Browse Topic: Interiors, Cabins, and Cockpits

Items (7,177)
This study evaluates the effectiveness of two hybrid computational aeroacoustic methods—Lighthill wave model and perturbed convective wave model—in simulating HVAC duct noise in the automotive industry. Using component-level acoustic testing of a Ford HVAC duct, simulations were conducted at varying airflow rates to assess the accuracy of both models in predicting duct noise. The Lighthill wave model, suitable for noise analysis in regions outside turbulent flow areas, showed a good correlation with experimental data, especially in the frequency range of 100 Hz–5000 Hz, but sometimes struggled with pseudo-noise effects at low frequencies near turbulent regions. The perturbed convective wave model, which is suitable for noise analysis anywhere in the flow domain, underpredicted sound pressure levels at low frequencies as well. Both models underpredicted high-frequency noise (>5 kHz) due to insufficient mesh and time-step sizes. Despite these limitations, the Lighthill wave model
Nam, Jee-WhanMendel, MarcGolberg, Igor
Ride comfort is an important factor in the development of vehicles. Understanding the characteristics of seat components allows more accurate analysis of ride comfort. This study focuses on urethane foam, which is commonly used in vehicle seats. Soft materials such as urethane foam have both elastic and viscous properties that vary with frequency and temperature. Dynamic viscoelastic measurements are effective for investigating the vibrational characteristics of such materials. Although there have been many studies on the viscoelastic properties of urethane foam, no prior research has focused on dynamic viscoelastic measurements during compression to simulate the condition of a person sitting on a seat. In this study, dynamic viscoelastic measurements were performed on compressed urethane foam. Moreover, measurements were conducted at low temperatures, and a master curve using the Williams–Landel–Ferry (WLF) formula (temperature–frequency conversion law) was created.
Kamio, ChihiroYamaguchi, TakaoMaruyama, ShinichiHanawa, KazutoIwase, TsutomuHayashi, TatsuoSato, ToshiharuMogawa, Hajime
This SAE Aerospace Standard (AS) specifies minimum performance standards for airborne head-worn display (HWD) to be used as a head-up display (HUD) equivalent in fixed wing (14 CFR Parts 23 and 25) aircraft. While this document may be applied to rotorcraft using an HWD for piloting functions (14 CFR Parts 27 and 29), additional performance standards may be required. This AS covers basic display requirements but does not include specific application requirements. Specific applications can include flight instrumentation, navigation, engine and system status, alerting, surveillance, communication, terrain awareness, weather, enhanced vision, synthetic vision, and other formats. This document covers criteria for conformal HWD systems that are intended for use in the flight deck by the pilot or copilot. Display minimum performance characteristics are specified for standard and other environmental conditions for the purpose of product qualification. Figure 1 defines the HWD System Scope for
A-4HUD Head-up Display Subcommittee
This SAE Recommended Practice is intended to provide technicians with safe and efficient techniques and general equipment recommendations for servicing mobile air conditioning systems in off-road, self-propelled work machines as defined in SAE J1116 and tractors and machinery for agriculture and forestry as defined in ASABE standard ANSI/ASAE S390. Both refrigerants HFC-134a (R-134a) and HFO-1234yf (R-1234yf) are covered. Many service procedures are similar for both refrigerants, but recovery, recycling, charging, and electronic leak detection tools can be unique to each refrigerant.
HFTC6, Operator Accommodation
This practice presents methods for establishing the driver workspace. Methods are presented for: Establishing accelerator reference points, including the equation for calculating the shoe plane angle Locating the SgRP as a function of seat height (H30) Establishing seat track dimensions using the seating accommodation model Establishing a steering wheel position Application of this document is limited to Class-A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100.
Human Accom and Design Devices Stds Comm
At present, electric head restraints have been developed locally, so overseas mechanisms are used. In this study, two concept mechanisms were developed, and in addition, one patent for a wing-out head restraint mechanism was additionally applied. The new mechanism has had an excellent effect on cost reduction and improvement of operating noise compared to the current one.
