Browse Topic: Interiors, Cabins, and Cockpits
In both internal combustion engine (ICE) and electric vehicles, Heating, Ventilation, and Air Conditioning (HVAC) systems have become significant contributors to in-cabin noise. Although significant efforts have been made across the industry to reduce noise from airflow handling systems, especially blower noise. Nowadays, original equipment manufacture’s (OEMs) are increasingly focusing on mitigating noise generated by refrigeration handling systems. Since the integration of refrigeration components is vital for the overall Noise Vibrations and Harshness (NVH) refinement of a vehicle, analysing the impact of each HVAC component during vehicle-level integration is essential. This study focused on optimizing the NVH performance of key refrigeration components, including the AC compressor, thermal expansion valve (TXV), suction pipe, and discharge line. The research began with a theoretical investigation of the primary noise and vibration sources, particularly the compressor and TXV
Compressor durability is a critical factor for ensuring the long-term reliability of Mobile Air Conditioning (MAC) systems in passenger vehicles. This study presents a software based strategy for enhancing compressor life using Smart Fully Automatic Temperature Control (FATC), requiring no additional hardware. The proposed approach leverages existing inputs from the FATC and Engine Management System (EMS) to intelligently manage compressor operation, with a focus on addressing challenges related to prolonged non-usage. In extended inactivity scenarios such as during cold weather, vehicle exportation, storage, or breakdowns, lubrication oil tends to settle in the compressor sump, leaving internal parts dry. Sudden reactivation at high engine speeds under such conditions can cause increased friction, wear and even compressor seizure. To mitigate this, an intelligent reactivation protocol has been developed and integrated into the Climate Control Module (CCM). This protocol continuously
In automotive systems, efficient thermal management is essential for refining vehicle performance, enhancing passenger comfort, and reducing MAC Power Consumption. The performance of an air conditioning system is linked to the performance of its condenser, which in turn depends on critical parameters such as the opening area, radiator fan ability and shroud design sealing. The opening area decides the airflow rate through the condenser, directly affecting the heat exchange efficiency. A larger opening area typically allows for greater airflow, enhancing the condenser's ability to dissipate heat. The shroud, which guides the airflow through the condenser, plays a vital role in minimizing warm air recirculation. An optimally designed shroud can significantly improve the condenser's thermal performance by directing the airflow more effectively. Higher fan capacity can increase the airflow through the condenser, improving heat transfer rates. However, it is essential to balance fan
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
Items per page:
50
1 – 50 of 7207