Browse Topic: Interiors, Cabins, and Cockpits

Items (7,181)
In order to improve the efficiency of verification and optimization of control strategies for air-conditioning systems, a thermal management platform is established based on a rapid control prototyping (RCP) approach in the article. The platform is composed of a HVAC hardware bench, a real-time control system, and a control software model. This article describes the overall architecture of the platform, the control strategy, and an efficient method for development and optimization of air-conditioning control strategies. The cooling and heating modes of the air conditioner are tested. The results show that the control strategy can be directly modified via the platform to improve the performance of the whole system. The experimental results show that after modifying the control strategy, the cooling effect of the air conditioner is optimized and the cooling time is reduced by 10.6%. The CLTC cycle is also tested in this work to verify the dynamic control performance of the air
Liu, ShuqiYu, YilongWang, WeiWang, YuanZhang, YilunXu, Xiang
In the present article it is investigated why active grille shutters (AGS) can have very different aerodynamic characteristics, ranging from progressive to strongly degressive, and which factors influence them. For this purpose, the authority concept known from the field of heating, ventilation, and air-conditioning (HVAC) is referred to. According to this theory, the control characteristics of dampers depend primarily on the ratio of the pressure losses at the fully open damper to the pressure losses of the rest of the system. The adaptation of the concept to the automotive field shows that, in addition to the pressure losses, the geometry of the cooling air ducting plays a decisive role in motor vehicles. The effect of driving speed and fan operation on the characteristic curves is also being investigated. In addition, authority theory can also be used to derive the conditions under which the opening characteristic curve of an AGS provides a good prediction of the real characteristic
Wolf, Thomas
Electrification of vehicles plays an important role in the transformation process towards sustainable mobility in the individual and transport sector. As a result, new challenges must be met during the development process regarding the vehicles overall energy management system. A key challenge is the development of thermal management systems to optimize overall vehicle efficiency and to minimize ageing effects of the powertrain components while maintaining passenger comfort. Efficiency and ageing effects are highly dependent on the conditioning state of the powertrain components due to their high thermal sensitivity with simultaneously narrow thermal operating limits. Comfort functions like cabin air conditioning must be fulfilled as well, which must be considered by the thermal management system. To develop innovative solutions for thermal management systems at an early stage of the development process, thermal emulation can be used to substitute hardware components. Therefore
Weimer, NikoHohenberg, GünterBeidl, ChristianFiore, LuisStenger, ErikSeib, Rico
Fuel cell hybrid electric vehicles (FCHEVs) are a promising solution for decarbonizing heavy-duty transport by combining hydrogen fuel cells with battery storage to deliver long range, fast refuelling, and high payload capacity. However, many existing simulation models rely on outdated fuel cell parameters, limiting their ability to reflect recent technological improvements and accurately predict system-level performance. This study addresses this gap by integrating a state-of-the-art, physics-based model of a polymer electrolyte membrane fuel cell (PEMFC) into an open-source heavy-duty vehicle simulation framework. The updated model incorporates recent advancements in catalyst design and membrane conductivity, enabling improved representation of electrochemical behavior and real-time compressor control. Model performance was evaluated over a realistic 120 km long-haul drive cycle. Compared to the traditional fuel cell model, the updated system demonstrated up to 20% lower hydrogen
Dursun, BeyzaJohansson, MaxTunestal, Peraronsson, UlfEriksson, LarsAndersson, Oivind
To curb global warming and meet stricter greenhouse gas emission standards all over the globe, it is essential to minimize the carbon footprint of applications in the mobility and transport segment. The demands on mobility, transportation and services are constantly increasing in line with worldwide population growth and the corresponding need for economic prosperity. This ongoing trend will lead to a significant increase in energy requirements for mobility-related applications in the upcoming time, despite all efficiency improvements. The timely introduction and accelerated spread of low-carbon/carbon-neutral energy sources is therefore of crucial importance. In addition to the switch to electric propulsion systems, particularly in the light-duty vehicle sector, the use of advanced and optimized hydrogen (H2)-powered internal combustion engines (ICE) represents a parallel, compatible technical option, as these applications will also meet the most stringent requirements in terms of
Koerfer, ThomasZimmer, PascalLi, ZhenglingPischinger, StefanLückerath, Moritz
