Browse Topic: Interiors, Cabins, and Cockpits
The focus on thermal system efficiency has increased with the introduction of electric vehicles (EV) where the heating and cooling of the cabin represents a major energy requirement that has a direct impact on vehicle range in hot and cold ambient conditions. This is further exacerbated during heating where EVs do not have an engine to provide a source of heat and instead use stored electrical energy from the battery to heat the vehicle. This paper considers two approaches to reduce the energy required by the climate control and hence increase the range of the vehicle. The first approach considers minimizing the energy to keep the passengers comfortable, whilst the second approach optimizes the heating and ventilation system to minimize the energy required to achieve the target setpoints. Finally, these two approaches are combined to minimize both the passenger’s demand and the energy required to meet the demand. This paper covers the development process from simulation to
At present, electric head restraints have been developed locally, so overseas mechanisms are used. In this study, two concept mechanisms were developed, and in addition, one patent for a wing-out head restraint mechanism was additionally applied. The new mechanism has had an excellent effect on cost reduction and improvement of operating noise compared to the current one.
Automotive seating systems have become increasingly sophisticated, providing consumers with more flexible configurations and comfort functionalities. Traditional power seating, which relied on a few motors to adjust the seat position, has evolved into more technically advanced reconfigurable systems equipped with additional feedback sensors and actuators. These advancements include features such as Easy Entry, Zero Gravity, Stadium Swivel, IP Nesting, Auto Lumbar/Bolster Adjustment and Power Long Rails. All the features indicate that the overall control of seating systems now resembles robotic arm control or multi-body control, involving numerous coordinated movements. In this paper, we propose a novel control strategy for the coordinated speed control of multiple motors. Unlike traditional seating controls, which typically use direct switches or open-loop systems, we introduce a feedback approach that incorporates Kalman-filter-based speed estimation using raw signals directly from
Plasticized polyvinyl chloride (PVC) has many applications in automotive industry including electrical harnesses, door handles, seat and head rest covers, and instrument panel (IP) and other interior trim. In IP applications, the PVC skin plays a critical role in passenger airbag deployment (PAB) by tearing along the scored edge of the PAB door and allowing the door to open and the airbag to inflate to protect the occupant. As part of the IP, the PVC skin may be exposed to elevated temperatures and ultraviolet (UV) radiation during the years of the vehicle life cycle which can affect the PVC material properties over time and potentially influence the kinematics of the airbag deployment. Chemical and thermal aging of plasticized PVC materials have been studied in the past, yet no information is found on how the aging affects mechanical properties at high rates of loading typical for airbag deployment events. This paper compares mechanical properties of the virgin PVC-based IP skin
The increased importance of aerodynamics to help with overall vehicle efficiency necessitates a desire to improve the accuracy of the measuring methods. To help with that goal, this paper will provide a method for correcting belt-whip and wheel ventilation drag on single and 3-belt wind tunnels. This is primarily done through a method of analyzing rolling-road only speed sweeps but also physically implementing a barrier. When understanding the aerodynamic forces applied to a vehicle in a wind tunnel, the goal is to isolate only those forces that it would see in the real-world. This primarily means removing the weight of the vehicle from the vertical force and the rolling resistance of the tires and bearings from the longitudinal force. This is traditionally done by subtracting the no-wind forces from the wind at testing velocity forces. The first issue with the traditional method is that a boundary layer builds up on the belt(s), which can then influence a force onto the vehicle’s
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
This SAE Edge Research Report explores advancements in next-generation mobility, focusing on digitalized and smart cockpits and cabins. It offers literature review, examining current customer experiences with traditional vehicles and future mobility expectations. Key topics include integrating smart cockpit and cabin technologies, addressing challenges in customer and user experience (UX) in digital environments, and discussing strategies for transitioning from traditional vehicles to electric ones while educating customers. User Experience for Digitalized and Smart Cockpits and Cabins of Next-gen Mobility covers both on- and off-vehicle experiences, analyzing complexities in developing and deploying digital products and services with effective user interfaces. Emphasis is placed on meeting UX requirements, gaining user acceptance, and avoiding trust issues due to poor UX. Additionally, the report concludes with suggestions for improving UX in digital products and services for future
A tested method of data presentation and use is described herein. The method shown is a useful guide, to be used with care and to be improved with use.