Yu, Sanguk
A specific thick film heater (TFH) for electric vehicles is investigaed in this study, and its three dimensional heat tansfer analysis model is estab-lished. The heat transfer and fluid performance of the TFH is analyzed using a computational fluid dynamics soft-ware. The performance of TFH is measured on a test bench, and the measured data is used to validate the developed model. Using the established model, the heating efficiency of TFH is studied for different inlet temperatures and flow rates, and the influence of the fin spoiler structure on TFH heating efficiency and the heating board temperature is investigated. The result indicates that the spoiler structure has a large effect on the board heating temperature, but has little effect on the heating efficiency. An orthogonal experimental design method is used to optimize the design of the fins and water channels, and the purpose is to reduce the board heating temperature for preventing over burning. Under the 25°C inlet
Guan, WenzheGuo, YimingWu, XiaoyongWang, DongdongShangguan, Wen-Bin
Plasticized polyvinyl chloride (PVC) has many applications in automotive industry including electrical harnesses, door handles, seat and head rest covers, and instrument panel (IP) and other interior trim. In IP applications, the PVC skin plays a critical role in passenger airbag deployment (PAB) by tearing along the scored edge of the PAB door and allowing the door to open and the airbag to inflate to protect the occupant. As part of the IP, the PVC skin may be exposed to elevated temperatures and ultraviolet (UV) radiation during the years of the vehicle life cycle which can affect the PVC material properties over time and potentially influence the kinematics of the airbag deployment. Chemical and thermal aging of plasticized PVC materials have been studied in the past, yet no information is found on how the aging affects mechanical properties at high rates of loading typical for airbag deployment events. This paper compares mechanical properties of the virgin PVC-based IP skin
G, KarthiganSavic, VesnaRavichandran, Gowrishankar
With Rapid growth of Electric Vehicles (EVs) in the market challenges such as driving range, charging infrastructure, and reducing charging time needs to be addressed. Unlike traditional Internal combustion vehicles, EVs have limited heating sources and primarily uses electricity from the running battery, which reduces driving range. Additionally, during winter operation, it is necessary to prevent window fogging to ensure better visibility, which requires introducing cold outside air into the cabin. This significantly increases the energy consumption for heating and the driving range can be reduced to half of the normal range. This study introduces the Ceramic Humidity Regulator (CHR), a compact and energy-efficient device developed to address driving range improvement. The CHR uses a desiccant system to dehumidify the cabin, which can prevent window fogging without introducing cold outside air, thereby reducing heating energy consumption. A desiccant system typically consists of two
Hamada, TakafumiShinoda, NarimasaKonno, YoshikiIhara, YukioIto, Masaki
In the post Covid era, risk of infection in conditioned space is getting attention and has generated a lot of interest for the design of the new systems and strategies for the management and operations of the existing HVAC systems. Risk management plays a key role where the amounts of outside air and recirculated airs can be used to mitigate the propagation of the virus within the conditioned space. In other words, ventilation plays a huge role within the conditioned space along with strategies based on UV irradiation, ionization and use of highly efficient filters. Different air purification systems have been created by the researchers based on the titanium oxide-based UV photocatalysis system, filters with MERV ratings higher than 11 (ASHRAE Standard 52.2) and HEPA filters. Recent ASHRAE standard 241 (2023) on infectious diseases recommends using high ventilation rates within the conditioned space to reduce virus concentration, and hence, to reduce the risk of infection. Determining
Mathur, Gursaran
A method for performance calculation and experimental method of a high voltage heater system in electric vehicles is proposed. Firstly, heater outlet temperature and pressure drop of the heater are used as metrics to compare simulation results with experimental data, thereby validating the established model. Then, simulations are performed on two heater flow channel configurations: a cavity flow channel and a cooling fin flow channel. It is observed that the latter significantly reduces the heating plate temperature. This reduction enhances the protection of heating elements and extends their operational lifespan, demonstrating the advantages of incorporating cooling fins into the flow channel structure. The optimization variables for multi-objective optimization include the fin unit length, fin height, fin thickness, fin width, and spacing between two adjacent rows of fins. The optimization objectives include pressure drop, heat transfer efficiency, and heating plate temperature
Gong, MingWang, XihuiWang, DongdongShangguan, Wen-Bin
