Browse Topic: Heating, ventilation, and air conditioning systems (HVAC)

Items (2,177)
All automotive vehicles with enclosed compartments must pass the shower test standard - IS 11865 (2006). One of the most severe and critical areas of water leakage is “water entry into HVAC (heating, ventilation, and air conditioning) opening”. Excess water flow at high-pressure conditions and seepage during long-time low-pressure conditions could potentially have a significant impact on water entry inside the HVAC suction cutout given on BIW (body in white) and subsequently into the cabin. The present study clearly indicates that for making leak proof HVAC opening (suction interface), it is crucial for the structure of BIW plenum, plenum applique, and its sealing components to be robust enough to effectively collect and divert the water during rainy seasons.
Gunasekaran, MohanrajNamani, PrasadRamaraj, RajasekarJunankar, AshishRaju, Kumar
Electric Vehicles (EVs) are rapidly transforming the automotive landscape, offering a cleaner and more sustainable alternative to internal combustion engine vehicles. As EV adoption grows, optimizing energy consumption becomes critical to enhancing vehicle efficiency and extending driving range. One of the most significant auxiliary loads in EVs is the climate control system, commonly referred to as HVAC (Heating, Ventilation, and Air Conditioning). HVAC systems can consume a substantial portion of the battery's energy—especially under extreme weather conditions—leading to a noticeable reduction in vehicle range. This energy demand poses a challenge for EV manufacturers and users alike, as range anxiety remains a key barrier to widespread EV acceptance. Consequently, developing intelligent climate control strategies is essential to minimize HVAC power consumption without compromising passenger comfort. These strategies may include predictive thermal management, cabin pre-conditioning
Mulamalla, Sarveshwar ReddySV, Master EniyanM, NisshokAnugu, AnilE A, MuhammedGuturu, Sravankumar
This report, in conjunction with other referenced SAE documents, provides recommendations for development of aircraft cabin pressure control systems and equipment, with particular emphasis on performance objectives, requirements definition, operational scenarios, design practices, safety processes, and verification methods. The objective of a Cabin Pressure Control System (CPCS) is to regulate aircraft cabin pressure throughout the operational flight envelope, in order to ensure occupant safety, aircraft safety, and passenger comfort. The system should comply with all relevant certification and safety requirements, particularly in the areas of: Maintaining a breathable environment within occupied compartments Protecting the fuselage structure against excessive positive and negative differential pressure loads Supporting cabin egress on ground The system should have the capability to schedule cabin pressure at rates of change that are comfortable to crew and passengers. Careful
AC-9 Aircraft Environmental Systems Committee
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
Thermal comfort is increasingly recognized as a vital component of the in-vehicle user experience, influencing both occupant satisfaction and perceived vehicle quality. At the core of this functionality is the Climate Control Module (CCM), a dedicated embedded Electronic Control Unit (ECU) within automotive HVAC system [6]. The CCM orchestrates temperature regulation, airflow distribution, and dynamic environmental adaptation based on sensor inputs and user preferences. This paper introduces a comprehensive Hardware-in-the-Loop (HIL) [3] testing framework to validate CCM performance under realistic and repeatable conditions. The framework eliminates the dependencies on physical input devices—such as the Climate Control Head (CCH) and Infotainment Head Unit (HU)—by implementing virtual interfaces using real-time controller, and Dynamic System modelling framework for plant models. These virtual components replicate the behaviour of physical systems, enabling closed loop testing with high
More, ShwetaShinde, VivekTurankar, DarshanaPatel, DafiyaGosavi, SantoshGhanwat, Hemant
With the transition from ICE vehicles to EV’s, the dominant noise sources within the vehicle cabin have shifted from engine noise to auxiliary systems, especially HVAC systems. In conventional vehicles with internal combustion engines (ICE), engine noise tends to mask noise from auxiliary sources. However, in electric vehicles (EVs), the lack of engine noise causes these auxiliary noises, such as those from the HVAC system, to become more prominent and potentially uncomfortable for occupants. The primary objective is to understand how the absence of engine noise in EVs influences the perceived HVAC noises. The research methodology involves static and on-road evaluation of both electric and ICE vehicle having common platform, conducted under same testing conditions. The study aims to quantify and compare the acoustic characteristic differences of HVAC noise between ICEs and EVs, primarily focusing on cabin airflow noise, refrigerant flow noise, and AC compressor noise. Based on the