This SAE Aerospace Recommended Practice (ARP) contains methods used to measure the optical performance of airborne electronic flat panel display (FPD) systems. The methods described are specific to the direct view, liquid crystal matrix (x-y addressable) display technology used on aircraft flight decks. The focus of this document is on active matrix, liquid crystal displays (LCD). The majority of the procedures can be applied to other display technologies, however, it is cautioned that some techniques need to be tailored to different display technologies. The document covers monochrome and color LCD operation in the transmissive mode within the visual spectrum (the wavelength range of 380 to 780 nm). These procedures are adaptable to reflective and transflective displays paying special attention to the source illumination geometry. Photometric and colorimetric measurement procedures for airborne direct view CRT (cathode ray tube) displays are found in ARP1782. Optical measurement
A-20A Crew Station Lighting
This SAE Aerospace Recommended Practice (ARP) provides criteria for design and location of power supplies, controls, light fixtures, and associated equipment which are used to provide emergency illumination in transport aircraft, designed to comply with 14 CFR Part 25 (see Reference 1) for operation under 14 CFR Part 91 (see Reference 11) and 14 CFR Part 121 (see Reference 2), and also in compliance with FAA Advisory Circulars AC 25.812-1A (see Reference 3) and AC 25.812-2 (see Reference 10). It is not the purpose of an ARP to specify design methods to be followed in the accomplishment of the stated objectives.
A-20C Interior Lighting
ACT Expo 2025 had a fleet of new commercial vehicle launches as well as displays for models already on the market. One such existing chassis was the Workhorse W56, an electric step van designed for Class 5/6 last-mile delivery. Unlike many of its competitors, Workhorse did not set out to be a technological leader with the W56. Rather, the company took the approach of leveraging the best of the currently available and applicable technologies to produce a durable, reliable and producible product that just happened to be powered by electrons.
Wolfe, Matt
This document is a tool for the certifying authority, flight deck crew station designers, instrument suppliers, lighting suppliers, and component suppliers. It is an aid to understanding and meeting relevant regulatory requirements, particularly those relating to pilot compartment view (refer to 14 CFR § 25.773[a][2]) and instrument lights (refer to 14 CFR § 25.1381[a][2]) for glare arising from visible electromagnetic radiation.
A-20A Crew Station Lighting
This standard is intended to apply to portable compressed gaseous oxygen equipment. When properly configured, this equipment is used either for the administration of supplemental oxygen, first aid oxygen or smoke protection to one or more occupants of either private or commercial transport aircraft. This standard is applicable to the following types of portable oxygen equipment: a Continuous flow 1 Pre-set 2 Adjustable 3 Automatic b Demand flow 1 Straight-demand 2 Diluter-demand 3 Pressure-demand c Combination continuous flow and demand flow.
A-10 Aircraft Oxygen Equipment Committee
As the adoption of battery electric vehicles (BEVs) continues to rise, analyzing their performance under varying environmental conditions that affect energy consumption has become increasingly important. A critical factor influencing the efficiency of BEVs is the heat loss from the operation and interaction between the vehicle components, such as the battery and motor, and the surrounding temperature. This study presents a comprehensive analysis of the thermal interaction in BEVs by integrating hub motor vehicle and battery electrochemical model with environmental factors. It explores how ambient temperature variations influence the performance of EV components, particularly the motors and battery systems, in both hot and cold weather conditions. The simulations also consider the passenger comfort inside the cabin as it investigates the effects of operating the air-conditioning system on overall energy consumption, revealing significant energy consumption shifts during extreme ambient
Abdullah, MohamedZhang, Xi
Current regulations (e.g., Title 14 of the United States Code of Federal Regulations, or 14 CFR) define design requirements for oxygen system provisions for protection of crewmembers and passengers following emergency events such as in-flight decompression. This aerospace information report (AIR) addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a critical concern for all aircraft, ranging from single-engine types operating above 10000 feet to complex, high-performance aircraft equipped with supplemental oxygen systems. Proper planning ensures compliance with regulations and supports pilot and passenger safety at higher altitudes. This document
A-10 Aircraft Oxygen Equipment Committee
This document recommends design and performance criteria for aircraft lighting systems used to illuminate flight deck controls, luminous visual displays used for transfer of information, and flight deck background and instrument surfaces that form the flight deck visual environment. This document is for aircraft, except for applications requiring night vision compatibility.