The focus on thermal system efficiency has increased with the introduction of electric vehicles (EV) where the heating and cooling of the cabin represents a major energy requirement that has a direct impact on vehicle range in hot and cold ambient conditions. This is further exacerbated during heating where EVs do not have an engine to provide a source of heat and instead use stored electrical energy from the battery to heat the vehicle. This paper considers two approaches to reduce the energy required by the climate control and hence increase the range of the vehicle. The first approach considers minimizing the energy to keep the passengers comfortable, whilst the second approach optimizes the heating and ventilation system to minimize the energy required to achieve the target setpoints. Finally, these two approaches are combined to minimize both the passenger’s demand and the energy required to meet the demand. This paper covers the development process from simulation to
Fussey, PeterDutta, NilabzaMilton, GarethMa, He
This study experimentally investigates the liquid jet breakup process in a vaporizer of a microturbine combustion chamber under equivalent operating conditions, including temperature and air mass flow rate. A high-speed camera experimental system, coupled with an image processing code, was developed to analyze the jet breakup length. The fuel jet is centrally positioned in a vaporizer with an inner diameter of 8mm. Airflow enters the vaporizer at controlled pressures, while thermal conditions are maintained between 298 K and 373 K using a PID-controlled heating system. The liquid is supplied through a jet with a 0.4 mm inner diameter, with a range of Reynolds numbers (Reliq = 2300÷3400), and aerodynamic Weber numbers (Weg = 4÷10), corresponding to the membrane and/or fiber breakup modes of the liquid jet. Based on the results of jet breakup length, a new model has been developed to complement flow regimes by low Weber and Reynolds numbers. The analysis of droplet size distribution
Ha, NguyenQuan, NguyenManh, VuPham, Phuong Xuan
The increased importance of aerodynamics to help with overall vehicle efficiency necessitates a desire to improve the accuracy of the measuring methods. To help with that goal, this paper will provide a method for correcting belt-whip and wheel ventilation drag on single and 3-belt wind tunnels. This is primarily done through a method of analyzing rolling-road only speed sweeps but also physically implementing a barrier. When understanding the aerodynamic forces applied to a vehicle in a wind tunnel, the goal is to isolate only those forces that it would see in the real-world. This primarily means removing the weight of the vehicle from the vertical force and the rolling resistance of the tires and bearings from the longitudinal force. This is traditionally done by subtracting the no-wind forces from the wind at testing velocity forces. The first issue with the traditional method is that a boundary layer builds up on the belt(s), which can then influence a force onto the vehicle’s
Borton, Zackery
In-Mold Graining (IMG) is an innovative production technology applied to the skin wrapping of automotive interior components. In the design of automotive interior components of door panels and instrument clusters, to overcome process-related problems, such as the thinning of grain patterns and excessive reduction in thickness, simulation of the skin vacuum forming process is required. The Thermoplastic Olefin (TPO) skin material is investigated in this paper, and a viscoelastic mechanical model for this material is established. Dynamic Mechanical Analyzer (DMA) is utilized to perform scan for frequency and temperature, and the tested data is used to obtain key model parameters of the viscoelastic constitutive model. Based on the experimental data, the study explores how to calculate the relaxation time spectrum to describe the viscoelastic properties of TPO material during the vacuum forming process. Numerical simulation of the vacuum forming process of TPO material is conducted using
Chai, BingjiGuo, YimingXie, XinxingZhang, Qu
Improving electric vehicles’ range can be achieved by integrating infrared heating panels (IRPs) into the existing Heating Ventilation and Air-Conditioning system to reduce battery energy consumption while maintaining thermal comfort. Localized comfort control enabled by IRPs is facilitated by thermal comfort index feedback to the control strategy, such as the well-known Predicted Mean Vote (PMV). PMV is obtained by solving nonlinear equations iteratively, which is computationally expensive for vehicle control units and may not be feasible for real-time control. This paper presents the design of real-time capable thermal comfort observer based on feedforward artificial neural network (ANN), utilized for estimating the local PMV extended with IRP radiative heating effects. The vehicle under consideration is equipped with 12 heating panels (zones) organized into six controller clusters that rely on the average PMV feedback from its respective zone provided by a dedicated ANN. Each of six
Cvok, IvanYerramilli-Rao, IshaMiklauzic, Filip
