Browse Topic: Interiors, Cabins, and Cockpits

Items (7,215)
This paper explores the adaptability and reliability testing methods of electric vehicles under the unique high-temperature and high-humidity climate conditions in Southeast Asia. The focus of the research here is on five key performance evaluation contents, namely reliability driving test, charging performance test, range assessment, air conditioning cooling efficiency, and in-vehicle air quality monitoring. Relying on a meticulously designed experimental plan, standardized testing procedures, and comprehensive data analysis, this paper assesses the performance of electric vehicles under extreme environmental conditions. The research results show that the climate in Southeast Asia poses significant challenges to the battery systems, powertrains, and thermal management systems of electric vehicles. Based on empirical results, some improvement suggestions are made to support the deployment and application of electric vehicles in this region.
Wang, WeijieDeng, TianhaoWu, YilongZang, Haonan
In early of 2023 the European Union began the process of banning the so-called Per- and polyfluoroalkyl substances, with a total elimination forecast for 2035. Currently, the refrigerant gas used by automakers is the R1234yf, a substitute for the R134a as a refrigerant with zero degree of ozone layer destruction, developed to meet the European directive 2006/40/EC that came into force in 2011. It requires all new car platforms for sale on the continent to use a refrigerant in their air-conditioning system with a Global Warming Potential below 150. The alternatives studies for the replacement of R1234yf are R744 (CO2) and R290 (Propane). The first is characterized by being a non-flammable gas and has a working pressure of 6 to 12 times higher than the current one. The second has the characteristic of having working pressure similar to R1234yf, but it is a highly flammable gas. This work focuses on the analysis of the two alternative gases to R1234yf, exploring their characteristics
Ariza, Valquíria RezendeErberelli, Diego PivattoSilva, Pedro Henrique Moraes daMiyauchi, Edison Tsutomu
2
Oliveira Dias, Vinícius José deBarbieri, Paulo Eduardo LopesMoreira, Thiago Augusto AraújoSantos, Alex HenriqueFreitas Paulino, Tiago de
This paper focuses on the performance of the high-pressure oxygen cylinder oxygen supplemental system in the lavatory of civil aircraft. Due to the potential safety hazards of chemical oxygen generators in the lavatory, high-pressure gaseous oxygen cylinders are used instead. Through theoretical and study, the influence of the orifice on the oxygen flow rate is thoroughly investigated. Based on relevant principles, the calculation method of the gas flow characteristics in the orifice is determined. Considering the high initial pressure of the oxygen cylinder, the supersonic flow condition within approximately 20 minutes is mainly considered. The Simulink is used to simulate the system flow rate under different temperatures during cabin depressurization. Experimental verification shows that the oxygen flow rate under different temperatures meets the minimum oxygen demand, and the simulation results are highly consistent with the experimental results, indicating that the simulation
Wan, ShutingLei, MingjunYu, Xiaoying
In this study, an intelligent monitoring system for electric vehicle seats based on flexible pressure sensor array is proposed. Through the design of multi-layer composite film structure and the collaborative development of STM32 embedded platform, high-precision sensing (error<5%) and rapid response (<200ms) of pressure distribution are realized. The experimental results show that the linearity of the sensor array is ± 1.5% FS in the range of 0-100kpa, and the dynamic response time is 3.6 times higher than that of the traditional sensor; By establishing a three-level adjustment algorithm (fuzzy PID+LSTM prediction+genetic optimization), the seat comfort is improved by 20.5%, and the system energy consumption is reduced by 33.5%. The research provides theoretical and technical support for the transformation of intelligent seats from “passive support” to “active interaction”.
Huang, YifengRong, DaozhiLin, GuoyongHuang, ZhenguiWang, RuliangTao, Chengxi
This SAE Aerospace Recommended Practice (ARP) provides general guidelines and procedures for servicing and maintaining oxygen systems. These methods may apply to gaseous, liquid, chemical, and portable oxygen systems. This document is not intended to replace manufacturer or airline maintenance manuals but rather to emphasize the importance of the adherence to such practices and that they be followed. Attention is given to ensure the cleanliness of oxygen systems and components are respected and appropriate practices are followed. This document provides guidance and recommendations, for engineering and maintenance personnel for airlines, modification centers, and third-party maintenance contractors, to be used while performing maintenance on oxygen systems and components. This document is intended as guidance only and may not be cited as a requirement.
A-10 Aircraft Oxygen Equipment Committee
In order to determine the ranking of factors affecting passengers’ evaluation of the aircraft cabin, a cabin evaluation system for aircraft was constructed by studying domestic and foreign literature. Taking the aircraft cabin as the research object, the Analytic Hierarchy Process (AHP) is used to construct an aircraft cabin evaluation system consisting of 3 primary indicators and 15 secondary indicators. The comprehensive weights of each indicator are determined through a combination of qualitative and quantitative research methods, providing important references for aircraft cabin design.
