Browse Topic: Heating, ventilation, and air conditioning systems (HVAC)

Items (1,986)
The aim of the present work was to characterize macroscopic spray parameters of a multi-hole direct injection injector for spark ignition engine applications. The geometry, the position of spray boundaries the overall cone angle, the spray vertical penetration and the vertical spray length were evaluated by processing the spray images recorded at 3300 frames per second. The frequency of recording images was suitable for capturing all the spray developments in all tested conditions. The tested fluid was EXXSOL D60 for simulating ethanol spray characteristics due to its similar properties and due to security reasons. The injector was tested outside the engine and into an open acrylic chamber being injected into atmospheric air conditions of the laboratory. The injection pressure was set up in 100 bar and the simulated engine speed were set up in MOTEC ECU in 3000 rpm, 3600 rpm and 4000 rpm. The injection durations were set up in 3,0 ms for 3000 rpm and 2.3 ms for 3600 rpm and 4000 rpm
Guzzo, Márcio ExpeditoFonseca, Lucas GuimarãesDuarte, Thales Henrique RamosBaeta, José Guilherme CoelhoHuebner, RudolfPujatti, Fabrício José Pacheco
This SAE Recommended Practice establishes uniform test procedures and performance requirements for engine coolant type heating systems of enclosed truck cabs. The intent is to provide a test that will ensure acceptable comfort for cab occupants. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. There are two options for producing hot coolant in this document. Testing using these two approaches on the same vehicle will not necessarily provide identical results. Many vehicle models are offered with optional engines, and each engine has varying coolant temperatures and flow rates. If the test is being conducted to compare the performance of one heater design to another heater design, then the external coolant source approach (Test A) will yield the most comparable results. If the test is being conducted to validate the heater installation on a specific vehicle model with a specific engine, then using the engine to heat
Truck and Bus Windshield Wipers and Climate Control Comm
This SAE Recommended Practice establishes uniform cold weather test procedures and performance requirements for engine coolant type heating systems of bus that are all vehicles designed to transport 10 or more passengers. The intent is to provide a test that will ensure acceptable comfort for bus occupants. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Required test equipment, facilities, and definitions are included. There are two options for producing hot coolant in this recommended practice. Testing using these two approaches on the same vehicle will not necessarily provide identical results. Many vehicle models are offered with optional engines, and each engine has varying coolant temperatures and flow rates. If the test is being conducted to compare the performance of one heater design to another heater design, then the external coolant source approach (Test A) will yield the most comparable results. If the
Truck and Bus Windshield Wipers and Climate Control Comm
The purpose of this SAE Recommended Practice is to establish uniform test procedures for measuring and rating air delivery and cooling capacity of truck and off-road self-propelled work machines used in earth moving, agriculture, and forestry air-conditioner evaporator assemblies. It is the intent to measure only the actual cooling capacity of the evaporator. It is not the intent of this document to rate and compare the performance of the total vehicle air-conditioning system
Truck and Bus Windshield Wipers and Climate Control Comm
Noise induced by the Heating, Ventilation and Air conditioning (HVAC) system inside a vehicle cabin can cause significant discomfort to passengers and, in turn, affect the brand image in a competitive automotive market. HVAC acoustic performance has become more prominent with the ongoing transformation from Internal Combustion (IC) to Electric Vehicle (EV) segments. For this reason, acoustic quality is increasingly prioritized as a key design issue throughout the entire development process of the HVAC system. This paper covers the design synthesis considering air handling unit-induced airborne and structure-borne noise of a dashboard-mounted HVAC system to achieve better NVH refinement inside vehicle while maintaining thermal performance. This study began by analysing HVAC-induced blower motor, impeller, air ducts, vents, and recirculation suction noise from the vehicle level to subsystem level and eventually at the component level. At the subsystem level, major noise source
Titave, Uttam VasantNaidu, SudhakaraKalsule, Shrikant
This SAE Standard applies to dyes intended to be introduced into a mobile air-conditioning system refrigerant circuit for the purpose of allowing the application of ultraviolet leak detection. In order to label any product(s), they shall meet SAE J2297, the certification process as described in SAE J2911 must be followed, and the documentation described in Appendix A shall be submitted to SAE
Interior Climate Control Fluids Committee