Patra, SubhashreeJoshi, RishiSharma, RachitLingampelly, RajaprasadNeupane, Manoj
Polymer compounds used in the manufacturing of automotive interiors are traditionally consist of polymer virgin material, elastomers, additives, pigments, fillers. These compounded polymers are prone to the emission of low molecular weight chemicals over a period of usage and exposure to the environment called volatile organic compounds (VOCs) and carbonyl compounds. These released VOCs and carbonyl compounds consist of chemicals like benzene, toluene, xylene, styrene, acetaldehyde, formaldehyde, acrolein etc. Short term or long-term exposure of these chemicals have adverse health effects like nausea, headache, vomiting, cancer, even death of personnel if found beyond the permissible limits. It has been observed that the majority of passenger have the above symptoms whenever travelled using passenger cars within few minutes of boarding and exchange the car cabin air. The study was planned to understand the reasons for the concerns and further resolution. This paper is focused on the
Shukla, Sandeep KumarBalaji, K VVaratharajan, Senthilkumaran
Electric vehicles (EVs) have surged in popularity in recent years due to their environmental benefits. The influence of range on air conditioning (AC) power consumption is a critical concern for electric vehicle (EV) owners, particularly in warmer climates. Overcoming obstacles such as a limited vehicle range is necessary for the increased use of electric-powered automobiles. Cabin heating and cooling demand for climate control consumes more energy from the main battery and has been revealed to significantly reduce vehicle range. During peak cooling or heating, the overall power consumption of the AC system takes almost 50% of the energy used for traction. The average reduction in driving range caused by air conditioning (heating and cooling) approximates 33%. The energy usage of an electric vehicle can be considerably decreased by switching the climate control setting to economy mode. The AC system will operate more effectively, enabling the vehicle to save energy and extend its range
Mulamalla, Sarveshwar ReddyAnugu, AnilE A, MuhammedUmmiti, KumarM, NisshokChoudhary, Ankit
There is a scarcity of research in literature regarding the determination of Plenum Opening Area of cowl box. The area of the plenum opening in the cowl box significantly affects the airflow rate in fresh airflow modes, such as face and defrost modes, as well as issues related to water ingress. Primarily, the size of the plenum opening is determined by the necessary HVAC airflow rate. This study aims to investigate how the plenum opening area impacts both airflow discharge and the water ingress issue in the HVAC module. A novel approach is introduced in this research to determine the optimal plenum opening area of the cowl box, taking into account both airflow rate and water ingress concerns. The ANSYS FLUENT software is utilized to analyze airflow discharge in both face and defrost modes, while the SPH (Smooth Particle Hydrodynamics) based Preonlab tool is employed for water ingress analysis. Airflow discharge is evaluated for various plenum opening sizes in both modes, and the area
Baskar, SubramaniyanMahesh, AGopinathan, Nagarajan
The inclusion of the cabin in HVAC simulations gained more importance with the introduction of BEV’s. Thermal management and efficiency being in the forefront, exploration for the possible opportunities to reduce the energy consumption for meeting the comfort of passengers gained importance. The energy consumed by the Electric coolant or air heaters for heating the cabin at extreme cold ambient temperatures to deliver similar comfort to that of an ICE version is 2 to 3 times that of the energy required for cooling the cabin in a high ambient condition. Even during the sizing of HVAC system, if traditional method of ambient or fresh air conditions is considered for calculating the requirements, the result is we would require a product which will have unrealistic performance demand. Hence to explore different possibilities for studying the system, usage of recirculation air was considered as one of the options. This paper talks about the approach followed in creating the cabin model in
Veerla, EswarSubramanian, Karthik
