Browse Topic: Seats and seating
The automotive industry constantly strives to enhance vehicle safety, comfort, and customer satisfaction. One of the critical aspects influencing these factors is the mitigation of Buzz, Squeak, and Rattle (BSR) issues, which can significantly impact perceived vehicle quality and user experience. This paper focuses on the BSR challenges specifically encountered in bench seat latch & striker mechanisms. Vibrations and movement, especially during vehicle operation, exacerbate Buzz, Squeak & Rattle (BSR) problems, leading to acoustic disturbances that detract from the overall ride quality. Latch and striker in seat system is prone to squeaks and rattles (S&R) due to improper fitment, environmental conditions, or mechanical stress. These issues not only compromise the auditory experience but may also raise concerns about component durability and functionality. This paper outlines the root causes of BSR phenomena in these components, emphasizing the role of design optimization, material
Rear-facing infant seats that are positioned behind front outboard vehicle seats are at risk of being compromised by the rearward yielding of occupied front seat seatbacks during rear-impact collisions. This movement can cause the plastic shell of the infant seat to collapse and deform, increasing the risk of head injuries to the infant. Current designs of rear-facing infant seats typically do not consider the loading effects from the front seatback during rear-impact situations, which results in weak and collapsible shell structures. Moreover, regulatory compliance tests, such as FMVSS 213, do not include assessments of rear-facing infant seats under realistic rear-impact conditions. as the bench used for the regulatory test lacks realistic vehicle interior components. This study emphasizes the need for revised testing methodologies that employ sled tests with realistic seatback intrusion conditions to facilitate the development of improved infant seat designs. Research shows that
Combining simulation with probabilistic ML enables engineers to chart the full design landscape, quantify uncertainty and uncover viable options that intuition and brute force alone would miss. Components and systems are routinely designed and validated virtually through tools like CFD and FEA before any physical prototype is built. The benefits are obvious: faster iteration, reduced cost and better products. But simulation is not cheap. Each run can take hours, consume costly GPU/CPU resources and require highly skilled engineers who are already in short supply. Licenses and compute costs can easily reach tens of thousands of dollars per seat, and most teams can complete only a few runs per day.
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type). Two formats of this standard (MS Excel and Adobe PDF) are available. The standards provided in both formats (MS Excel and Adobe PDF) contain the same text.
Increasing digitalization of the aircraft cabin, driven by the need for improved operational efficiency and an enhanced passenger experience, has led to the development of data-driven services. In order to implement these services, information from different systems is often required, which leads to a multi-system architecture. When designing a network that interconnects these systems, it is important to consider the heterogeneous device and supplier landscape as well as variations in the network architecture resulting from airline customization or cabin upgrades. The novel ARINC 853 Cabin Secure Media-Independent Messaging (CSMIM) standard addresses this challenge by specifying a communication protocol that relies on a data model to encode provided and consumed information. This paper presents an approach to integrate CSMIM-specific communication concepts into a Model-Based Systems Engineering (MBSE) framework using the Systems Modeling Language (SysML). This enables a streamlined
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions.
This document is a guide to the application of magnesium alloys to aircraft interior components including but not limited to aircraft seats. It provides background information on magnesium, its alloys and readily available forms such as extrusions and plate. It also contains guidelines for “enabling technologies” for the application of magnesium to engineering solutions including: machining, joining, forming, cutting, surface treatment, flammability issues, and designing from aluminum to magnesium.
This Aerospace Recommended Practice (ARP) defines acceptable methods for determining the seat reference point (SRP), and the documentation requirements for that determination, for passenger and crew seats in Transport Aircraft, Civil Rotorcraft, and General Aviation Aircraft.
Ride comfort is an important factor in the development of vehicles. Understanding the characteristics of seat components allows more accurate analysis of ride comfort. This study focuses on urethane foam, which is commonly used in vehicle seats. Soft materials such as urethane foam have both elastic and viscous properties that vary with frequency and temperature. Dynamic viscoelastic measurements are effective for investigating the vibrational characteristics of such materials. Although there have been many studies on the viscoelastic properties of urethane foam, no prior research has focused on dynamic viscoelastic measurements during compression to simulate the condition of a person sitting on a seat. In this study, dynamic viscoelastic measurements were performed on compressed urethane foam. Moreover, measurements were conducted at low temperatures, and a master curve using the Williams–Landel–Ferry (WLF) formula (temperature–frequency conversion law) was created.