The advent of electric vehicles has increased the complexity of air conditioning systems in vehicles which now must maintain the safety and comfort of occupants while ensuring that the high voltage battery temperature is kept within safe limits. This new task is critical due to the influence of the cell and battery pack temperature on the efficiency. Moreover, high temperatures within the battery pack can lead to undesirable effects such as degradation and thermal runaway. Classical solutions to this problem include larger air conditioning components to support worst case scenario conditions where the cooling request from the battery and the cabin happen at the same time. In such conditions, for the safety of the battery, the cooling request is assigned to battery system which may cause discomfort to the passengers due the significant temperature increase in the cabin during such events. The probability of such events happening is certainly dependent on the weather conditions but in
Palacio Torralba, JavierKulkarni, Shridhar DilipraoShah, GeetJaybhay, SambhajiKapoor, SangeetLocks, Olaf
ABSTRACT This paper describes a work in progress on the development of general, Open Architecture multi-resolution software for rapid prototyping and analysis of complex systems using a Co-simulation approach. Although the approach can be used for rapid analysis of a wide class of complex physical systems, the current focus of this work is on the modeling of the engine cooling system in the Ford Escape Hybrid SUV vehicle. The paper discusses two aspects of this work: development of the co-simulation environment, development of models of the cooling system components with focus on the A/C system using the R134a refrigerant. The major component models are based on dimensional reduction of the 3D Navier-Stokes equations. The resulting 1D equations are subsequently partitioned along the axial direction resulting in systems of 0D non-linear ordinary differential equations. The equations are then solved using a very efficient approach using Chebyshev polynomials. We also present preliminary
Malosse, Jean-JacquesPindera, Maciej Z.Sun, YuzhiVosen, Steven R.
ABSTRACT A coupled thermal and computational fluid dynamics (CFD) full-vehicle model of a protected combat ground vehicle was developed and validated against measured test data. The measurement dataset was collected under thermally extreme conditions. Air temperatures were sampled inside the crew compartment of the vehicle under tactical idle operating conditions with space heaters substituted for on-board electronics. The results generated from the coupled thermal model correlated with the measured test data with an average absolute error of less than 2 °F for both simulated-electronics on and off conditions. The model was used to analyze thermal sensitivity to armor, insulation, and other factors affecting the efficiency of the HVAC system
Pryor, JoshDitty, AaronMao, JuliaRynes, PeteSmith, Rob
ABSTRACT Military ground vehicles are equipped with Automatic Fire Extinguishing Systems (AFES) to protect against enemy threats causing fuel tank ruptures and resulting fuel fires inside military vehicle crew compartments. The fires must be rapidly extinguished without reflash to ensure Soldier protection from burn and toxicity risks. This summary describes the development of a simulation-based acquisition tool which will complement vehicle testing for the optimization of AFES designs for specific vehicles and address their unique clutter characteristics. The simulation-based acquisition tool using Computational Fluid Dynamics (CFD) techniques was validated for an exploratory test box and demonstrated with the evaluation of two different suppressant nozzle configurations for an MRAP vehicle. The result is a cost-savings tool with a negligible development payback period that optimizes Soldier survivability in a fire situation. This modeling tool is currently being applied to predict
Korivi, Vamshi M.Williams, Bradley A.McCormick, Steven J.Deshmukh, Kshitij
ABSTRACT Based on the foundation of thermal management system developed by Rocky Research and working closely with TARDEC personnel, this paper addresses design, development, and testing of two delivered environmental control prototypes to TARDEC. The delivered prototypes are electrically driven vapor compression systems enhanced with Rocky Research vector drive for speed control, use of Pulsing Thermal Expansion Valve (PTXV) for precise refrigerant control, and power electronic package capable of running efficiently from both AC and DC power sources seamlessly. These prototypes were fully tested at different ambient temperature conditions at Rocky Research environmental chamber and their performance were logged and documented. The cooling capacity was measured to be in range of 6,000 to 12,000 Btu/hr and the Coefficient of Performance (COP) was measured to be above 1.5 at high ambient temperature conditions. This reflects close to 50% improvement in efficiency, when compared to
Khalili, KavehSpangler, ChrisSchultz, Andrew
ABSTRACT Increasing power requirements along with weight and space constrains requires implementation of more intelligent thermal management systems. The design and development of such systems can only be possible with a thorough understanding of component and system level thermal loads. The present work implements 1-D and 3-D unsteady CFD based simulation tools in vehicle design process. Both under-the-hood cooling and HVAC systems are simulated in various operating conditions on a HPC Computer Cluster. System variables are optimized with gradient based BCSLIB and SciPy optimization libraries. The simulation results are compared and validated with experimental tests