Cai, Ruihong
In order to meet the high lightweight and transmission accuracy requirements of a certain airborne system, the seat ring bearing adopts a lightweight material 4-point contact ball slewing bearing. However, the non-linear contact of a large number of balls during the working process of the seat ring makes simulation difficult, and ball damage often occurs in previous experiments. Based on the bearing capacity of the shaft, the influence of uneven load transmission of the ball on the response was considered. The response of the bearing under shooting and airdrop landing impact loads was calculated and analyzed using multi rigid body and finite element methods, respectively. The results indicate that under the impact load, the stress on the ball has exceeded the yield limit of the material, resulting in irreversible plastic deformation. The plastic deformation morphology is basically consistent with the damage morphology of the test ball, which verifies the accuracy of the simulation
Zhang, TaipingNing, BianfangWang, HuatingFan, He
Belt-positioning booster seats (BPBs) help promote proper seat belt fit for children in vehicles. The effectiveness of BPBs depends on occupant posture, which can be influenced by BPB design features. This study aimed to quantitatively describe how children's postures naturally change over time in BPBs, using pressure mats. Thirty children aged 5 to 12 participated in two 30-minute trials using randomly assigned seating configurations. Five configurations were studied by installing two backless BPBs in vehicle captain’s chairs, varying booster profile (high, low, or no BPB) and armrest presence (with or without BPB/vehicle seat armrests). TekScan 5250 pressure mats were placed on the seating surfaces. Children began in an ideal reference posture, and center of force (COF) data were collected continuously. Additional observations on posture, behavior, and comfort were periodically collected. Mixed models, including effects of seating configuration, time, and volunteer characteristics
Connell, RosalieBaker, Gretchen H.Mansfield, Julie A.
Combining simulation with probabilistic ML enables engineers to chart the full design landscape, quantify uncertainty and uncover viable options that intuition and brute force alone would miss. Components and systems are routinely designed and validated virtually through tools like CFD and FEA before any physical prototype is built. The benefits are obvious: faster iteration, reduced cost and better products. But simulation is not cheap. Each run can take hours, consume costly GPU/CPU resources and require highly skilled engineers who are already in short supply. Licenses and compute costs can easily reach tens of thousands of dollars per seat, and most teams can complete only a few runs per day.
Appleyard, Nick
Whether it’s the meeting room of an office building, the exhibition room of a museum or the waiting area of a government office, many people gather in such places, and quickly the air becomes thick. This is partly due to the increased humidity. Ventilation systems are commonly used in office and administrative buildings to dehumidify rooms and ensure a comfortable atmosphere. Mechanical dehumidification works reliably, but it costs energy and — depending on the electricity used — has a negative climate impact.
Automotive wooden interiors are increasingly popular among consumers for their excellent appearance and texture. However, low light transmittance limits their application in automotive interior smart surfaces. This study explores light transmission technology for wood veneer in automotive interiors, proposing two solutions based on the properties of wood veneer: the light-transmitting veneer solution and the laser-engraved beacon solution. Both solutions were tested through production experiments to evaluate the light transmission effects and process feasibility. Experimental results show that the light-transmitting veneer solution significantly improves the light transmittance of wood veneers through material modification, but instability in structure and materials leads to the difficulty of presenting a better light transmission effect. In contrast, the laser-engraved beacon solution achieves clear and stable light transmission effects by directly processing light-transmitting
Yu, YangDai, XiaodongYu, PengHe, PingLin, HuangxuZhang, Xuechang
To enhance the predictive accuracy between seat structural parameters and crash performance, a hybrid model was constructed by coupling an Improved Particle Swarm Optimization (IPSO) algorithm with a Back Propagation Neural Network (BPNN). First, a finite element model for front and rear impact of automotive seats was established based on experimental data, and the model’s accuracy was verified. Subsequently, simulations were conducted, and the results were analyzed. The Energy Absorption Mass Ratio method was used to screen the design variables, ultimately selecting 10 thickness variables and 9 material variables as design variables. Latin Hypercube Sampling was employed to divide the dataset into a testing set and a training set. Then, the Particle Swarm Optimization (PSO) was enhanced with Levy flights and a local mutation strategy, utilizing the IPSO algorithm to optimize the initial weights and thresholds of the BPNN, resulting in the establishment of the IPSO-BPNN predictive
Qiu, YufeiLong, Jiangqi