Electric buses (e-buses) are essential to sustainable public transport, but their real-world efficiency and range are heavily affected by auxiliary systems, particularly the Heating, Ventilation, and Air Conditioning (HVAC) system. This study investigates how ambient temperature variations and HVAC loads influence energy consumption, range, and efficiency in e-buses operating under diverse climatic conditions. The methodology combines field data collection from urban e-buses across seasons—including extreme summer and winter—with controlled laboratory testing. Field measurements included ambient temperature, HVAC demand, vehicle speed, state of charge (SOC) variation, and energy consumption. These inputs were used to develop real-world duty cycles, replicating actual thermal loads, passenger profiles, idling periods, and driving patterns. In the laboratory, these cycles were simulated using a chassis dynamometer and environmental chamber, with HVAC systems tested at controlled ambient
Vishe, PrashantDalela, SaurabhSaraswat, ShubhamJoshi, Madhusudan
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
The automotive industry is encountering difficulties in balancing occupant thermal comfort with HVAC system energy efficiency, particularly under the hot Indian conditions, to meet user expectations and address range anxiety in electric vehicles. Front-loaded comfort-based approach simulations during the development stages have the potential to increase energy savings compared to the stages required at the end of product design. The focus of the current research targets HVAC energy consumers, such as blower flow rates, temperatures, and Cabin heaters, and investigates how these factors influence occupant overall comfort. Additionally, design elements like glass properties and the impact of solar radiation on human comfort are studied at the early concept stages to adopt an energy-based approach for comfort optimization. Simulations are conducted using GT-SUITE and GT-TAITherm software, integrated with CFD field maps platforms to obtain exact flow field predictions. The simulation
Bavrisetti, Sai Sampath KumarChothave, AbhijeetGummadi, GopakishoreKhan, ParvejThiyagarajan, RajeshRaju, KumarA Sr, Mahesh
Rainwater accumulation in the cowl region, located at the base of the windshield, can lead to serious HVAC performance degradation, corrosion, and passenger discomfort if not effectively drained. Traditional physical validation methods are often time-consuming, costly, and limited in diagnostic insight. This study presents a simulation-driven methodology for evaluating and optimizing HVAC cowl box drainage performance during the early design phase. Using STAR-CCM+, a multiphase Volume of Fluid (VOF) approach was implemented to visualize water flow behavior under static and dynamic conditions. Design variants were assessed by modifying drain tube geometry (shape, size, and placement) and cowl surface features, such as baffle positioning. Results showed that inadequate drainages were primarily due to stagnation zones, shallow slopes, and drain locations prone to clogging. Water film accumulation near the HVAC inlet was accurately predicted, highlighting potential ingress paths under high
Mathew, RonnieIbrahim, SayyafNikumbh, Nayan
This study investigates the concentrations of PM2.5 and PM10 inside an automobile under real-world driving conditions, one of the most polluted cities globally. India faces severe air pollution challenges in many cities, including Delhi, which are consistently ranking among the most polluted cities in the world. Major contributors to this pollution include vehicular emissions, industrial activities, construction dust, and biomass burning. Exposure to PM2.5 and PM10 has been linked to numerous adverse health effects, including respiratory and cardiovascular diseases, aggravated asthma, decreased lung function, and premature mortality. PM2.5 particles, being smaller, can penetrate deeper into the lungs and even enter the bloodstream, causing more severe health issues. In big cities like New Delhi, long driving times exacerbate exposure to these pollutants, as commuters spend extended periods in traffic. Measurements were taken both inside and outside the vehicle to assess the real-world
Gupta, RajatPimpalkar, AnkitPatel, AbhishekKumar, ShubhamJoshi, RishiKumar, Mukesh
The HVAC (Heating, Ventilation, and Air conditioning) system is designed to fulfil the thermal comfort requirement inside a vehicle cabin. Human thermal comfort primarily depends upon an occupant’s physiological and environmental condition. Vehicle AC performance is evaluated by mapping air velocity and local air temperature at various places inside the cabin. There is a need to have simulation methodology for cabin heating applications for cold climate to assess ventilation system effectiveness considering thermal comfort. Thermal comfort modelling involves human manikin modeling, cabin thermal model considering material details and environmental conditions using transient CAE simulation. Present study employed with LBM (Lattice-Boltzmann Method) based PowerFLOW solver coupled with finite element based PowerTHERM solver to simulate the cabin heat up. Human thermal comfort needs physiological modelling; thus, the in-built Berkeley human comfort library is used in simulation. Human