Bayraktar, Ilhan
Defying engineering challenges in record time, researchers at the University of Maryland developed a machine learning model that eliminates hassles in materials design to yield green technologies used in wearable heaters
The parametric variation study will be very useful for understanding the design performance of any product based on the input parameters. This type of case study will be done using Design of experiments and generate several design points. Conventionally DoE solver will be working with geometry variation with CAD interface, meshing with appropriate tool then solver, finally with post processing. If a solver itself has workflow of change the geometry variation with mesh deflection method and automated post processing, then no need of geometry variation and meshing will lead to lot of time reduction in doing parametric study. Here HVAC parametric study used to show the performance of solver and accuracy of results generated. This approach can be used to optimize the design using parametric variation. This paper will show how to move Horizontal and vertical vanes using mesh morphing and what is the reduction in timeline in new product development. Here, Ansys Fluent solver is used to
Palanisamy, Vadivel
In the context of Battery Electric Vehicles (BEVs), airborne noise from Heating, Ventilation and Air Conditioning (HVAC) ducts becomes a prominent concern in the view of passenger comfort. The automotive industry traditionally leverages Computational Fluid Dynamic (CFD) simulation to refine HVAC duct design and physical testing to validate acoustic performance. Optimization of the duct geometry using CFD simulation is a time-consuming process as various design configurations of the duct have to be studied for best acoustic performance. To address this issue effectively, the proposed a novel methodology uses Gaussian Process Regression (GPR) to minimize duct noise. Present solution demonstrates the power of machine learning (ML) algorithms in selecting the optimal duct configuration to minimize noise. Utilizing both real test data and CFD results, GPR achieves remarkable accuracy in design validation, especially for HVAC air ducts. The adoption of GPR-based ML algorithms significantly
Althi, Tirupathi RaoManuel, NaveenK, Manu
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
AC-9 Aircraft Environmental Systems Committee
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms
AC-9 Aircraft Environmental Systems Committee
This Aerospace Information Report (AIR) outlines the design considerations and criteria for the control of water carryover from the environmental control system (ECS) with respect to causes and indicated corrective or preventative action. In addition, condensation on structure will be reviewed with possible preventative action described
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749
AC-9 Aircraft Environmental Systems Committee
Energy efficiency in both internal combustion engine (ICE) and electric vehicles (EV) is a strategic advantage of automotive companies. It provides a better user experience that emanates amongst others from the reduction in operation expenses, particularly critical for fleets, and the increase in range. This is especially important in EVs where customers may experience range anxiety. The energetical impact of using the air conditioning system in vehicles is not negligible with power consumptions in the range of kilowatts, even with a stopped vehicle. This becomes particularly important in areas with high temperature and humidity levels where the usage of the air conditioning systems becomes safety factor. In such areas, drivers are effectively forced to use the air conditioning system continuously. Hence, the air conditioning system becomes an ideal choice to deploy control strategies for optimized energy usage. In this paper, we propose and implement a control strategy that allows a
Jaybhay, SambhajiKapoor, SangeetKulkarni, Shridhar DilipraoPalacio Torralba, JavierLocks, Olaf
HVAC is one of the main components on AC system on passenger car. Air flow distribution through the HVAC duct outlet as well as foot outlet is controlled mainly through HVAC kinematic mechanism. Kinematic mechanism mainly controls the air flow distribution and also temperature linearity at the outlet. Blower assembly as well as Kinematic mechanism is mainly two moving components inside HVAC system. Apart from the blower noise, another important noise generating area is kinematic noise. Due to poor cam profile and pin reaction force inside cam profile, there is high reaction force and hence produce noise. Due to different kinematic mode travel (face, foot and defrost), the pin has to be moved inside the cam profile, so pin movement & interference due to the stroke length travel leads a higher noise. The present paper describes the noise prediction based on simulation methodology of HVAC kinematic mechanism and damper (Doors) movement. First kinematic simulation of baseline model is
Parayil, PaulsonKame, ShubhamGoel, Arunkumar
