Browse Topic: Interior molding and trim
This SAE Recommended Practice is intended for stakeholders of the automotive industry that are conducting emission testing on materials, parts, or components used in automotive interiors. Testing methods may specifically define the handling and packaging conditions for the material to be analyzed. In these cases, follow the method as closely as possible. Use this document as a guide where the protocol for handling and packaging the samples between production and testing may be undefined or ambiguous
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances. While developing the vehicle architecture in the early design phase, it is customary to specify targets for various ergonomic attributes and arrive at the above-mentioned
This test method specifies the operating procedures for a controlled-irradiance, xenon-arc apparatus used for the accelerated exposure of various automotive interior trim components. Test duration, as well as any exceptions to the specimen preparation and performance evaluation procedures contained in this document, are covered in material specifications of the different automotive manufacturers. Any deviation to this test method, such as the use of optical filter combinations, is to be agreed upon by contractual parties
In the quest for sustainable materials for automotive interior trim, jute fiber is gaining traction due to its characteristics, which align with other renowned natural fibers. This study aimed to assess the efficacy of sodium bicarbonate as a treatment for jute fibers in comparison to conventional alkaline treatments. Both treated and untreated fibers were examined. Results showed that alkali-processed fibers demonstrated enhanced crystallization, thermal resistance, and surface quality relative to untreated ones. Specifically, alkali-treated jute fibers exhibited a degradation onset at 261.23°C, while those treated with sodium bicarbonate began degrading at 246.32°C. Untreated fibers had a degradation onset at 239.25°C. Although both treatments improved the thermal stability of the fiber, sodium bicarbonate processing, while beneficial, was slightly less effective than the traditional alkaline method. Overall, the research underscores the potential of sodium bicarbonate as an
This test method specifies the operating procedures for a controlled-irradiance, xenon-arc apparatus used for the accelerated exposure of various automotive interior trim components. Test duration, as well as any exceptions to the specimen preparation and performance evaluation procedures contained in this document, are covered in material specifications of the different automotive manufacturers. Any deviation to this test method, such as the use of optical filter combinations, is to be agreed upon by contractual parties
When Ford first reintroduced the Ranger to North America in 2019, it was welcomed largely because of its revered nameplate. But outside of a lauded 2.3-L 4-cylinder turbo engine and an impressive array of options, there wasn't much to write home about. And critics downgraded the lineup for a spartan interior and having a ride that bounced passengers around. Ford says it built the 2024 Ranger lineup with that feedback in mind. And, for the enthusiast crowd, the yearned-for Ranger Raptor makes its loud debut with a 405-hp engine
Automated-driving and ADAS functionalities continue to influence some of the latest cabin safety and materials trends. Evolving market realities have OEMs and automated-driving system developers adjusting once-aggressive timelines for deploying high-level driving automation. But new materials and safety technology for vehicle interiors continue to be influenced by advancing AV and ADAS functionalities. Regardless of how much driving automation is at play, vehicle cabins are evolving because of the possibilities - and challenges - automation and ADAS present. An array of launching or soon-to-arrive safety features, driver-information technology and materials innovations don't need AV applications as a reason for being, however. Drew Winter, Informa Tech Automotive's principal analyst - Cockpit of the Future, said that some of the feature and safety requirements of electric-vehicle and younger-demographic customers align with the technology directions for AVs and ADAS. New sustainable
This recommended practice is intended to provide general guidelines for the selection and proper use of cleaning and disinfecting product characteristics acceptable for use on vehicle interiors and exterior touch points (cleaning before disinfecting being best practice in general for vehicles, as with other situations), and the effectiveness of the disinfecting products with certain characteristics, as well as indicating the product characteristics that will not cause damage to those surfaces
This SAE Standard presents a method of determining the stiffness of interior trim materials, substrates, and composites by a three-point bending test