Baghel, Devesh KumarKandekar, AmbadasKumar, RaviDimble, Nilesh
The automotive industry has undergone significant transformation with the adoption of electric vehicles (EVs). However, the inadequate driving range is still a major limitation and to tackle range anxiety, the focus has shifted to energy management strategies for optimal range under different driving conditions. Developing an optimal energy management algorithm is crucial for overcoming range anxiety and gaining a competitive edge in the market. This paper introduces Dynamic Energy Management Strategy (DEMS) for electric vehicles (EVs), designed to optimize battery usage and extend the driving range. Utilizing vehicle digital twin model, DEMS estimates energy consumption across Eco, Normal, and Sports driving modes by analyzing vehicle velocity profiles and pedal inputs. By calculating actual battery consumption and identifying excess power usage, DEMS operates in a closed loop to periodically assess the power gap based on real-time vehicle conditions, including HV components like the
Dey, SupriyoVenugopal, Karthick BabuPenta, AmarKumar, RohitArya, Harshita
The integration of Advanced Driver Assistance Systems (ADAS) into modern vehicles necessitates innovative solutions for interior packaging that balance out safety, performance, and ergonomic considerations. This paper introduces an inverted U-shaped steel tube cross car beam (CCB) as a superior alternative to traditional straight tube designs, tailored for premium vehicle instrument panels. The U-shaped geometry overcomes the limitations of straight tube beams by creating additional packaging space for components such as AR-HUDs, steering columns, HVAC systems, and electronic control units (ECUs). This geometry supports efficient crunch packaging while accommodating ergonomic requirements like H-point, eyeball trajectory, and cockpit depth for optimal ADAS component placement. The vertical alignment of the steering column within the U-shaped design further enhances space utilization and structural integrity. This study demonstrates that the inverted U-shaped CCB is a transformative
Mahajan, Ajay SenuRegatte, GaneshNagarjuna, KamisettiSahoo, SandeepUdugu, KumaraswamyJC, Sudheera
The interior noise and thermal performance of the passenger compartment are critical criteria for ensuring driving comfort [1]. This paper presents the optimization of air conditioning (AC) compressor noise, specifically for the low-powered 1.0 L - ICE engine paired with a 120 cc IVDC compressor. This combination is quite challenging due to the high operational load & higher operating pressure. To enhance better in-cabin cooling efficiency, compressor’s operating efficiency must be improved, which necessitates a higher displacement of the compressor. However, increased displacement results in greater internal forces which leads to more structure-borne induced noise inside the cabin. For this specific configuration, the compressor operating pressure reached up to 25 bars under most driving conditions. During dynamic driving scenario, a metallic tonal noise from the compressor was reported in a compact vehicle segment. It is reported as very annoying to passengers inside. A comprehensive
John Britto, Vijay AntonyMaluganahalli-Dharmappa Madhusoodan Sr, MadhusoodanNatarajasundaram, Balasubramanian
This research analyzes the significance of air extractor on car door closing effort, especially within the context of highly sealed cabins. The goal is to measure their effectiveness in lowering pressure-induced resistance, study how the cut-out cross section and location affect performance, and its contribution to vehicle premium feel. Current vehicle design trends prioritize airtight cabin sealing for improving aerodynamic efficiency, NVH performance. This causes a problem in door closing operation. Air trapped while closing door creates transient pressure pulses. This pressure surge creates immediate discomfort to user i.e., Popping in Ears and requires high door closing force, and long-term durability problems in hinges and seals. In properly sealed cabins, air pressure resistance can contribute to 25% to 40% of total door closing force. Air extractors, usually installed in the rear quarter panels or behind rear bumpers, serve as pressure relief valves, allowing for a smoother
P, SivasankarSankineni, Vikhyath RaoShah, SahilMarimuthu, Anbarasan