Vehicle HVAC noise performance is an important vehicle design validation criterion since it significantly links the brand image of a vehicle. It affects the customer’s buying decision and the business of selling vehicles because it directly affects driving comfort. Customers expect continuous improvement in HVAC noise without compromising cooling performance. The process of cascading vehicle-level acoustic performance to subsystem and component levels becomes an important factor in the vehicle NVH development process. It was found that the component-level [HVAC unit without duct] performance of an HVAC system measured in an anechoic chamber was at par when compared to targets, whereas the subsystem-level performance [HVAC unit with duct and dashboard] was on the higher side of the targets. Advanced NVH tools were used to identify the source of noise at the subsystem level. It helped to locate the source and its transfer path. A design modification done at the transfer path location
Titave, Uttam VasantKalsule, ShrikantNaidu, Sudhakara
In today's fast-paced lifestyle, people spend a maximum amount of time for traveling, leading to a heightened demand for thermal comfort. Automotive HVAC play a crucial role in providing conditioned air to ensure comfort while traveling. Evaluating HVAC systems performance including delivery systems, heat exchanger efficiency, air thermal mixing zones, and temperature distribution are essential to maintain fuel economy and modern vehicle styling. However, accurately predicting cooling/heating performance using CFD simulations poses challenges due to the complex nature of heat exchanger modeling, which demands substantial computational resources and time. This paper presents the development of CFD modeling capabilities for predicting temperature distribution at duct outlet grills for defrost mode. Additionally, it assesses heater performance under maximum hot conditions. STAR-CCM+ software is employed to model the entire system, with the heater and evaporator core represented as porous
Ahmad, TaufeeqParayil, PaulsonSharma, NishantKame, ShubhamJaiswal, AnkitGoel, Arunkumar
The air supply system in a Fuel Cell Electric Vehicle (FCEV) provides the oxygen needed for the fuel cell to react with hydrogen. The air compressor, being the main component of the air supply subsystem, has the highest power consumption among all auxiliary loads in an FCEV. Therefore, efficient control of the air supply system is critical for improving fuel cell performance. The air supply system has a slow response to dynamic load changes. Due to its weak transient response, an overshoot in airflow can lead to an increase in auxiliary power loss, while an undershoot can cause a delay in meeting power requirements. Thus, reducing transients is a crucial factor in improving the overall system efficiency. In conventional control, the battery supplies additional power needed during dynamic load changes. During high dynamic load changes, there is frequent switching between the battery and the fuel cell. This frequent charging and discharging of the battery can impact its longevity
Choubey, AyushPonangi, Babu RaoShah, SaurabhMunirajappa, Chandrashekara
Today, almost all passenger vehicles are equipped with Mobile Air Conditioning (MAC) systems to provide thermal comfort to occupants. To enhance cabin cooling down rate, two approaches are possible viz. increasing the MAC system capacity or reducing heat ingress into the vehicle cabin. The first approach is likely to have a negative impact on energy efficiency. The latter approach considers the deployment of alternate passive cabin cooling technologies. Among these, the deployment of uniquely developed coatings on metal, plastic and glass surfaces of the cabin is one option. The assessment of such coatings is usually done only at severe ambient conditions (>40°C), which may not be sufficient. These coatings need to be validated across all climatic seasons of the year, for assessing their effectiveness on passenger thermal comfort. The current work along with simulation studies, takes into account additional parameters such as the ‘feeling of hotness’ when one enters a hot-soaked cabin
Deshmukh, GaneshKulkarni, Shridhar DilipraoVarma, MohitJaybhay, SambhajiKapoor, SangeetTilekar, Pravin
Climate across India varies from extreme Cold to extreme hot. As an objective to improve comfort to drivers during summer, it is mandate by Indian Government to introduce Air Conditioning in Trucks from June 2025. Air Conditioning system includes Evaporator, compressor, Condenser and expansion units. Condenser needs continuous air flow to reject the absorbed heat from driver cabin to surrounding air. This is possible by directing air through condenser by an external fan. For this condenser is remotely mounted with an electric driven fan or directly to the radiator-fan system. In this paper a case study is presented where Cooling system of a Non AC Intermediate Commercial Truck is modified for Air Conditioning application. Condenser is mounted on the radiator and the additional heat load is managed by a minor change in the system. Fan is operated based on coolant temperature and with additional controls for Air Conditioning. Simulations are done in a Thermal management software “KULI
Kiran, NalavadathM S, Vignesh
