Here HVAC parametric study used to show the performance of solver and accuracy of results generated. This approach can be used to optimize the design using parametric variation. This paper will show how to move Horizontal and vertical vanes using mesh morphing and what is the reduction in timeline in new product development. Here, Ansys Fluent solver is used to
Palanisamy, Vadivel
In the context of Battery Electric Vehicles (BEVs), airborne noise from Heating, Ventilation and Air Conditioning (HVAC) ducts becomes a prominent concern in the view of passenger comfort. The automotive industry traditionally leverages Computational Fluid Dynamic (CFD) simulation to refine HVAC duct design and physical testing to validate acoustic performance. Optimization of the duct geometry using CFD simulation is a time-consuming process as various design configurations of the duct have to be studied for best acoustic performance. To address this issue effectively, the proposed a novel methodology uses Gaussian Process Regression (GPR) to minimize duct noise. Present solution demonstrates the power of machine learning (ML) algorithms in selecting the optimal duct configuration to minimize noise. Utilizing both real test data and CFD results, GPR achieves remarkable accuracy in design validation, especially for HVAC air ducts. The adoption of GPR-based ML algorithms significantly
Althi, Tirupathi RaoManuel, NaveenK, Manu
This Aerospace Information Report (AIR) outlines the design considerations and criteria for the control of water carryover from the environmental control system (ECS) with respect to causes and indicated corrective or preventative action. In addition, condensation on structure will be reviewed with possible preventative action described
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) provides information on air quality and some of the factors affecting the perception of cabin air quality in commercial aircraft cabin air. Also a typical safety analysis process utilizing a Functional Hazard Assessment approach is discussed
AC-9 Aircraft Environmental Systems Committee
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms
AC-9 Aircraft Environmental Systems Committee
Energy efficiency in both internal combustion engine (ICE) and electric vehicles (EV) is a strategic advantage of automotive companies. It provides a better user experience that emanates amongst others from the reduction in operation expenses, particularly critical for fleets, and the increase in range. This is especially important in EVs where customers may experience range anxiety. The energetical impact of using the air conditioning system in vehicles is not negligible with power consumptions in the range of kilowatts, even with a stopped vehicle. This becomes particularly important in areas with high temperature and humidity levels where the usage of the air conditioning systems becomes safety factor. In such areas, drivers are effectively forced to use the air conditioning system continuously. Hence, the air conditioning system becomes an ideal choice to deploy control strategies for optimized energy usage. In this paper, we propose and implement a control strategy that allows a
Jaybhay, SambhajiKapoor, SangeetKulkarni, Shridhar DilipraoPalacio Torralba, JavierLocks, Olaf
In automotive air conditioning systems, compressor is used to convert low pressure low temperature refrigerant into high pressure high temperature refrigerant. Various types of compressors like swash plate, rotary vane, scroll etc. are widely used in the automotive industry for air conditioning applications. In rotary vane compressors, thermal protector is used as a safety device, designed to prevent the compressor from overheating during refrigerant compression process. When the discharge temperature exceeds the preset limit of thermal protector, the thermal protector will activate and stop the electrical supply to compressor clutch to stop the compressor operation thereby preventing potential damage to air conditioning system, engine, and other nearby parts of the vehicle. This technical paper explores the various real-world scenarios for a hot country like India, which may result into higher discharge temperatures of compressor resulting into activation of thermal protector. The
Mittal, SachinSaha, AniketKumar, MukeshUmbarkar, Shriganesh
Electric Vehicles (EVs) have rapidly grown as a means for clean mobility, as they zero down tail pipe emission of greenhouse gases. Additionally, greenhouse gases such as Hydro-Fluoro-Carbon (HFCs) based refrigerants used in Mobile Air-Conditioning (MAC) are under global scrutiny for their high Global Warming Potential (GWP). To prevent earth environment to pass the climate tipping point that will be irreversible within human capacity, actions such as rapid phase down of high GWP rated HFCs under Kigali Amendment to Montreal Protocol are enacted. India being amongst signatory nations is now working to fast track phase-down use of high GWP refrigerant and transit to low GWP refrigerant options. Nearly half of national HFCs use and emissions are for manufacture and service MAC. Vehicle OEMs supplying to markets in developing countries (e.g. European nation and non-Article 5 Parties) have already phased out HFC-134a (GWP=1400) through alternate refrigerant solutions. The work presented
