Browse Topic: Passenger compartments
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms
From a Noise Vibration Harshness (NVH) perspective, electric vehicles represent a great opportunity since the noise of the combustion engine, dominant in many driving conditions, is no longer present. On the other hand, drivers accustomed to driving cars with a strong personality (for example typically sporty ones) may perceive "silence" as a lack of character. Our internal study, conducted with a jury of people, has in fact already shown that for half of customers silence should characterize (Battery Electric Vehicle - BEV) vehicle; but, at the same time, the other half of the jury expects feedback from the vehicle while driving. The silence inside the passenger compartment, from an NVH point of view, can therefore be compared to a blank sheet of paper, on which, if desired, sounds designed to satisfy the driving pleasure expected by the customer can be introduced. Starting from this scenario, the paper describes: the approach adopted to define how many and what are the levers to
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile. However, occasionally noise may be produced due to uneven bearing or plastic bush loading or a
These recommendations are to aid the international air transport industry by identifying a standard, minimum amount of safety instructions and procedures that should be provided in the PSIS. Aircraft operators are encouraged to customize the PSIS to their own operations. This document also provides recommendations for: a Passenger safety information briefings and associated materials, b Demonstration emergency equipment, c Ensuring passenger suitability for those seated in exit seats, d The standardization of safety briefings for passengers seated at exits who may be responsible for opening exits on transport aircraft during an emergency, and e A standardized protective brace position to reduce the severity of injury during severe turbulence, rapid deceleration, or a sudden impact. In addition, these recommendations pertain to briefings on aircraft on which the cabin crew would conduct the exit seat briefing, and to briefings on aircraft without cabin crew, on which pilots would
This paper presents a workflow that allows noise, vibration and harshness (NVH) engineers to objectively predict the passenger compartment noise levels due to structure-borne and radiated noise arising from the motor of an electric powertrain (ePowertrain). The optimized simulation workflow enables transmission, vehicle design engineers and NVH analyst to collaborate and address potential noise concerns well before production of the ePowertrain unit and vehicle. The NVH targets can be cascaded through a series of transfer functions, linking the electromagnetic (EM) excitation from the motor to passenger compartment noise level requirements. The workflow involves the use of Romax Spectrum and Actran software. The structural modelling of the ePowertrain including the vibration response of the ePowertrain is calculated using Romax Spectrum, whilst Actran computes the acoustic radiation around the complete vehicle, and Virtual SEA then covers the calculation to interior and exterior
There are four basic conditions requiring the dispensing of oxygen through oxygen masks to aircraft occupants in turbine powered aircraft during flight. The following conditions are derived from the Federal Aviation Regulations (FAR) as listed in Section 2
Aryballe Technology's unique sensors-on-a-chip solution aims to end the subjectivity of the human nose while neutralizing vehicle cabin odors. Whether they're riding in an autonomous shuttle, a transit bus, a train or a rental car, passengers often face cabin air full of “mal odors” - bad smells - including cigarette and vape smoke, pungent food, blatant lack of personal hygiene and worse. Where the off-gassing of plastics and leather in new vehicles had been a minor issue in the past, the olfactory (science of smells) experience is increasingly a key differentiator in rider satisfaction as new mobility solutions emerge. Ensuring a neutral-smelling passenger space is a growing focus of fleet owners and managers, particularly as autonomy becomes established in the commercial-transportation sector. Looking to a future of driverless shuttles, OEMs in the field (i.e., Cruise Automation, Waymo, Navya, Transdev, EasyMile and a host of players in China) are investigating olfaction-based
Automated-driving and ADAS functionalities continue to influence some of the latest cabin safety and materials trends. Evolving market realities have OEMs and automated-driving system developers adjusting once-aggressive timelines for deploying high-level driving automation. But new materials and safety technology for vehicle interiors continue to be influenced by advancing AV and ADAS functionalities. Regardless of how much driving automation is at play, vehicle cabins are evolving because of the possibilities - and challenges - automation and ADAS present. An array of launching or soon-to-arrive safety features, driver-information technology and materials innovations don't need AV applications as a reason for being, however. Drew Winter, Informa Tech Automotive's principal analyst - Cockpit of the Future, said that some of the feature and safety requirements of electric-vehicle and younger-demographic customers align with the technology directions for AVs and ADAS. New sustainable