The purpose of air conditioning (AC) duct packing is multifaceted, serving to prevent condensation, eliminate rattle noise, and provide thermal insulation. A critical aspect of duct packing is its adhesive quality, which is essential for maintaining the longevity and effectiveness of the packing's functions. Indeed, the challenge of achieving adequate adhesivity on AC ducting parts is significant due to the harsh operating conditions to which these components are subjected. The high temperatures and presence of condensation within the AC system can severely compromise the adhesive's ability to maintain a strong bond. Moreover, the materials used for these parts, such as HDPE, often have low surface energy, which further hinders the formation of a durable adhesive bond. The failure of the adhesive under these conditions can lead to delamination of the duct packing, which can result in customer inconvenience due to rattling noises, potential electrical failures if condensed water
M, Amala RajeshSonkar, SurabhiKumar, Mukesh
In automotive air conditioning systems, compressor is used to convert low pressure low temperature refrigerant into high pressure high temperature refrigerant. Various types of compressors like swash plate, rotary vane, scroll etc. are widely used in the automotive industry for air conditioning applications. In rotary vane compressors, thermal protector is used as a safety device, designed to prevent the compressor from overheating during refrigerant compression process. When the discharge temperature exceeds the preset limit of thermal protector, the thermal protector will activate and stop the electrical supply to compressor clutch to stop the compressor operation thereby preventing potential damage to air conditioning system, engine, and other nearby parts of the vehicle. This technical paper explores the various real-world scenarios for a hot country like India, which may result into higher discharge temperatures of compressor resulting into activation of thermal protector. The
Mittal, SachinSaha, AniketKumar, MukeshUmbarkar, Shriganesh
Electric Vehicles (EVs) have rapidly grown as a means for clean mobility, as they zero down tail pipe emission of greenhouse gases. Additionally, greenhouse gases such as Hydro-Fluoro-Carbon (HFCs) based refrigerants used in Mobile Air-Conditioning (MAC) are under global scrutiny for their high Global Warming Potential (GWP). To prevent earth environment to pass the climate tipping point that will be irreversible within human capacity, actions such as rapid phase down of high GWP rated HFCs under Kigali Amendment to Montreal Protocol are enacted. India being amongst signatory nations is now working to fast track phase-down use of high GWP refrigerant and transit to low GWP refrigerant options. Nearly half of national HFCs use and emissions are for manufacture and service MAC. Vehicle OEMs supplying to markets in developing countries (e.g. European nation and non-Article 5 Parties) have already phased out HFC-134a (GWP=1400) through alternate refrigerant solutions. The work presented
Maurya, AnuragVenu, SantoshKapoor, SangeetKhan, Farhan
The proposed smart, efficient eco-cooling strategy leverages the AC system's efficiency sensitivity to the vehicle speed and the thermal storage of the cabin to coordinate the AC operation with the vehicle speed profile by actively shifting the AC thermal load toward the more efficient region at higher vehicle speeds. An investigation is now being conducted on vehicle cabin climate control systems to lower energy consumption and enhance battery electric vehicle range when in pure electric mode. OEMs of electric vehicles are always searching for novel concepts that will extend the driving range of their vehicles. Basically, an air conditioning system needs high-voltage power from high-voltage battery packs to keep the interior of the cabin in a comfortable temperature range during the summer. In order to meet these demands, the AC system in electric vehicles becomes an additional power consumer. This smart ECO AC system consists of the importance and impact of the various components of
Agalawe, KIRAN R.Nagarhalli, Prasanna VHAJGUDE, NIKHIL
Electric Vehicles and Battery-Fuel_Cell hybrid vehicles are increasingly becoming popular in the market, especially in the commercial vehicle segment. Range estimation and control is of paramount importance as it is the main cause of anxiety among the vehicle owners. This paper discusses application of Reinforcement Learning (RL) to achieve range control. In RL, the learning agent choses actions dependent on the state of the environment and gets a reward in return. Ultimately the agent will learn the policy of choosing the actions for each state such that his long-term reward is maximized. The technique of RL has been applied for various scenarios where in a look up table (between the states of a system and actions to be taken) needs to be developed for optimal performance. In this paper, we use RL to manipulate other energy sources and sinks like Fuel Cell and HVAC (in addition to the battery which is the main energy source) for range control, and thereby achieve the optimal
Changavar, Ganesh