Squeak and Rattle are the most obnoxious noises, affecting the perceived quality of an automobile interior. Minimizing or eliminating these transient events poses a great challenge in vehicle construction as they are generally discovered late in the product development cycle. Identifying and quantifying these issues at the design and virtual validation stage is of prime importance. Current simulation methodologies estimate the occurrence of these events by measuring the relative displacement between the interacting parts. Solving this problem using linear simulations do not accurately reflect real-world non-linear mechanical behavior and most importantly, quantifying the noise caused by these impact events. Capturing a suitable impact behavior is essential along with the quantification of noise generated by these events is necessary for understanding the severity of the problem. This paper suggests a method based on non-linear impact analysis for quantifying the noise produced during a
This test can be used to determine the resistance to crocking (color rub-off) of organic trim materials such as fabrics, vinyl coated fabrics, leather, coated fiberboard and carpet. This method is similar to AATCC Method 8 –Colorfastness to Crocking
Sales of SUV and luxury cars on the largest market of the world - China - are growing at a high rate. The highways in large cities like Beijing or Shanghai are increasingly populated with cars from all over the world like Japan, USA, Europe and Korea and even some refined domestic brands. More than 10 million rich people can afford those cars and are skilled drivers. This huge group of potential consumers is targeted by luxury brand OEMs and by startup companies. It has been understood that these people have a high expectation of comfort. The twistbeam rear axle was replaced by multilink, double clutch transmissions were improved by comfort-mode drive programs, interior trims raised to Western standard performance levels, tyres specially developed for comfort in China, localized insulation materials and packages engineered to a one vehicle class higher level. The European avant-garde is capable of such high levels of complete vehicle NVH performance, whereas premium brands often
This test can be used to determine the resistance to scuffing of test specimens such as fiberboards, fabrics, vinyl-coated fabrics, leathers, and similar trim materials
This SAE standard specifies operating procedure for the exposure of automotive interior trim materials in an outdoor behind-glass apparatus in which the temperature is controlled in a 24 hour cycle. The humidity is controlled during the dark (night) portion of the cycle
Cabin acoustic comfort is a major contributor to the potential sales success of new aircraft, cars, trucks, and trains. Recent design challenges have included the increased use of composites, and the switch to electrically powered vehicles, each of which change the interior noise spectral content and level. The role of acoustic absorption in cabins is key to the optimisation of cabin acoustic comfort for modern vehicles, with acoustic impedance data needed in order to assess and optimise the impact of each component of a given lay-up. Measurements of absorbing interior trim are traditionally performed using either sample holder tests in a static impedance tube (impedance and absorption), or through tests in reverberation rooms (absorption only). Both of these procedures present challenges. In-tube absorption and impedance measurements are destructive, requiring highly accurate sample cutting and sealing. Reverberation room absorption measurements are subject to the effects of varying
It is a common practice of automotive industry to avoid dynamic contact between two surfaces with similar roughness for plastics and interior trim parts. That means reduce the friction and, consequently the squeak noise to the minimum level to meet zero noise level. Unfortunately, for design or economics reasons, that is not possible for some applications and a very disturbing noise may bother the costumer. A material incompatibility leads to an acute noise when two similar surfaces have relative movement due to multiple adherences between the surfaces, that is called stick-slip phenomenon. To characterize this noise, a Squeak and Rattle Evaluation testing should be performed in the worst case condition over the life of the vehicle. As a result, a scale of Risk Priority Number (RPN) provides a pass/fail judgement to implement any improvement required to address the issue. There are several ways to avoid this phenomenon during the product development: applying lubricants, tapes
An Ultra-Light Door (ULD) has been developed that is 40% lighter than a baseline 2016 mid-size vehicle’s driver side door. The ULD scope encompasses the entire door, including the door-in-white (DIW), interior trim, glazing, hardware, wiring, etc. To achieve such a substantial mass reduction while still meeting the baseline vehicle’s performance metrics (including safety, durability, NVH, appearance, etc.) at a minimal cost increase, the door design relies on a comprehensive full system approach that includes a unique architecture in addition to lightweight materials and components. This paper details the ULD design concept, simulated performance results, the current status of vehicle level validation, and comparisons between component level CAE predicted performance and physical test results