The transition toward zero-carbon propulsion technologies has highlighted the urgent need for specialized test infrastructure to support hydrogen and alternative fuel research. This paper presents the conceptualization, design, and operation of a High-Pressure Direct Injection (HPDI) Hydrogen Internal Combustion Engine (H2 ICE) test facility with integrated ammonia fuel testing capability, marking a significant advancement in India’s sustainable automotive research efforts. Drawing from practical experience, it outlines crucial technical specifications, safety protocols, and best practices for establishing robust, adaptable, and secure testing environments. Addressing the industry’s need for dedicated infrastructure, it is engineered for adaptability across various engine types including heavy-duty, light-duty, and multi-utility vehicles while aligning with global technical standards. Key technical considerations include a transient dynamometer with an advanced automation system for
Dhyani, VipinKurien, CaneonSubramanian, BalajiKhandai, ChinmayanandaMuralidharan, M
This paper explains the method of precooling of electric vehicle from grid connected charger reduce load on HVAC and improve the range. HVAC systems are integral part of a commercial EV bus. With the rise of ambient temperatures during various seasons, the load on HVAC System is increasing. Once an Electric vehicle is released from a depot for service, with an initial soaked up ambient vehicle, the HVAC system demands peak power for cooling the interiors which consumes a lot of battery power thus affecting the range. That cause the additional energy consumption required for precooling, which cannot be estimated as it is highly dependent on ambient temperature and range of the vehicle is also dependent on HVAC consumption during summer and peak loads. This paper is proposing a method that uses a special precooling mode which is activated depending on the selection of the vehicle route based on backend application running on cloud. The Application in the cloud checks if the vehicle is
Ganguly, SutanuShukla, AmishaJain, SarikaPatil, RohanSahu, PritishYadav, AnkitMarskole, DeepaAmancharla, Naga Chaithanya
Electric vehicles (EVs) are coming into usage quickly because of the environmental advantages and technological innovations. But among the most important issues in EV operation is effectively handling thermal loads, especially in the mobile air-conditioning (MAC) system. As opposed to internal combustion engine (ICE) vehicles, which have access to engine waste heat to use for climate control, EVs depend solely on the battery for propulsion and auxiliary systems. This renders the MAC system one of the primary energy consumers and directly influences vehicle range and overall efficiency. While MAC systems are inherently designed for energy efficiency, this study focuses on an addition to the controller-level optimization, providing an additional pathway to improve thermal management performance in existing EV architectures. The work uniquely implements and compares five rule-based supervisory controllers (RBCs) on an open-source Simulink-based electric vehicle thermal management (EVTM
Akkalkot, Yash SatishVidyasagar, ShekharRaju, Tarun L.Vaasuki, G.Kiran, M.
In the recent years, the use of conventional passenger vehicles has been increasingly discouraged, from European-level policies to local municipal regulations, due to the urgent need to reduce greenhouse gas emissions and urban pollution. In response to these challenges, the PRIN2020 project HySUM (Hybrid SUstainable Mobility platform) explores innovative hybrid powertrain solutions for light and heavy quadricycles to achieve near-zero pollutant emissions, focusing on internal combustion engine hybrid electric vehicles and fuel cell hybrid electric vehicles. Taking all these aspects into consideration, this article proposes an integrated solution for cooling/HVAC circuits, to improve energy efficiency and occupants’ comfort, while focusing on proper battery operation, with a recuperator heat exchanger used to recover the available heat at the powertrain output, in order to reduce the HVAC heater energy consumption. The complexity of the circuit requires a specific control logic to be
Lombardi, SimonePutano Bisti, ChiaraFederici, LeonardoPistritto, AntoninoChiappini, DanieleTribioli, Laura
This paper explores the adaptability and reliability testing methods of electric vehicles under the unique high-temperature and high-humidity climate conditions in Southeast Asia. The focus of the research here is on five key performance evaluation contents, namely reliability driving test, charging performance test, range assessment, air conditioning cooling efficiency, and in-vehicle air quality monitoring. Relying on a meticulously designed experimental plan, standardized testing procedures, and comprehensive data analysis, this paper assesses the performance of electric vehicles under extreme environmental conditions. The research results show that the climate in Southeast Asia poses significant challenges to the battery systems, powertrains, and thermal management systems of electric vehicles. Based on empirical results, some improvement suggestions are made to support the deployment and application of electric vehicles in this region.