Maurya, AnuragVenu, SantoshKapoor, SangeetKhan, Farhan
The proposed smart, efficient eco-cooling strategy leverages the AC system's efficiency sensitivity to the vehicle speed and the thermal storage of the cabin to coordinate the AC operation with the vehicle speed profile by actively shifting the AC thermal load toward the more efficient region at higher vehicle speeds. An investigation is now being conducted on vehicle cabin climate control systems to lower energy consumption and enhance battery electric vehicle range when in pure electric mode. OEMs of electric vehicles are always searching for novel concepts that will extend the driving range of their vehicles. Basically, an air conditioning system needs high-voltage power from high-voltage battery packs to keep the interior of the cabin in a comfortable temperature range during the summer. In order to meet these demands, the AC system in electric vehicles becomes an additional power consumer. This smart ECO AC system consists of the importance and impact of the various components of
Agalawe, KIRAN R.Nagarhalli, Prasanna VHAJGUDE, NIKHIL
Electric Vehicles and Battery-Fuel_Cell hybrid vehicles are increasingly becoming popular in the market, especially in the commercial vehicle segment. Range estimation and control is of paramount importance as it is the main cause of anxiety among the vehicle owners. This paper discusses application of Reinforcement Learning (RL) to achieve range control. In RL, the learning agent choses actions dependent on the state of the environment and gets a reward in return. Ultimately the agent will learn the policy of choosing the actions for each state such that his long-term reward is maximized. The technique of RL has been applied for various scenarios where in a look up table (between the states of a system and actions to be taken) needs to be developed for optimal performance. In this paper, we use RL to manipulate other energy sources and sinks like Fuel Cell and HVAC (in addition to the battery which is the main energy source) for range control, and thereby achieve the optimal
Changavar, Ganesh
India features diverse climatic zones, spanning from tropical in south to alpine in north. Since most of the regions are hot, vehicle cabin cooling analysis dominates over heating analysis, creating a notable technology gap that exists in cabin heating. Nonetheless, in colder regions of India and Europe, maintaining optimal cabin heating is crucial for human comfort. Furthermore, in climates prone to mist and frost formation, ensuring the accuracy and effectiveness of cabin heating mechanisms becomes crucial, as it directly correlates with safety considerations that comes prior to mere comfort requirements. To reduce the technology gap and physical testing in cold climatic conditions this work is proposed, which will enable us to predict cabin heating performance of vehicle on highway running as well as in stationary condition for Electric Vehicles (EV) and Internal Combustion Engine Vehicles (ICEV) in 1D Computer Aided Engineering (CAE) software. A detailed Transient Cabin Heating
Soni, RahulShah, GeetKulkarni, ShridharM, ChandruVangala, Sai KrishnaJaybhay, SambhajiNayakawadi, Uttam
Over the past few decades, there has been a notable increase in stakeholder’s attention on Earth's climate. The automotive industry, being a major contributor to this phenomenon, has been endeavoring to mitigate its impact through various measures. These efforts include reducing emissions in existing internal combustion engine (ICE) vehicles and promoting electric vehicles (EVs) as a feasible alternative for consumers. Despite these initiatives, there remains a persistent challenge in improving the fuel economy and driving range of vehicles. India, located along the Tropic of Cancer, experiences both tropical and subtropical climates. As a result, a substantial portion of the total heat absorbed is from solar radiation. The higher heat load necessitates extensive use of air conditioning (AC) systems, which significantly contributes to the overall power consumption of vehicles. Various measures are being implemented to mitigate this heat load and enhance the efficiency of AC operations
Kumar, SunnyVenu, SantoshRaj, ShivamKandekar, Ambadas
HVAC is one of the main components on AC system on passenger car. Air flow distribution through the HVAC duct outlet as well as foot outlet is controlled mainly through HVAC kinematic mechanism. Kinematic mechanism mainly controls the air flow distribution and also temperature linearity at the outlet. Blower assembly as well as Kinematic mechanism is mainly two moving components inside HVAC system. Apart from the blower noise, another important noise generating area is kinematic noise. Due to poor cam profile and pin reaction force inside cam profile, there is high reaction force and hence produce noise. Due to different kinematic mode travel (face, foot and defrost), the pin has to be moved inside the cam profile, so pin movement & interference due to the stroke length travel leads a higher noise. The present paper describes the noise prediction based on simulation methodology of HVAC kinematic mechanism and damper (Doors) movement. First kinematic simulation of baseline model is