Mobile Air-Conditioning (MAC) systems are a substantial source of energy consumption and CO₂ emissions in passenger vehicles, particularly for electrified vehicles under real-world operating conditions. Enhancing the efficiency of such systems is imperative to achieving greater energy efficiency and maintaining occupants’ comfort. In recognition of their significance, MAC systems can be classified as eco-innovative technologies under EU Regulation 2019/631, effective from 2025. This study lays the groundwork for a methodology to calculate CO₂ savings from eco-innovative MAC systems in passenger cars. The approach compares CO₂ emissions between baseline and eco-innovative vehicles under active and inactive MAC systems. Literature-derived indicative ambient conditions are applied to reflect realistic MAC usage scenarios in Europe. The testing protocol follows the WLTP procedure under controlled ambient conditions, including temperature, humidity, and solar irradiation, which can either
Di Pierro, GiuseppeCurrò, DavideGil-Sayas, SusanaFontaras, Georgios
The National Highway Safety Administration (NHTSA) recently published an Advanced Notice of Proposed Rulemaking (ANPRM) to evaluate seat performance in rear impacts [1]. The ANPRM was issued partially in response to two petitions requesting an increase in seatback strength requirements and high-speed testing with various size Anthropometric Test Devices (ATDs). To better understand the effect of these requests, this study evaluates ATD responses with two high-speed rear sled conditions, three occupant sizes and various seat designs. Seat designs varied from modern conventional seats with yielding properties to stronger and stiffer seats represented by seat integrated restraint (SIR) designs, and rigidized SIR seats. Twenty-four rear sled tests were analyzed. The tests were matched by crash severity, seat designs (strength), ATD sizes and initial postures (nominal/in-position, leaned forward and leaned outboard). The test data and videos were reviewed to identify time coinciding with
Parenteau, ChantalBurnett, Roger
The National Highway Traffic Safety Administration (NHTSA) published an Advance Notice of Proposed Rulemaking (ANPRM) to update the Federal Motor Vehicle Safety Standard (FMVSS) 207. Part of the ANPRM is to assess the merit of conducting quasi static body block seat pull tests and conducting FMVSS 301 rear crash tests at 80 km/h or higher with a 95th percentile ATD lap-shoulder belted in the front seats and limiting seatback deflection to 15 to 25 degrees. Prior to updating regulations, it is important to understand the seating design history and implications. This study was conducted to provide a historical background on seat design and performance using literature and test data. One objective was to first define the terminology used to describe occupant kinematics in rear crashes. Secondly, seat design evolution is then discussed. Third, test methods and test results were summarized, and fourth, the field performance are synopsized and discussed with respect to 2nd row occupant
Parenteau, ChantalBurnett, RogerDavidson, Russell
The difficulties of testing a bluff automotive body of sufficient scale to match the on-road vehicle Reynolds number in a closed wall wind tunnel has led to many approaches being taken to adjust the resulting data for the inherent interference effects. But it has been very difficult to experimentally analyze the effects that are occurring on and around the vehicle when these blockage interferences are taking place. The present study is an extension of earlier works by the author and similarly to those studies uses the computational fluid dynamics analysis of three bodies that generate large wakes to examine the interference phenomena in solid wall wind tunnels and the effects that they have on the pressures, and forces experienced by the vehicle model when it is in yawed conditions up to 20 degrees. This is accomplished by executing a series of CFD configurations with varying sized cross sections from 0.4% to 14% blockage enabling an approximation of free air conditions as a reference
Gleason, MarkRiegel, Eugen
In modern automotive powertrains, the front-end accessory drive represents a crucial subsystem that guarantees the proper functioning of micro and mild hybrid configurations and auxiliary vehicle functionalities. The motor/generator (12 V or 48 V), the air conditioning compressor and other accessories rely on this subsystem. Therein, the poly-V belt is the main transmission mechanism. From an efficiency standpoint, its behavior is usually represented through slip and elastic shear phenomena. However, the viscoelastic nature of the compounds that constitute the belt layers demand a more detailed approximation of the loss mechanisms. The quantification of such losses allows evaluating the performance of the e-machine integrated in the powertrain. This work models the belt through a lumped-parameter time-domain model, where domains are discretized into multiple elements and represented through the generalized Maxwell model. Loss contributions due to bending, stretching, compression and
Galluzzi, RenatoAmati, NicolaBonfitto, AngeloHegde, ShaileshZenerino, EnricoPennazza, MarioStaniscia, Emiliano