Over the past few decades, there has been a notable increase in stakeholder’s attention on Earth's climate. The automotive industry, being a major contributor to this phenomenon, has been endeavoring to mitigate its impact through various measures. These efforts include reducing emissions in existing internal combustion engine (ICE) vehicles and promoting electric vehicles (EVs) as a feasible alternative for consumers. Despite these initiatives, there remains a persistent challenge in improving the fuel economy and driving range of vehicles. India, located along the Tropic of Cancer, experiences both tropical and subtropical climates. As a result, a substantial portion of the total heat absorbed is from solar radiation. The higher heat load necessitates extensive use of air conditioning (AC) systems, which significantly contributes to the overall power consumption of vehicles. Various measures are being implemented to mitigate this heat load and enhance the efficiency of AC operations
Kumar, SunnyVenu, SantoshRaj, ShivamKandekar, Ambadas
Tank Technologies, a company producing porcelain-lined water heaters, faced significant challenges with their manual cutting processes. Challenges in the cutting process are detrimental in an industrial landscape where speed requirements and cost pressures are high. The introduction of Hirebotics’ Cobot Cutter significantly improved their operations, drastically reducing rework, improving cycle times, and elevating overall efficiency
SAE J3291 covers hoses and coupled hose assemblies intended for containing and circulating lubricant, liquid, and gaseous refrigerant in automotive air-conditioning systems. This recommended practice will be used to establish requirements for the validation of hoses, hose assemblies, or nonmetallic line assemblies with any new refrigerant or refrigerant blend being considered for use in automotive air-conditioning systems. The new refrigerants and blends covered by this document do not include current refrigerants R134a, R1234yf, and R152a. This document does not cover previously used refrigerant R12 nor refrigerants used in transcritical systems, such as R744. It is the system manufacturer’s responsibility to ensure that adequate compatibility testing is completed with new refrigerants, blends, and lubricant combinations together with intended hose materials. The recommended tests include, but are not limited to, volume swell, delamination, and rapid decompression. These tests are not
Interior Climate Control MAC Supplier Committee
While cooling comfort is important in city buses compared to other vehicles, it is also difficult to keep the cooling performance at a high level. Roof AC units used in commercial vehicles may vary in performance depending on many factors. Therefore, while the design works are in progress, there are some points to be considered while the units are in the packaging phase. These points are that the air used for condenser cooling in the air conditioner suction zone is at low temperature with high flow rate. In this study, it is aimed that the air conditioner and battery cooling unit placed on the roof of a bus developed by ANADOLU ISUZU are not adversely affected by each other. For this reason, in the related study, design and analysis studies were carried out to reduce the negative effects of the hot air coming out of the battery thermal management system (BTMS) in the cooling circuit when the air conditioner is activated. The aim of the study is to ensure that the air-conditioning unit
Küçükbayram, Hamdi
The structure-, fluid- and air-borne excitation generated by heating, ventilation and air conditioning (HVAC) compressors can lead to annoying noise and low frequency vibrations in the passenger compartment. These noise and vibration phenomena are of great interest to ensure a high passenger comfort of electric vehicles (EV). This publication describes the development of a numerical finite element (FE) model of the HVAC system and the simulation results of structure-borne sound transmission from the compressor via the HVAC hoses to the vehicle body in a frequency range up to 1 kHz. The simulation results were validated with measurements. An existing automotive HVAC system was fully replicated in the laboratory. Vibration levels were measured on the compressor and on the car body side of the hoses under different operational conditions. Additional measurements were carried out using external excitation of the compressor in order to distinguish between structure- and fluid-borne
Buchegger, BlasiusSonnberger, PiusBöhler, ElmarNijman, EugeneRejlek, JanBillermann, RobertKrüger, Yannik
During design development phases, automotive components undergo a strict validation process aiming to demonstrate requested levels of performance and durability. In some cases, specific developments encounter a major blocking point : decoupling systems responsible for optimal acoustic comfort performances. On the one hand, damping rubbers need to be soft to comply with noise, vibration & harshness criteria. However, softness would provoke such high amplitudes during vibration endurance tests that components would suffer from failures. On the other hand, stiffer rubbers, designed for durability purposes, would fail to meet noise compliance. The rubber design development goes through a double-faced dilemma : design with acceptable trade-off between NVH and durability, and efficient ways to develop compliant designs. This paper illustrates two case studies where different methodologies are applied to validate decoupling systems from both acoustic and reliability perspectives. The goal was
Bonato, MarcoBennouna, SaadRavineala, Tudor