Parayil, PaulsonKame, ShubhamGoel, Arunkumar
Vehicle HVAC noise performance is an important vehicle design validation criterion since it significantly links the brand image of a vehicle. It affects the customer’s buying decision and the business of selling vehicles because it directly affects driving comfort. Customers expect continuous improvement in HVAC noise without compromising cooling performance. The process of cascading vehicle-level acoustic performance to subsystem and component levels becomes an important factor in the vehicle NVH development process. It was found that the component-level [HVAC unit without duct] performance of an HVAC system measured in an anechoic chamber was at par when compared to targets, whereas the subsystem-level performance [HVAC unit with duct and dashboard] was on the higher side of the targets. Advanced NVH tools were used to identify the source of noise at the subsystem level. It helped to locate the source and its transfer path. A design modification done at the transfer path location
Titave, Uttam VasantKalsule, ShrikantNaidu, Sudhakara
In today's fast-paced lifestyle, people spend a maximum amount of time for traveling, leading to a heightened demand for thermal comfort. Automotive HVAC play a crucial role in providing conditioned air to ensure comfort while traveling. Evaluating HVAC systems performance including delivery systems, heat exchanger efficiency, air thermal mixing zones, and temperature distribution are essential to maintain fuel economy and modern vehicle styling. However, accurately predicting cooling/heating performance using CFD simulations poses challenges due to the complex nature of heat exchanger modeling, which demands substantial computational resources and time. This paper presents the development of CFD modeling capabilities for predicting temperature distribution at duct outlet grills for defrost mode. Additionally, it assesses heater performance under maximum hot conditions. STAR-CCM+ software is employed to model the entire system, with the heater and evaporator core represented as porous
Ahmad, TaufeeqParayil, PaulsonSharma, NishantKame, ShubhamJaiswal, AnkitGoel, Arunkumar
The air supply system in a Fuel Cell Electric Vehicle (FCEV) provides the oxygen needed for the fuel cell to react with hydrogen. The air compressor, being the main component of the air supply subsystem, has the highest power consumption among all auxiliary loads in an FCEV. Therefore, efficient control of the air supply system is critical for improving fuel cell performance. The air supply system has a slow response to dynamic load changes. Due to its weak transient response, an overshoot in airflow can lead to an increase in auxiliary power loss, while an undershoot can cause a delay in meeting power requirements. Thus, reducing transients is a crucial factor in improving the overall system efficiency. In conventional control, the battery supplies additional power needed during dynamic load changes. During high dynamic load changes, there is frequent switching between the battery and the fuel cell. This frequent charging and discharging of the battery can impact its longevity
Choubey, AyushPonangi, Babu RaoShah, SaurabhMunirajappa, Chandrashekara
Today, almost all passenger vehicles are equipped with Mobile Air Conditioning (MAC) systems to provide thermal comfort to occupants. To enhance cabin cooling down rate, two approaches are possible viz. increasing the MAC system capacity or reducing heat ingress into the vehicle cabin. The first approach is likely to have a negative impact on energy efficiency. The latter approach considers the deployment of alternate passive cabin cooling technologies. Among these, the deployment of uniquely developed coatings on metal, plastic and glass surfaces of the cabin is one option. The assessment of such coatings is usually done only at severe ambient conditions (>40°C), which may not be sufficient. These coatings need to be validated across all climatic seasons of the year, for assessing their effectiveness on passenger thermal comfort. The current work along with simulation studies, takes into account additional parameters such as the ‘feeling of hotness’ when one enters a hot-soaked cabin
Deshmukh, GaneshKulkarni, Shridhar DilipraoVarma, MohitJaybhay, SambhajiKapoor, SangeetTilekar, Pravin
Climate across India varies from extreme Cold to extreme hot. As an objective to improve comfort to drivers during summer, it is mandate by Indian Government to introduce Air Conditioning in Trucks from June 2025. Air Conditioning system includes Evaporator, compressor, Condenser and expansion units. Condenser needs continuous air flow to reject the absorbed heat from driver cabin to surrounding air. This is possible by directing air through condenser by an external fan. For this condenser is remotely mounted with an electric driven fan or directly to the radiator-fan system. In this paper a case study is presented where Cooling system of a Non AC Intermediate Commercial Truck is modified for Air Conditioning application. Condenser is mounted on the radiator and the additional heat load is managed by a minor change in the system. Fan is operated based on coolant temperature and with additional controls for Air Conditioning. Simulations are done in a Thermal management software “KULI