This recommended practice is intended to provide general guidelines for the selection and proper use of cleaning and disinfecting product characteristics acceptable for use on vehicle interiors and exterior touch points (cleaning before disinfecting being best practice in general for vehicles, as with other situations), and the effectiveness of the disinfecting products with certain characteristics, as well as indicating the product characteristics that will not cause damage to those surfaces
Cabin Air quality is the measure of quality of air within the vehicle. Cabin air quality is not just important for comfort but for safety as well [1]. For decades, scientists have studied the air quality outside of automobiles. The in-cabin microenvironment has become a significant source of exposure to numerous air pollutants, such as particulate matter (PM), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), carbon monoxide, and nitrogen oxides, etc. [4]. There are various physical parameters such as filters, cabin temperature, air exchange rate, A/C ON or OFF condition and direction of flow of air inside the vehicle cabin, which can affect the cabin air quality and purification time. The air exchange and its rate being of highest importance [2]. The paper consists of various experimental results to check the effect of these parameters in improving the cabin air quality. The paper consists of data related to PM 2.5 which is one of the most significant
Heating, ventilation and air conditioning systems play a crucial role in our day-to-day activities. With rise in global warming, leading to climate change, HVAC unit is the need of the hour. With average temperatures on the rise, it is quite imperative that the unit provides better thermal comfort to the passengers. Off-road vehicles like tractor, is also no exclusion. Tractor drivers have to experience adverse weather conditions out in the open field. Thus it is quite fundamental that sufficient airflow reaches every point inside the driver cabin, ensuring proper cool-down. To ensure proper distribution of airflow inside the cabin, optimization of HVAC unit needs to be properly carried out. The present study shows how an HVAC of an off-road vehicle is properly optimized with the help of Computational Fluid Dynamics. STAR-CCM+ v2021.2.1 is used as solver for the simulation. Airflow simulation of inside cabin is also carried out in both initial and optimized design and cooldown
Vehicles wind shield are designed to provide a clear visibility in winter as its one of the most important requirement for the comfortable and safe journey. In extreme winters, wind shield of vehicle is covered with layer of ice and if frosted happened, results in reduces the visibility distance. To increase the visibility and providing the comfort to driving the vehicle, heater is used in vehicle as an integrated part of vehicle HVAC System. When the blower air passes through heater, air temperature gets increased. When the hot air is injected through grill at designed angle of injection and at selected air velocity on wind shield surface, ice on wind shield melting due to convection heat transfer phenomenon and thus achieved a clear windshield glass and clear visibility at driver and at co-driver area. The Objective of this paper is to optimize the design of Vehicle DUCT to improve the visibility within required timeline at driver and co-driver area under required environment
Mobile Air Conditioning (MAC) system provides year round thermal comfort to the occupants inside vehicle cabin. In present scenario, 1D CAE simulation tools are widely used for MAC system design, component sizing, component selection and cool down performance prediction. The MAC component sizing and selection mainly depends on cooling load which varies with ambient conditions, occupancy, cabin size, geometry and material properties. Therefore, detailed modeling of vehicle cabin is essential during MAC system digital validation as it helps to predict performance across wide number of contributing factors. There are two different methods available in 1D Simulation for vehicle cabin modeling, viz. ‘simple cabin’ and ‘advance cabin’. With the simple cabin modeling approach, vehicle cabin is modelled as a group of lumped masses, which only enables prediction of average vent and average cabin temperatures. In advance cabin modeling approach, vehicle cabin is modelled more comprehensively
Environmental Control System (ECS) of an aircraft provides required temperature, pressure and air flow to the cockpit or cabin or occupied compartments for the comfortable and required conditions of the occupant. Cabin pressure control system (CPCS), one of the sub-systems of ECS, controls and maintains the cabin pressure to provide a physiologically safe environment for the occupants inside the cabin. As ECS takes engine bleed air as input, any variation in engine rpm affects the cabin pressure and further the comfortable condition inside the cabin. This paper is focused on modeling and simulation of a fighter aircraft CPCS to evaluate its performance for its entire range of operation. The system is modeled and simulated in AMESim and the dynamic behavior of the system and its components are studied. Also, this paper emphasizes the effect of transient input characteristics on the cabin pressure with the cases of extreme variation in engine rpm and aircraft altitude. For the purpose of
This SAE Recommended Practice establishes uniform test procedures and performance requirements for engine-off heating, ventilation, and air conditioning (HVAC) systems in order to achieve driver thermal comfort in both winter and summer rest periods. This specification will apply to heavy trucks with and without sleeper compartments, including but is not limited to Class 6, 7, and 8 powered vehicles
Items per page:
50
1 – 50 of 1005