A major portion of the energy consumed in a vehicle is spent on keeping the occupants thermally comfortable in all environmental conditions when the heating, ventilation, and air-conditioning (HVAC) system is turned on. Maintaining the thermal comfort of a passenger is critical in terms of fuel consumption and emission for internal combustion engine (ICE) vehicles. In electrified vehicles, where range is of major concern, this gains further-more importance. SC03 is a test defined by the US Environmental Protection Agency (EPA) to measure tailpipe emissions and fuel economy of passenger cars with the air-conditioner on. The current study would focus on this drive cycle on an ICE vehicle. The co-simulation framework would include a 1D thermal system model, associated thermal controls, a vehicle cabin model, and a human thermal model. 1D model will be predicting the energy consumption via compressor power, refrigerant pressure and temperature across the loop, component heat rejection, etc
Natarajan, ShankarBalasubramanian, Sudharsan
The electric vehicle thermal management system is a critical sub-systems of electric vehicles, and has a substantial impact on the driving range. The objective of this paper is to optimize the performance of the heat pump air conditioning system, battery, and motor thermal management system by adopting an integrated design. This approach is expected to effectively improve the COP (Coefficient of Performance) of cabin heating. An integrated thermal management system model of the heat pump air conditioning system, battery, and motor thermal management system is established using AMEsim. Key parameters, such as refrigerant temperature, pressure, and flow rate at the outlet of each component of the system are compared with the measured data to verify the correctness of the model established in this paper. Using the established model, the impact of compressor speed on the heating comfort of the cabin under high-temperature conditions in summer was studied, and a control strategy for rapid
Zhang, MinLi, LipingZhou, JianhuaHuang, YuZhen, RanShangguan, Wen-Bin
Toyota Motor Corporation pursuing an omnidirectional strategy that includes battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and fuel cell electric vehicle (FCEV) to accelerate electrification. One of the technical challenges with our xEV batteries which feature good degradation resistance and long battery life, is that regenerative braking cannot be fully effective due to the decrease in regenerative power in some situations, such as low battery temperature. For the electrified vehicles with an internal combustion engine such as PHEVs, the solution has been running the engine to increase deceleration through engine braking during coasting. PHEVs are expected to extend their cruising range and enhance EV driving experience as "Practical BEVs". While increasing battery capacity and enhancing convenience, the restrictions on EV driving opportunity due to low battery temperature may negatively affect PHEV’s appealing. As an alternative, introducing a battery heater
Hoshino, Yu
Achieving and maintaining thermal comfort for vehicle cabin cool down and warm up is a challenging task. Keeping the passenger comfortable in all driving scenarios needs a properly sized system. Predicting thermal comfort in a virtual environment consisting of thermal system and vehicle cabin gives us the opportunity to size the system components to maintain thermal comfort. These studies could then be extended to develop comfort-based control strategies that help us achieve a system optimized for performance. The present study focuses on developing a co-simulation methodology for predicting thermal comfort in a vehicle for hot and cold ambient conditions. Key to proper system sizing would be to capture the cabin thermal loads accurately. Traditionally, either a 1D or 3D cabin model is used for assessment of thermal comfort. Both these cabin models have their own applications and limitations. A 1D-3D cabin model along with the developed co-simulation methodology in this work addresses
Balasubramanian, SudharsanNatarajan, Shankar
Optimal control of battery electric vehicle thermal management systems is essential for maximizi ng the driving range in extreme weather conditions. Vehicles equipped with advanced heating, ventilation and air-conditioning (HVAC) systems based on heat pumps with secondary coolant loops are more challenging to control due to actuator redundancy and increased thermal inertia. This paper presents the dynamic programming (DP)-based offline control trajectory optimization of heat pump-based HVAC aimed at maximizing thermal comfort and energy efficiency. Besides deriving benchmark results, the goal of trajectory optimization is to gain insights for practical hierarchical control strategy modifications to further improve real-time controllers’ performance. DP optimizes cabin inlet air temperature and flow rate to set the trade-off between thermal comfort and energy efficiency while considering the nonlinear dynamics and operating limits of HVAC system in addition to typically considered cabin
Cvok, IvanDeur, Josko