Wang, WeijieDeng, TianhaoWu, YilongZang, Haonan
In early of 2023 the European Union began the process of banning the so-called Per- and polyfluoroalkyl substances, with a total elimination forecast for 2035. Currently, the refrigerant gas used by automakers is the R1234yf, a substitute for the R134a as a refrigerant with zero degree of ozone layer destruction, developed to meet the European directive 2006/40/EC that came into force in 2011. It requires all new car platforms for sale on the continent to use a refrigerant in their air-conditioning system with a Global Warming Potential below 150. The alternatives studies for the replacement of R1234yf are R744 (CO2) and R290 (Propane). The first is characterized by being a non-flammable gas and has a working pressure of 6 to 12 times higher than the current one. The second has the characteristic of having working pressure similar to R1234yf, but it is a highly flammable gas. This work focuses on the analysis of the two alternative gases to R1234yf, exploring their characteristics
Ariza, Valquíria RezendeErberelli, Diego PivattoSilva, Pedro Henrique Moraes daMiyauchi, Edison Tsutomu
2
Oliveira Dias, Vinícius José deBarbieri, Paulo Eduardo LopesMoreira, Thiago Augusto AraújoSantos, Alex HenriqueFreitas Paulino, Tiago de
The purpose of this SAE Standard is to establish the specific minimum equipment requirements for recovery/recycling/recharge equipment intended for use with both R-1234yf and R-134a in a common refrigerant circuit that has been directly removed from, and is intended for reuse in, mobile air-conditioning (A/C) systems. This document does not apply to equipment used for R-1234yf and R-134a having a common enclosure with separate circuits for each refrigerant, although some amount of separate circuitry for each refrigerant could be used.
Interior Climate Control Service Committee
Whether it’s the meeting room of an office building, the exhibition room of a museum or the waiting area of a government office, many people gather in such places, and quickly the air becomes thick. This is partly due to the increased humidity. Ventilation systems are commonly used in office and administrative buildings to dehumidify rooms and ensure a comfortable atmosphere. Mechanical dehumidification works reliably, but it costs energy and — depending on the electricity used — has a negative climate impact.
Compressor is one of rotating component in AC system and function of the compressor is to increase the pressure of refrigerant and circulate the refrigerant across the system. Swash plate compressor is generally used in automotive AC application due to its light weight and compact size. Torque required to operate the compressor is very important and Compressor torque for specific capacity need to be evaluated based on simulation result. For this, simulation tools are effectively used. Modeling and simulation are the key enablers to improve the design and development process. They are extensively used throughout the development cycle. MBD based simulation is more commonly used which gives better understanding of the movement of kinematic part. Reaction forces from the result will help in providing information for the CAE analysis. Many parameters like reaction forces, torque and power varying with shaft angle of rotation is predicted using MBD and result is analyzed. Rigid and Flexible
Parayil, Paulson
Thermal Management System (TMS) for Battery Electric Vehicles (BEV) incorporates maintaining optimum temperature for cabin, battery and e-powertrain subsystems under different charging and discharging conditions at various ambient temperatures. Current methods of thermal management are inefficient, complex and lead to wastage of energy and battery capacity loss due to inability of energy transfer between subsystems. In this paper, the energy consumption of an electric vehicle's thermal management system is reduced by a novel approach for integration of various subsystems. Integrated Thermal Management System (ITMS) integrates air conditioning system, battery thermal management and e-powertrain system. Characteristics of existing integration strategies are studied, compared, and classified based on their energy efficiency for different operating conditions. A new integrated system is proposed with a heat pump system for cabin and waste heat recovery from e-powertrain. Various cooling
K, MuthukrishnanS, SaikrishnaMahobia, TanmayVijayaraj, Jayanth Murali
The Internal Heat Exchanger (IHX) is an important component in modern car air conditioning (AC) systems, particularly in AC lines. It increases cooling efficiency by transferring heat from the high-pressure liquid refrigerant to the low-pressure vapor. By using this technology, refrigerant sub-cooling and superheating improve, resulting in higher cooling performance, lower energy usage, and less strain on the compressor. It improves vehicle fuel economy and a longer lifespan of AC components. Also, IHX prevents liquid refrigerant from entering the compressor, reducing the danger of damage and increasing system reliability. This optimization helps to maintain consistent refrigerant flow, reduces energy consumption, and improves the overall Coefficient of Performance (COP). The implementation of an IHX technology in AC lines results in more compact, streamlined system designs, which allow for better temperature management, faster response times, and lower cooling loads. An IHX can boost