In an ever-transforming sector such as that of private road transport, major changes in the propulsion systems entail a change in the perception of the noise sources and the annoyance they cause. As compared to the scenario encountered in vehicles equipped with an internal combustion engine (ICE), in electrically propelled vehicles the heating, ventilation, and air conditioning (HVAC) system represents a more prominent source of noise affecting a car’s passenger cabin. By virtue of the quick turnaround, steady state Reynolds-averaged Navier Stokes (RANS)- based noise source models are a handy tool to predict the acoustic power generated by passenger car HVAC blowers. The study shows that the most eminent noise source type is the dipole source associated with fluctuating pressures on solid surfaces. A noise map is generated from the noise source models data, giving indications of how changes in operating conditions affect the acoustic output of the machine throughout its operating range
Pietroniro, Asuka GabrieleKabral, RaimoHuang, ZhongjieBackman, JoakimKnutsson, MagnusAbom, Mats
For battery-electric vehicles (BEVs), the climate control and the driving range are crucial criteria in the ongoing electrification of automobiles in Europe towards the targeted carbon neutrality of the automotive industry. The thermal management system makes an important contribution to the energy efficiency and the cabin comfort of the vehicle. In addition to the system architecture, the refrigerant is crucial to achieve high cooling and heating performance while maintaining high efficiency and thus low energy consumption. Due to the high efficiency requirements for the vehicle, future system architectures will largely be heat pump systems. The alternative refrigerant R-474A based on the molecule R-1132(E) achieved top performance for both parameters in various system and vehicle tests. An own-built energy efficiency tool was used to determine the possible energy reduction of R-474A in comparison to refrigerant alternatives that can be translated in a CO2 reduction of the thermal
Macrì, ChristianDe León, ÁlvaroFlohr, Felix
A vehicle’s heating, ventilation, and air-conditioning system plays a dual role in passenger thermal comfort and safety. The functional aspects of safety include the front windshield demist and deicing feature of the system. The thin-film mist is a result of condensation of water vapor on the inner side of the windshield, which occurs at low ambient temperatures or high humidity. This mist deposition depends on the air saturation pressure at the front windshield. Indian regulation AIS-084 defines the experimental setup for testing, which encompasses both the mist deposition and its subsequent demist process. This regulation mandates testing, which occurs at a later stage of product development. This performance validation can be performed using a three-dimensional computational fluid dynamics approach. Current work summarizes the simulation process for both the mist deposition and the subsequent demisting phenomenon. The complexity of the flow physics is captured via the transient
Nomani, MustafaBiswas, KundanKandekar,  AmbadasTadigadapa, Suresh
The difficulties of testing a bluff automotive body of sufficient scale to match the on-road vehicle Reynolds number in a closed wall wind tunnel has led to many approaches being taken to adjust the resulting data for the inherent interference effects. But it has been impractical if not impossible to experimentally analyze the effects that are occurring on and around the vehicle when these blockage interferences are taking place. The present study is an extension of earlier work by the author and similarly to that study uses the CFD (computational fluid dynamics) analysis of several bodies of differing configurations to examine the interference phenomena in solid wall wind tunnels and the effects that they have on the pressures, forces and force increments experienced by the vehicle model. This is accomplished by executing a series of CFD configurations with varying sized cross sections from 0.2% to 16% blockage enabling an approximation of free air conditions as a reference. The
Gleason, MarkRiegel, Eugen
With the increasing demand for Battery Electric Vehicles (BEVs) capable of extended mileage, optimizing their efficiency has become paramount for manufacturers. However, the challenge lies in balancing the need for climate control within the cabin and precise thermal regulation of the battery, which can significantly reduce a vehicle's driving range, often leading to energy consumption exceeding 50% under severe weather conditions. To address these critical concerns, this study embarks on a comprehensive exploration of the impact of weather conditions on energy consumption and range for the 2019 Nissan Leaf Plus. The primary objective of this research is to enhance the understanding of thermal management for BEVs by introducing a sophisticated thermal management system model, along with detailed thermal models for both the battery and the cabin. These models are seamlessly integrated into a 2019 Nissan Leaf Plus BEV model developed in Autonomie, allowing for a holistic assessment of
Al Haddad, RabihMansour, CharbelKim, NamdooSeo, JiguNemer, Maroun