Automotive seating systems have become increasingly sophisticated, providing consumers with more flexible configurations and comfort functionalities. Traditional power seating, which relied on a few motors to adjust the seat position, has evolved into more technically advanced reconfigurable systems equipped with additional feedback sensors and actuators. These advancements include features such as Easy Entry, Zero Gravity, Stadium Swivel, IP Nesting, Auto Lumbar/Bolster Adjustment and Power Long Rails. All the features indicate that the overall control of seating systems now resembles robotic arm control or multi-body control, involving numerous coordinated movements. In this paper, we propose a novel control strategy for the coordinated speed control of multiple motors. Unlike traditional seating controls, which typically use direct switches or open-loop systems, we introduce a feedback approach that incorporates Kalman-filter-based speed estimation using raw signals directly from
Yang, HanlongLi, Miranda
In this paper, the topology and shape optimization of a vehicle Heating, Ventilation, and Air Conditioning (HVAC) system is presented. The CFD and optimization methodologies are implemented within AcuSolve™ software. The topology optimization algorithm computes the geometry, where the design domain is parameterized with a field of porosity design variables which indicates the material, fluid or solid, throughout the domain. The optimization is performed using the continuous adjoint approach by the Galerkin Least Squares solver on which the AcuSolve™ solver is based. The design is further improved by using shape optimization. To optimize the geometrical shape, a combination of smooth perturbations, in terms of so called morph shapes, are used to deform the geometrical shape in the optimization algorithm. To this end, a parameterization of the design space is done using a moderate number of design variables, each associated with a morph shape. The two optimization phases are connected by
Papadimitriou, DimitriosSandboge, Robert
A reconfigurable experimental seat is useful for seating comfort research and allows researchers to investigate the effects of seat parameters and to propose quantitative guidelines for improving seat comfort. Since 2017, Gustave Eiffel University has such an experimental seat which allows us to carry out parametric studies on the geometric dimensions of a seat and to understand the role of the contact force, particularly that in shear force. Equipped with force and positioning sensors, all contact forces and seat position can be measured. More specifically, it is equipped on the seat with a matrix of 52 cylinders, each adjustable in height and each equipped with a three-axis force sensor. These cylinders make it possible to vary the contact surface of seat pan and measure the distribution of contact forces. More recently, a new system with a matrix of 263 hydraulic cylinders was designed and manufactured to better study the comfort of the backrest in replacement of the three-support
Wang, XuguangBeurier, Georges
The advancement of automotive industry demand compact size of HVAC with better cabin comfort. To achieve this, HVAC has to be optimized in all the aspects such as in shape & size, thermal comfort as well as in noise comfort. from an HVAC perspective, aeroacoustics noise is more significant due to its intensity at higher speeds and frequencies. Since HVAC is mounted inside the cabin, noise can transfer directly inside cabin. To avoid this, noise reduction or noise controlling is of very important. This is possible with HVAC design and simulation at the initial level and acoustic prediction after the CFD/CAA analysis. The present paper describes the aeroacoustic simulation of one of the HVAC to predict the noise during face mode. For that, 1-D simulation has been done initially to find the porosity of heat exchangers and coupled with a CFD solver. STAR CCM+ software is used for the CFD analysis. Transient simulation is performed with compressible fluid using a moving mesh approach. To
Kame, ShubhamParayil, PaulsonGoel, Arunkumar
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
S M, Rahuld, AnanthaKakani, Phani Kumar
This SAE Edge Research Report explores advancements in next-generation mobility, focusing on digitalized and smart cockpits and cabins. It offers literature review, examining current customer experiences with traditional vehicles and future mobility expectations. Key topics include integrating smart cockpit and cabin technologies, addressing challenges in customer and user experience (UX) in digital environments, and discussing strategies for transitioning from traditional vehicles to electric ones while educating customers. User Experience for Digitalized and Smart Cockpits and Cabins of Next-gen Mobility covers both on- and off-vehicle experiences, analyzing complexities in developing and deploying digital products and services with effective user interfaces. Emphasis is placed on meeting UX requirements, gaining user acceptance, and avoiding trust issues due to poor UX. Additionally, the report concludes with suggestions for improving UX in digital products and services for future
Abdul Hamid, Umar Zakir
Items per page:
1 – 50 of 7177