Dudeja, KailashSingh, Saniya
The study emphasizes on detection of different faults and refrigerant leakage as well as performance investigation of automobile air conditioning system for an electric vehicle by varying various operating conditions. A refrigerant leak in an EV isn't just an inconvenience; it's a potential threat to vehicle range and usability, lifespan and health of the expensive battery pack, overall vehicle performance, passenger safety and comfort, component longevity (motor, power electronics), environmental responsibility. Due to the refrigerant leakage, the cooling system performance degrades, and components tend to fail. Because of that this study is focusing on deriving an algorithm to have an early detection of fault and leakage in the vehicle. The performance of the system is predicted for actual conditions of operation encountered by the automobile air conditioning system. The objective of the present work includes predicting the causes and effects of refrigerant leakage in AC system of
Bezbaruah, PujaYadav, AnkitPilakkattu, Deepak
Widespread adoption of electric vehicles (EVs) is hindered by "range anxiety," a major concern for consumers. A primary contributor to this issue is the significant energy consumption of the Heating, Ventilation, and Air Conditioning (HVAC) system, which can account for 15-40% of a vehicle's total energy demand, directly reducing its practical driving range. Using the 1D simulation tool GT-SUITE, this research provides a comparative analysis of two distinct HVAC architectures: a conventional air-cooled condenser (ACC) and a proposed liquid-cooled condenser (LCC). The performance of both hardware systems was evaluated under two control strategies a Proportional-Integral (PI) controller and a basic On/Off controller—to identify the optimal configuration. The results advocate that optimizing the system's architecture and control logic yields a substantial improvement in the Coefficient of Performance (COP) ranging from 47% to 128% compared to the baseline ACC/On-Off configuration, with a
T R, RakshithYadav, Ankit
Cabin air quality plays a crucial role in ensuring passenger comfort, health and driving experience. There have been growing concerns over poor cabin air quality resulting from multiple factors, including infiltration of external pollutants such as particulate matter, volatile organic compounds, emissions from vehicle interior materials, microbial contamination and inadequate ventilation. Therefore, maintaining optimal air quality inside vehicle cabin has become a critical aspect of vehicle climate control systems. Additionally, high humidity levels inside the cabin contribute to mold growth and fogging of windows, further compromising both air quality and visibility. This review explores such factors contributing to poor cabin air quality, where the severity of these issues ranges from mild discomfort and allergic reactions to long-term respiratory ailments. To mitigate these challenges, automotive manufacturers and researchers have implemented various air purification and filtration
Sharma, Shrutika
This paper presents a comprehensive overview of the methodology employed in leveraging CFD for optimizing HVAC kinematics, focusing on reducing the operating torque by improvising the flap geometry. The aim here is to utilize the CFD simulation in order to predict the torque generated on the actuator motor connected to the flap when the flap is placed in high speed airflow and based on this value work out an optimized geometry of the flap, since its geometry plays a significant role when it comes to determining the torque values. Different flap geometry imparts different torque on motor. This torque is generated because of the force acting on the flap which is acting as a buffer in the path of airflow. The torque generated should be less than the stall torque of the actuator motor in order for smooth performance/movement of the flap. Initial geometry of the flap generated a torque of around 82.5 Ncm which was much higher than the recommendation limit. So in order to bring these torque
Madaan, AshishKumar, RaviBehera, SureshChauhan, Arpit
This study demonstrates the application of the T-Matrix, a Total Quality Management (TQM) tool to improve thermal comfort in automotive climate control systems. Focusing on the commonly reported customer issue of insufficient cabin cooling, particularly relevant in hot and congested Indian driving conditions, the research systematically investigates 36 failure modes identified across the product lifecycle, from early design through production and post-sale customer usage. Root causes are first categorized using an Ishikawa diagram and then mapped using the T-Matrix across three critical stages: problem creation, expected detection, and actual detection. This integrated approach reveals process blind spots where existing validation and inspection systems fail to catch known risks, particularly in rear-seat airflow performance and component variability from suppliers. By applying this TQM methodology, the study identifies targeted improvement actions such as improved thermal targets
Jaiswara, PrashantKulkarni, ShridharDeshmukh, GaneshNayakawadi, UttamJoshi, GauravShah, GeetJaybhay, Sambhaji