Compressor is one of rotating component in AC system and function of the compressor is to increase the pressure of refrigerant and circulate the refrigerant across the system. Swash plate compressor is generally used in automotive AC application due to its light weight and compact size. Torque required to operate the compressor is very important and Compressor torque for specific capacity need to be evaluated based on simulation result. For this, simulation tools are effectively used. Modeling and simulation are the key enablers to improve the design and development process. They are extensively used throughout the development cycle. MBD based simulation is more commonly used which gives better understanding of the movement of kinematic part. Reaction forces from the result will help in providing information for the CAE analysis. Many parameters like reaction forces, torque and power varying with shaft angle of rotation is predicted using MBD and result is analyzed. Rigid and Flexible
Parayil, Paulson
Thermal Management System (TMS) for Battery Electric Vehicles (BEV) incorporates maintaining optimum temperature for cabin, battery and e-powertrain subsystems under different charging and discharging conditions at various ambient temperatures. Current methods of thermal management are inefficient, complex and lead to wastage of energy and battery capacity loss due to inability of energy transfer between subsystems. In this paper, the energy consumption of an electric vehicle's thermal management system is reduced by a novel approach for integration of various subsystems. Integrated Thermal Management System (ITMS) integrates air conditioning system, battery thermal management and e-powertrain system. Characteristics of existing integration strategies are studied, compared, and classified based on their energy efficiency for different operating conditions. A new integrated system is proposed with a heat pump system for cabin and waste heat recovery from e-powertrain. Various cooling
K, MuthukrishnanS, SaikrishnaMahobia, TanmayVijayaraj, Jayanth Murali
The Internal Heat Exchanger (IHX) is an important component in modern car air conditioning (AC) systems, particularly in AC lines. It increases cooling efficiency by transferring heat from the high-pressure liquid refrigerant to the low-pressure vapor. By using this technology, refrigerant sub-cooling and superheating improve, resulting in higher cooling performance, lower energy usage, and less strain on the compressor. It improves vehicle fuel economy and a longer lifespan of AC components. Also, IHX prevents liquid refrigerant from entering the compressor, reducing the danger of damage and increasing system reliability. This optimization helps to maintain consistent refrigerant flow, reduces energy consumption, and improves the overall Coefficient of Performance (COP). The implementation of an IHX technology in AC lines results in more compact, streamlined system designs, which allow for better temperature management, faster response times, and lower cooling loads. An IHX can boost
Dudeja, KailashSingh, Saniya
The study emphasizes on detection of different faults and refrigerant leakage as well as performance investigation of automobile air conditioning system for an electric vehicle by varying various operating conditions. A refrigerant leak in an EV isn't just an inconvenience; it's a potential threat to vehicle range and usability, lifespan and health of the expensive battery pack, overall vehicle performance, passenger safety and comfort, component longevity (motor, power electronics), environmental responsibility. Due to the refrigerant leakage, the cooling system performance degrades, and components tend to fail. Because of that this study is focusing on deriving an algorithm to have an early detection of fault and leakage in the vehicle. The performance of the system is predicted for actual conditions of operation encountered by the automobile air conditioning system. The objective of the present work includes predicting the causes and effects of refrigerant leakage in AC system of
Bezbaruah, PujaYadav, AnkitPilakkattu, Deepak
Widespread adoption of electric vehicles (EVs) is hindered by "range anxiety," a major concern for consumers. A primary contributor to this issue is the significant energy consumption of the Heating, Ventilation, and Air Conditioning (HVAC) system, which can account for 15-40% of a vehicle's total energy demand, directly reducing its practical driving range. Using the 1D simulation tool GT-SUITE, this research provides a comparative analysis of two distinct HVAC architectures: a conventional air-cooled condenser (ACC) and a proposed liquid-cooled condenser (LCC). The performance of both hardware systems was evaluated under two control strategies a Proportional-Integral (PI) controller and a basic On/Off controller—to identify the optimal configuration. The results advocate that optimizing the system's architecture and control logic yields a substantial improvement in the Coefficient of Performance (COP) ranging from 47% to 128% compared to the baseline ACC/On-Off configuration, with a
T R, RakshithYadav, Ankit
Cabin air quality plays a crucial role in ensuring passenger comfort, health and driving experience. There have been growing concerns over poor cabin air quality resulting from multiple factors, including infiltration of external pollutants such as particulate matter, volatile organic compounds, emissions from vehicle interior materials, microbial contamination and inadequate ventilation. Therefore, maintaining optimal air quality inside vehicle cabin has become a critical aspect of vehicle climate control systems. Additionally, high humidity levels inside the cabin contribute to mold growth and fogging of windows, further compromising both air quality and visibility. This review explores such factors contributing to poor cabin air quality, where the severity of these issues ranges from mild discomfort and allergic reactions to long-term respiratory ailments. To mitigate these challenges, automotive manufacturers and researchers have implemented various air purification and filtration
Sharma, Shrutika
Items per page:
1 – 50 of 7215