A-20A Crew Station Lighting
Electromobility is gaining importance in the courier, express and parcel (CEP) sector, as parcel service providers increasingly rely on zero-emission vehicles to improve their CO₂ footprint. A common drawback of battery electric vehicles is their reduced range under cold operating conditions, due to the increased energy demand for cabin heating. Another CEP-specific factor influencing both energy consumption and cabin comfort is the frequent opening of doors during parcel delivery. Additionally, during delivery phases, the cabin cools down in the driver’s repeated absence from the cabin, as the heating is inactive. Nonetheless, a sufficient level of thermal comfort must be maintained during the driving phases between delivery stops. This paper presents an optimization-based strategy for the cabin heating of battery electric CEP vehicles. The objective is to maximize cabin comfort during driving phases while maintaining efficient energy consumption. For this purpose, a nonlinear model
Rehm, DominikKrost, JonathanMeywerk, MartinCzarnetzki, Walter
Electrification of city busses is an important factor for decarbonisation of the public transport sector. Due to its strictly scheduled routes and regular idle times, the public transport sector is an ideal use case for battery electric vehicles (BEV). In this context, the thermal management has a high potential to decrease the energy demand or to increase the vehicles range. The thermal management of an electric city bus controls the thermal behaviour of the components of the powertrain, such as motor and inverters, as well as the conditioning of the battery system and the heating, ventilation, and air conditioning (HVAC) of the drivers’ front box and the passenger room. The focus of the research is the modelling of the thermal behaviour of the important components of an electric city bus in MATLAB/Simscape including real-world driving cycles and the thermal management. The heating of the components, geometry and behaviour of the cooling circuits as well as the different mechanisms of
Schäfer, HenrikMeywerk, MartinHellberg, Tobias
This SAE Aerospace Standard (AS) provides design criteria for onboard stairways intended for use by passengers aboard multi-deck transport category airplanes. It is not intended for stairways designed for use only by crewmembers, supernumeries, or maintenance personnel. Additionally, this AS does not apply to fuselage mounted or external stairways used for boarding passengers, which are covered by ARP836.
S-9B Cabin Interiors and Furnishings Committee
This SAE Recommend Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less, as defined by the EPA, and M1 category vehicles, as defined by the European Commission:
Interior Climate Control Vehicle OEM Committee
This SAE Standard applies to equipment to be used with R-1234yf refrigerant only. It establishes requirements for equipment used to recharge R-1234yf to an accuracy level that meets Section 9 of this document and purity levels defined in SAE J2099. Refrigerant service equipment is required to ensure adequate refrigerant recovery to reduce emissions and provide for accurate recharging of mobile air-conditioning systems. Equipment shall be certified to meet all performance requirements outlined in this document and international/regional construction and safety requirements as outlined in this document.
Interior Climate Control Service Committee
In order to improve the comfort and perceptive quality of vehicle on the climate conditions worldwide, the temperature effect on rattle and squeak of instrument panel and console is studied under temperatures of −30°C, 23°C, and 60°C. First, the modal accuracy of finite element model is certificated by real vehicle test. The first global mode shapes are reciprocating rotation and reciprocating translation for instrument panel and console, respectively, corresponding to frequencies of 36.6 Hz and 29.6 Hz, which attain about 91% and 92.5% relative to the experiment values. Second, on basis of the “3σ” threshold of 0.27%, an assembly clearance in left instrument panel has non-negligible rattle risk under all temperatures. Another three clearances have no rattle risk but get rattle increase under temperatures of −30°C and 60°C. In addition, the rattle risk is increased around console end clearances at the temperature of 60°C. In other cases, the rattle risk is 0% or can be neglected. Third
Yang, XiaoyuMu, Yongtao
The sustainability trend continues to grow in the off-highway sector. Wherever possible, manufacturers rely on electric vehicles to contribute to climate protection goals. Therefore, heating and cooling solutions need to fit these given circumstances. Eliminating the traditional waste heat from the combustion engine requires new strategies for temperature regulation, for the cabin as well as for the battery. The aim is to efficiently control all thermally relevant areas in the vehicle.