Kiran, NalavadathM S, Vignesh
The purpose of air conditioning (AC) duct packing is multifaceted, serving to prevent condensation, eliminate rattle noise, and provide thermal insulation. A critical aspect of duct packing is its adhesive quality, which is essential for maintaining the longevity and effectiveness of the packing's functions. Indeed, the challenge of achieving adequate adhesivity on AC ducting parts is significant due to the harsh operating conditions to which these components are subjected. The high temperatures and presence of condensation within the AC system can severely compromise the adhesive's ability to maintain a strong bond. Moreover, the materials used for these parts, such as HDPE, often have low surface energy, which further hinders the formation of a durable adhesive bond. The failure of the adhesive under these conditions can lead to delamination of the duct packing, which can result in customer inconvenience due to rattling noises, potential electrical failures if condensed water
M, Amala RajeshSonkar, SurabhiKumar, Mukesh
This SAE Aerospace Standard (AS) defines the overall requirements applicable to oxygen flow indication as required by Airworthiness Requirements of CS/FAR 25.1449 to show that oxygen is being delivered to the dispensing equipment. Requirements of this document shall be applicable to any type of oxygen system technology and encompass “traditional” pneumatic devices, as well electric/electronic indication
A-10 Aircraft Oxygen Equipment Committee
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12
A-10 Aircraft Oxygen Equipment Committee
This standard covers oxygen masks and breathing valves used with both panel mounted and mask mounted demand and pressure-demand oxygen regulators. Mask mounted oxygen regulators are covered under other standards, but when the mask mounted regulator incorporates an integral exhalation valve, the performance of this valve shall meet the requirements of this standard
A-10 Aircraft Oxygen Equipment Committee
Currently, existing civil aviation standards address the design and certification of oxygen dispensing devices that utilize oxygen sources supplying at least 99.5% oxygen. This Aerospace Information Report discusses issues relating to the use in the passenger cabin of oxygen enriched breathing gas mixtures having an oxygen content of less than 99.5% and describes one method of showing that passenger oxygen dispensing devices provide suitable hypoxia protection when used with such mixtures
A-10 Aircraft Oxygen Equipment Committee
This SAE Standard provides a test method, an evaluation method, and a performance criterion for shock-absorbing characteristics of a general foam-type snowmobile seat. This SAE Standard applies to seats that are similar in design, dimensions, construction, and/or intended usage as described and illustrated in SAE J33
Snowmobile Technical Committee
Tank Technologies, a company producing porcelain-lined water heaters, faced significant challenges with their manual cutting processes. Challenges in the cutting process are detrimental in an industrial landscape where speed requirements and cost pressures are high. The introduction of Hirebotics’ Cobot Cutter significantly improved their operations, drastically reducing rework, improving cycle times, and elevating overall efficiency
SAE J3291 covers hoses and coupled hose assemblies intended for containing and circulating lubricant, liquid, and gaseous refrigerant in automotive air-conditioning systems. This recommended practice will be used to establish requirements for the validation of hoses, hose assemblies, or nonmetallic line assemblies with any new refrigerant or refrigerant blend being considered for use in automotive air-conditioning systems. The new refrigerants and blends covered by this document do not include current refrigerants R134a, R1234yf, and R152a. This document does not cover previously used refrigerant R12 nor refrigerants used in transcritical systems, such as R744. It is the system manufacturer’s responsibility to ensure that adequate compatibility testing is completed with new refrigerants, blends, and lubricant combinations together with intended hose materials. The recommended tests include, but are not limited to, volume swell, delamination, and rapid decompression. These tests are not
Interior Climate Control MAC Supplier Committee