This practice presents methods for establishing the driver workspace. Methods are presented for: Establishing accelerator reference points, including the equation for calculating the shoe plane angle Locating the SgRP as a function of seat height (H30) Establishing seat track dimensions using the seating accommodation model Establishing a steering wheel position Application of this document is limited to Class-A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100.
Automotive seating systems have become increasingly sophisticated, providing consumers with more flexible configurations and comfort functionalities. Traditional power seating, which relied on a few motors to adjust the seat position, has evolved into more technically advanced reconfigurable systems equipped with additional feedback sensors and actuators. These advancements include features such as Easy Entry, Zero Gravity, Stadium Swivel, IP Nesting, Auto Lumbar/Bolster Adjustment and Power Long Rails. All the features indicate that the overall control of seating systems now resembles robotic arm control or multi-body control, involving numerous coordinated movements. In this paper, we propose a novel control strategy for the coordinated speed control of multiple motors. Unlike traditional seating controls, which typically use direct switches or open-loop systems, we introduce a feedback approach that incorporates Kalman-filter-based speed estimation using raw signals directly from
At present, electric head restraints have been developed locally, so overseas mechanisms are used. In this study, two concept mechanisms were developed, and in addition, one patent for a wing-out head restraint mechanism was additionally applied. The new mechanism has had an excellent effect on cost reduction and improvement of operating noise compared to the current one.
This Recommended Practice provides a procedure to locate driver seat tracks, establish seat track length, and define the SgRP in Class B vehicles (heavy trucks and buses). Three sets of equations that describe where drivers position horizontally adjustable seats are available for use in Class B vehicles depending on the percentages of males to females in the expected driver population (50:50, 75:25, and 90:10 to 95:5). The equations can also be used as a checking tool to estimate the level of accommodation provided by a given length of horizontally adjustable seat track. These procedures are applicable for both the SAE J826 HPM and the SAE J4002 HPM-II.
This SAE Standard provides a test method, an evaluation method, and a performance criterion for shock-absorbing characteristics of a general foam-type snowmobile seat. This SAE Standard applies to seats that are similar in design, dimensions, construction, and/or intended usage as described and illustrated in SAE J33.
Some challenges, such as reworking airbags to meet all seating scenarios, will be solved by the OEM as the final system integrator. Rearward-facing front seats have generally been limited to concept cars that explore a far-away world in which SAE Level 5 autonomous driving has been perfected. Magna has rewritten that playbook, winning a contract with a Chinese OEM for a reconfigurable seating system that includes fully rotating front seats on long rails, creating an unusually flexible cabin. Currently configured for vehicles with two rows of seating, the system features power-swivel seats along rails or tracks nearly two meters (6.6 ft) long. The front passenger and driver seats can rotate 270 degrees.
This SAE Aerospace Recommended Practice (ARP) provides a framework for establishing methods and stakeholder responsibilities to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, in-flight entertainment equipment, etc.) meet the seat technical standard order (TSO) minimum performance standards (MPS). These agreements will allow seat suppliers to build and ship TSO-approved seats with integrated electronic components. The document presents the roles and accountabilities of the electronics manufacturer (EM), the seat supplier, and the TC/ATC/STC applicant/holder in the context of AC 21-49, Section 7.b (“Type Certification Using TSO-Approved Seat with Electronic Components Defined in TSO Design”). This document applies to all FAA seat TSOs C39( ), C127( ), etc. The document defines the roles and responsibilities of each party involved in the procurement of electronics, their integration on a TSO-approved seat, and the
This SAE Aerospace Recommended Practice (ARP) defines means to assess the effect of changes to seat back mounted IFE monitors on blunt trauma to the head and post-impact sharp edges. The assessment methods described may be used for evaluation of changes to seat back monitor delethalization (blunt trauma and post-test sharp edges) and head injury criterion (HIC) attributes (refer to ARP6448, Appendix A, Item 4). Application is focused on type A-T (transport airplane) certified seat installations.
This document provides background information, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and similarity criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP6330 defines multiple test methods used to assess the effect of seat back mounted IFE monitor changes on blunt trauma to the head and post-impact sharp edge generation. The data generated is based on seat and IFE components installed on type A-T (transport airplane) certified aircraft. While not within the scope of ARP6330, generated test data for the possible future development of surrogate target evaluation methods is also included.
This practice presents methods for establishing the driver workspace. Methods are presented for: Establishing accelerator reference points, including the equation for calculating the shoe plane angle. Locating the SgRP as a function of seat height (H30). Establishing seat track dimensions using the seating accommodation model. Establishing a steering wheel position. Application of this document is limited to Class-A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100.
Items per page:
50
1 – 50 of 1703