This standard is intended to apply to portable compressed gaseous oxygen equipment. When properly configured, this equipment is used either for the administration of supplemental oxygen, first aid oxygen or smoke protection to one or more occupants of either private or commercial transport aircraft. This standard is applicable to the following types of portable oxygen equipment: a Continuous flow 1 Pre-set 2 Adjustable 3 Automatic b Demand flow 1 Straight-demand 2 Diluter-demand 3 Pressure-demand c Combination continuous flow and demand flow.
This SAE Standard covers the mini-shed testing methodology to measure the rate of refrigerant loss from an automotive air conditioning (A/C) system. This SAE procedure encompasses both front and rear air conditioning systems utilizing refrigerants operating under sub-critical conditions. The SAE procedure will cover multiple refrigerants to emission testing and is utilized for evaluating air condtioning systems. Heat pump systems can also be evaluated; however, they will have different usage and mission profiles.
This SAE Recommended Practice establishes uniform test procedures and performance requirements for the defrosting system of enclosed cab trucks, buses, and multipurpose vehicles. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. For laboratory evaluation of defroster systems, current engineering practice prescribes that an ice coating of known thickness be applied to the windshield and left- and right-hand side windows to provide more uniform and repeatable test results, even though - under actual conditions - such a coating would necessarily be scraped off before driving. The test condition, therefore, represents a more severe condition than the actual condition, where the defroster system must merely be capable of maintaining a cleared viewing area. Because of the special nature of the operation of most of these vehicles (where vehicles are generally kept in a garage or warmed up before driving), and since
This SAE Standard covers fittings, couplers, and hoses intended for connecting service hoses from mobile air-conditioning systems to service equipment such as charging, recovery, and recycling equipment (see Figure 1). This specification covers service hose fittings and couplers for MAC service equipment service hoses, per SAE J2843 and SAE J2851, from mobile air-conditioning systems to service equipment such as manifold gauges, vacuum pumps, and air-conditioning charging, recovery, and recycling equipment.
Fused Deposition Modeling (FDM) is a widely recognized additive manufacturing method that is highly regarded for its ability to create complex structures using thermoplastic materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability. TPU has several applications, including automobile instrument panels, caster wheels, power tools, sports goods, medical equipment, drive belts, footwear, inflatable rafts, fire hoses, buffer weight tips, and a wide range of extruded film, sheet, and profile applications.. The primary objective of this study is to enhance the FDM parameters for TPU material and construct regression models that can accurately forecast printing performance. The study involved conducting experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses, including dimensional accuracy, surface quality, and mechanical
The present research explores the potential of high-performance thermoplastics, Polymethyl Methacrylate and Polyurethane, to enhance the passive safety of automotive instrument panels. The purpose is to evaluate and compare the passive safety of these two materials through the conduct of the Charpy Impact Test, Tensile Strength Test, and Crush Test —. For this, five samples were prepared in the case of each material via injection moulding, which enabled reliability, and consistency of the findings. As a result, it was found that in the case of the Charpy Impact Test, the average impact resistance varies with PMMA exhibiting a level of 15.08 kJ/m2 as opposed to the value of 12.16 kJ/m2 for PU. The Tensile Strength Test produced the average tensile strength of 50.16 for PMMA and 48.2 for PU, which implied superior structural integrity under tension for the first type of thermoplastic. Finally, the Crush Test showed that PMMA is more resistant to crushes on average than PU with the
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors. The equipment specified here will identify smaller refrigerant leaks when servicing motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency. This document does not address any safety issues concerning the equipment design or use beyond that of sampling a flammable refrigerant, save those described in 3.1 and 3.2 of this document. All requirements of this standard shall be verified in SAE J2911.
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of "shall" in this specification expresses provisions that are binding. Nonmandatory provisions use the term "should."
Items per page:
50
1 – 50 of 7168