Cars have become more than just a mode of transportation for consumers. They have become an interactive extension of ourselves, customized by their users. Knobs, buttons, and overhead lighting have been replaced by touchscreens, capacitive sensing, and mood lighting allowing the driver to be encapsulated in their own styling preferences. This requires coatings to be robust in design and elite in performance to withstand the harshest environments. Traditionally, original equipment manufacturers (OEMs) adopted one component (1K, no hardener, catalyst or activator) and multicomponent (2K, mix with hardener, catalyst, or activator) systems for protecting automotive interior trim and parts. For decades, these coatings have served this market well. However, with OEM’s moving to more stringent durability requirements, 1K and 2K coatings are scrambling to meet tougher OEMs standards. These stronger standards are making energy curable (cure after exposure to an energy source such as ultraviolet
SAE J1717 is an advisory document suggesting minimum recommended testing, appearance evaluation, and protocol for specifying the recommendations with regard to Singular Unassembled Automotive Interior Trim Parts
The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature. When driving away, the air conditioning system has to be capable of removing this heat in a timely manner, such that the occupant’s time to comfort will be achieved in an acceptable period [1]. When we reduce the amount of heat absorbed, the discomfort in the cabin can be reduced. A 1D/3D based integrated computational methodology is developed to evaluate the impact of vehicle orientation on cabin climate control system performance and human comfort in this paper. Additionally, effects of glazing material and blinds opening/closing are analyzed to access the occupant thermal comfort during initial and final time AC pull down test
The rise in national industry occurred more frequently in the aircraft industry as stabilizers and rudders at the rear of the aircraft. The automotive industry is also using composite materials reinforced by synthetic fibers in various vehicle components, such as the bumper and trunk tray. Plies and laminates produced from the composite can be used in car interior trim. Much is made of sisal fibers as reinforcement in cars, this study aims to evaluate the influence of the addition of wood waste, angelim pedra (Hymenolobium petraeum Ducke), at composite polyester matrix reinforced by sisal and malva fibers. The fibers and the residue were purchased in local market and characterized physically, microstructurally and mechanically. The specimens of malva and residues were cut in three different sizes: 5, 10 and 15 mm, by the way the hybrid composites reinforced by sisal and the residues, the sisal fibers were cut at a randomly lengths. The residue angelim pedra was sieved to control its
This Recommended Practice is for use by contractual parties to verify new xenon arc test apparatus ability to perform SAE J1885, J1960, J2412, J2527, or other as specified
This test method specifies the operating procedures for a controlled irradiance, xenon arc apparatus used for the accelerated exposure of various automotive interior trim components
Five parameters are often used in acoustic modeling of porous absorption material, which are air flow resistivity σ, porosity φ, tortuosity α∞, viscous and thermal characteristic lengths Λ and Λ′. These parameters are not easy to be directly tested, especially the latter three parameters. One software capable of identifying inversely these parameters from impedance tube test results becomes increasingly popular. However, its detail stability analysis is rarely reported till now. This paper studies its stability on those porous fiber materials generally applied in vehicle interior trim, such as PET fiber, shoddy, PP/PET mixed fiber. Some conclusions are obtained. (1) The identification of α∞, Λ and Λ′ is always stable when σ and φ are assumed in advance. Furthermore, high correlation coefficient is obtained if σ and φ are assumed reasonably, which means high precision of identification. (2) The identification of φ, α∞, Λ and Λ′ is stable in most cases when σ is assumed in advance
The usage of lightweight materials such as plastics and their derivatives continues to increase in automobiles driven by the urgency for weight reduction. For structural performance, body components such as A-pillar or B-pillar trim, instrument panel, etc. have to meet various requirements including resistance to penetration and energy absorption capability under impact indentation. A range of plain and reinforced thermoplastics and thermosetting plastics has been considered in the present study in the form of plates which are subject to low velocity perforation in a drop-weight impact testing set-up with a rigid cylindrical indenter fitted to a tup. The tested plates are made of polypropylene (PP), nanoclay-reinforced PP of various percentages of nanoclay content, wood-PP composites of different volume fractions of wood fiber, a jute-polyester composite, and a hybrid jute-polyester reinforced with steel. In order to estimate the energy absorbed by a test specimen, a novel procedure is
Items per page:
50
1 – 50 of 235