Touzet, Adrien
Last summer, SAE Media was invited to Eaton's proving grounds in Marshall, Michigan, to test drive an electric truck the company had built in collaboration with BAE Systems. The truck was a showcase not only of BAE's powertrain control technology, but also of Eaton's new multi-speed heavy-duty EV transmission. That truck was on display at the 2025 ACT Expo, as was Eaton's transmission. SAE Media spoke with Scott Adams, SVP of technology and global products for Eaton, in Anaheim, California, about the company's portfolio of multi- and single-speed medium- and heavy-duty transmissions as well as other upcoming driveline offerings.
Wolfe, Matt
The desert landscapes of the western United States have changed since Mr. Duke and Dr. Gonzo blazed a trail across them in a drug-infused haze. But their advice to buy the ticket and take the ride is still a wise mantra - especially in the serene comfort of a modern full-size pickup. As inhospitable as southern Nevada can be outside Sin City, the amenities within the climate-controlled and leather-lined cabin of the latest Ram pickups insulate you from those realities. SAE Media was invited to sample the latest heavy haulers in Ram's portfolio, including the new 2500 and 3500 models with the high-output version of the Cummins B6.7 diesel.
Wolfe, Matt
Public buses can be high-risk environments for the transmission of airborne viruses due to the confined space and high passenger density. However, advanced cabin air control systems and other measures can mitigate this risk. This research was conducted to explore various strategies aimed at reducing airborne particle transmission in bus cabins by using retrofit accessories and a redesigned parallel ventilation system. Public transit buses were used for stationary and on-road testing. Air exchange rates (ACH) were calculated using CO2 gas decay rates measured by low-cost sensors throughout each cabin. An aerosol generator (AG) was placed at various locations inside the bus and particle concentrations were measured for various experiments and ventilation configurations. The use of two standalone HEPA air filters lowered overall concentrations of particles inside the bus cabin by a factor of three. The effect of using plastic “barriers” independently showed faster particle arrival times
Lopez, BrendaSwanson, JacobDover, KevinRenck, EvanChang, M.-C. OliverJung, Heejung
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type). Two formats of this standard (MS Excel and Adobe PDF) are available. The standards provided in both formats (MS Excel and Adobe PDF) contain the same text.
Aircraft Seat Committee
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors, so they will identify smaller refrigerant leaks when servicing all motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency. This document does not address any safety issues concerning their design or use.
Interior Climate Control Service Committee
This study aims to develop a lightweight bus passenger seat frame by conducting structural nonlinear finite element analysis (FEA) on various thickness combinations of seat frame components to identify the optimal configuration. The thicknesses of critical structural members that primarily bear the load when force is applied to the seat frame were selected as independent variables, while stress on each component and compliance with ECE R14 seatbelt anchorage displacement regulations were set as dependent variables. A regression analysis was performed to calculate the importance of each component and analyze the influence of each design variable on the dependent variables. Strain gauges were attached to critical areas of the actual seat frame to conduct a seatbelt anchorage test, and simulations under identical conditions were performed using the nonlinear FEA software (LS-DYNA) to validate the reliability of the analysis results. The optimized seat frame exhibited a maximum stress of
Ko, Yeong GookCho, Kyu ChunLee, Ji SunKang, Ki Weon
In the early days of computers, interfaces were paper printouts or blinking lights, but as the technology matured, the graphical user interface (GUI) quickly became the standard.
Items per page:
1 – 50 of 7181