Occupant packaging is one of the key tasks involved in the early architectural phase of a vehicle. Accommodation, as a convention, is generally considered related to a car’s interior. Typical roominess metrics of the occupant like hip room, shoulder room, and elbow room are defined with the door in its closed condition. Several other roominess metrics like knee room, leg room, head room, and the like are also specified. While all the guidelines are defined with doors in their closed condition, it is also important to consider the dynamics that exist while the occupant is entering the vehicle. This article expands the traditional understanding of occupant accommodation beyond conventionally considering the vehicle interior’s ability to accommodate anthropometry. It broadens the scope to include dynamic conditions, such as when doors are opened, providing a more realistic and practical perspective. As a luxury car manufacturer, it is important to ensure the best overall customer
Rajakumaran, SriramSreenivas, Kalyan
This SAE Aerospace Recommended Practice (ARP) provides a framework for establishing methods and stakeholder responsibilities to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, in-flight entertainment equipment, etc.) meet the seat technical standard order (TSO) minimum performance standards (MPS). These agreements will allow seat suppliers to build and ship TSO-approved seats with integrated electronic components. The document presents the roles and accountabilities of the electronics manufacturer (EM), the seat supplier, and the TC/ATC/STC applicant/holder in the context of AC 21-49, Section 7.b (“Type Certification Using TSO-Approved Seat with Electronic Components Defined in TSO Design”). This document applies to all FAA seat TSOs C39( ), C127( ), etc. The document defines the roles and responsibilities of each party involved in the procurement of electronics, their integration on a TSO-approved seat, and the
Aircraft Seat Committee
A unique wristwatch contains multiple modules, including a sensor array, a microfluidic chip, signal processing, and a data display system to monitor chemicals in human sweat. It can continuously and accurately monitor the levels of potassium (K+), sodium (Na+), and calcium (Ca2+) ions
This SAE Aerospace Recommended Practice (ARP) defines means to assess the effect of changes to seat back mounted IFE monitors on blunt trauma to the head and post-impact sharp edges. The assessment methods described may be used for evaluation of changes to seat back monitor delethalization (blunt trauma and post-test sharp edges) and head injury criterion (HIC) attributes (refer to ARP6448, Appendix A, Item 4). Application is focused on type A-T (transport airplane) certified seat installations
Aircraft Seat Committee
While cooling comfort is important in city buses compared to other vehicles, it is also difficult to keep the cooling performance at a high level. Roof AC units used in commercial vehicles may vary in performance depending on many factors. Therefore, while the design works are in progress, there are some points to be considered while the units are in the packaging phase. These points are that the air used for condenser cooling in the air conditioner suction zone is at low temperature with high flow rate. In this study, it is aimed that the air conditioner and battery cooling unit placed on the roof of a bus developed by ANADOLU ISUZU are not adversely affected by each other. For this reason, in the related study, design and analysis studies were carried out to reduce the negative effects of the hot air coming out of the battery thermal management system (BTMS) in the cooling circuit when the air conditioner is activated. The aim of the study is to ensure that the air-conditioning unit
Küçükbayram, Hamdi
This document provides background information, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and similarity criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP6330 defines multiple test methods used to assess the effect of seat back mounted IFE monitor changes on blunt trauma to the head and post-impact sharp edge generation. The data generated is based on seat and IFE components installed on type A-T (transport airplane) certified aircraft. While not within the scope of ARP6330, generated test data for the possible future development of surrogate target evaluation methods is also included
Aircraft Seat Committee
Trim materials are often used for vibroacoustic energy absorption purposes within vehicles. To estimate the sound impact at a driver’s ear, the sub-structuring approach can be applied. Thus, transfer functions are calculated starting from the acoustic source to the car body, from the car body to the trim and, finally, from the trim to the inner cavity where the driver is located. One of the most challenging parts is the calculation of the transfer functions from the car body inner surface to the bottom trim surface. Commonly, freely laying mass-spring systems (trims) are simulated with a fixed or in some cases with a sliding boundary condition at the trim-structure interface. As a result, interface phenomena such as friction, stick-slip or discontinuities are not considered. Such approaches allow for faster simulations but result in simulations strongly overestimating the energy transfer, particularly in the frequency range where the mass-spring system’s resonances take place. In the
Bronzova, MariiaBocquillet, ArnaudSchanz, Martin
Items per page:
1 – 50 of 7000