The Heating, ventilation, and air conditioning (HVAC) industry is rapidly growing, particularly in the automotive sector since they are integral to maintaining passenger comfort in vehicles by regulating the internal temperature. This growth has led to an increased demand for highly optimized and efficient HVAC systems for a uniform temperature distribution in vehicles. However, achieving this in the cabin remains a challenge due to the complex airflow dynamics within the HVAC system. A critical factor in ensuring uniform temperature distribution for year-round performance is maintaining temperature linearity within specified limits, which is essential for user comfort. Temperature linearity refers to the temperature differential between duct outlets when air is distributed through multiple vents, such as those aimed at the face and feet. This differential typically ranges from 15°C to 20°C, varying based on customer and manufacturer specifications. The flap angle significantly
Madaan, AshishKumar, RaviDangwal, Raj
In Automobile AC system, HVAC is one of major component as it controls the air flow and air distribution based on cabin requirement. HVAC kinematics mechanism is used for controlling the air flow based on passenger requirement inside the cabin. The air flow movement inside HVAC has a severe impact on servo motor/cable torque which is controlling the mechanism. Simulation driven design method is widely used in world due to highly competitive automotive industry. Launching the product at the market within short span of time, with good quality and less cost is more challenging. Hence CAE/MBD based approach is more significant as it will reduce number of prototypes as well as the cost of testing. The objective of the analysis is to predict the HVAC servomotor torque required to operate the HAVC linkages under operating conditions. The air pressure load will have significant impact on damper face which will cause torque at CAM as well as servo lever center. The torque values at servo lever
Parayil, Paulson
CAE (Computer Aided Engineering) optimization plays a pivotal role in various industries to gain a competitive edge. CAE optimization is essential in several industries, such as automotive, aerospace and consumer electronics, etc., concentrating on enhancing component structural design. The process helps in addressing complex design challenges, including weight reduction, material usage efficiency and operational effectiveness. This paper presents applications for an integrated form shape, size and topology optimization approach of structural systems by using CAE tools. For the present study, CAD (Computer Aided Design) was prepared using CATIA V5 followed by meshing in Hyper-mesh 2022.3 version software. Optistruct was used as a solver tool. Modal analysis was performed to extract the natural frequencies of vibration and respective mode shapes. According to the results of the frequency response function study performed on the automobile air conditioning condenser, based on low-stress
Mehra, AkankshaParayil, Paulson
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
Trivedi, ArpitaKumar, RaviMadaan, AshishShrivastava, Pawan
Single-zone cabin climate control systems have been standard for decades in passenger cars. Looking at the technology trend, which is transitioning from single-zone to multi-zone automatic control systems, it is now possible to provide zonal comfort tailored to the individual requirements of each passenger. In current single-zone climate control systems, maintaining the cabin temperature as stated by the passenger has been straightforward and can be achieved with slight calibration efforts using the present set of parameters and sensors until now. In this work, a multi-zone climate system highlighting the importance of individual calibration parameters in improving cabin comfort when transitioning from a single-zone to a multi-zone climate control system is proposed. As multi-zone climate systems are based on passenger set temperature requests for individual zonal comfort, appropriate controller fine-tuning is challenging when an input is taken from various sensed parameters, including
Varma, MohitSwarnkar, Sumit KumarBHOSALE, KRISHNAPatil, PrashantSardesai, Suresh
Compressor durability is a critical factor for ensuring the long-term reliability of Mobile Air Conditioning (MAC) systems in passenger vehicles. This study presents a software based strategy for enhancing compressor life using Smart Fully Automatic Temperature Control (FATC), requiring no additional hardware. The proposed approach leverages existing inputs from the FATC and Engine Management System (EMS) to intelligently manage compressor operation, with a focus on addressing challenges related to prolonged non-usage. In extended inactivity scenarios such as during cold weather, vehicle exportation, storage, or breakdowns, lubrication oil tends to settle in the compressor sump, leaving internal parts dry. Sudden reactivation at high engine speeds under such conditions can cause increased friction, wear and even compressor seizure. To mitigate this, an intelligent reactivation protocol has been developed and integrated into the Climate Control Module (CCM). This protocol continuously
Deshmukh, GaneshChotaliya, BhavyKulkarni, ShridharKHAIRE, DATTATRAYJaybhay, SambhajiJoshi, GauravShah, Geet
Items per page:
1 – 50 of 2177