The discussed invention is centered on the evaporative cooling of a vehicle cabin, introducing a novel concept of humidity control. Unlike conventional Air Conditioning (AC) systems that operate on the Vapor Compression Refrigeration Cycle (VCRC), which tend to be costly and contribute to higher fuel consumption due to the engine-driven compressor in automobiles, there is currently no other Original Equipment Manufacturer (OEM) fitted cabin cooling option available to address this issue. This paper introduces the idea of a humidity-controlled evaporative cooler. The objective of humidity control is achieved through a controller unit that receives feedback from a humidity sensor, subsequently regulating the operation of the water pump. The ambient air is passed through a humidified honeycomb pad, cooling through the principle of evaporation. To prevent any leftover water droplets from entering the cabin, a polyester nonwoven filter has been integrated into the system. This invention not
Dube, DevashishUpkare, Piyush Pradip
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied. The estimated
Yao, QishuiLi, MinZhang, LichengYue, ZaiqinShangguan, Wen-Bin
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions
Disch, ChristianO'Donnell, RyanSingh, RipudamanChutipassakul, SomjaiKrein, WilliamHeinzelmann, FrankOesterle, Matthias
Given the growing interest in improving the efficiency of the bus fleet in public transportation systems, this paper presents an analysis of the energy consumption of a battery electric bus. During the experimental campaign, a battery electric bus was loaded using sand payloads to simulate the passenger load on board and followed another bus during regular service. Data related to the energy consumed by various bus utilities were published on the vehicle’s CAN network using the FMS standard and sampled at a frequency of 1 Hz. The collected experimental data were initially analyzed on a daily basis and then on a per-route basis. The results reveal the breakdown of energy consumption among various utilities over the course of each day of the experiment, highlighting those responsible for the highest energy consumption. Subsequently, the relationship between the energy consumption of the traction motor and the climate control system was investigated concerning environmental parameters
Belloni, MattiaTarsitano, DavideSabbioni, Edoardo
The significance of thermal management performance in electric vehicles (EVs) has grown considerably, leading to increased complexity in thermal systems and a rapid rise in safety and quality-related concerns. The present real-vehicle-based development methods encounter several constraints in their approach when dealing with highly complex systems. Huge number of verification and validation work To overcome these limitations and enhance the thermal system development process, a novel virtual development environment established using the XiLS (X in the Loop Simulation) methodology. This XiLS methodology basically based on real-time coupling between physical thermal system hardware and analytical models for the other systems of vehicle. To control vehicle model and thermal system, various options were realized through hardware, software and model for VCU (Vehicle control unit) and TMS (Thermal management system) control unit. With XiLS evaluation environment as the foundation
Lim, TaewoongBaek, JunhoDongmyeong, LeeJeon, Jee HwanLee, HyeonseobPark, JunhyeongMyeong, HanseungKim, MyeongwooChoi, Seockhwan
Per - and polyfluoroalkyl substances – known as PFAS are man-made chemicals that do not occur naturally. PFAS are widely used, long lasting chemicals, components of which break down very slowly over time. Scientific studies have shown that exposure to some PFAS in the environment may be linked to harmful health effects in humans and animals. Because of their widespread use and their persistence in the environment, many PFAS are found in human and animals’ blood all over the world and are present at low levels in a variety of food products and in the environment. PFAS are found in water, air, fish, and soil at locations across the nation and the globe. Both refrigerants (HFC-134a & HFO-1234yf) that are currently used in mobile air conditioning systems (MACS) create PFAS. Hence, various countries are looking into banning chemicals that create PFAS. Natural refrigerants are being proposed as alternative refrigerants as they do not create PFAS. Hence, Propane (R290) and Carbon-Dioxide
Mathur, Gursaran
As regulations on exhaust emissions of automobiles are tightened in each country, the paradigm of the automobile industry is rapidly changing from internal combustion engine vehicles to electric vehicles, and consumers' interest in electric vehicles and sales volume are soaring. However, it is very inconvenient for consumers that electric vehicles take a considerable amount of time to charge compared to internal combustion engines, which can be refueled within minutes at gas stations. Therefore, shorter charging times are bringing electric vehicles to an inconvenience. It is the most important part in the development. The factors that determine the charging time of the electric vehicle include the capacity of the charger, the characteristics of the battery, Although many aspects such as charging control strategy are included, battery thermal management is one of the most influential factors in determining charging speed. In the case of an electric vehicle that can be charged at high
Jeong, Seong-Bin
Items per page:
1 – 50 of 1986