Browse Topic: Passenger compartments
Wind noise is one of the largest sources to interior noise of modern vehicles. This noise is encountered when driving on roads and freeways from medium speed and generates considerable fatigue for passengers on long journeys. Aero-acoustic noise is the result of turbulent and acoustic pressure fluctuations created within the flow. They are transmitted to the passenger compartment via the vibro-acoustic excitation of vehicle surfaces and underbody cavities. Generally, this is the dominant flow-induced source at low frequencies. The transmission mechanism through the vehicle floor and underbody is a complex phenomenon as the paths to the cavity can be both airborne and structure-borne. This study is focused on the simulation of the floor contribution to wind noise of two types of vehicles (SUV and Sports car), whose underbody structure are largely different. Aero-Vibro-acoustic simulations are performed to identify the transmission mechanism of the underbody wind noise and contribution
High-frequency whine noise in electric vehicles (EVs) is a significant issue that impacts customer perception and alters their overall view of the vehicle. This undesirable acoustic environment arises from the interaction between motor polar resonance and the resonance of the engine mount rubber. To address this challenge, the proposal introduces an innovative approach to predicting and tuning the frequency response by precisely adjusting the shape of rubber flaps, specifically their length and width. The approach includes the cumulation of two solutions: a precise adjustment of rubber flap dimensions and the integration of ML. The ML model is trained on historical data, derived from a mixture of physical testing conducted over the years and CAE simulations, to predict the effects of different flap dimensions on frequency response, providing a data-driven basis for optimization. This predictive capability is further enhanced by a Python program that automates the optimization of flap
Noise transmission through the vehicle dash panel plays a critical role in isolating passengers from noise sources within the motor bay of the vehicle. Grommets that contain electrical harness routing as well as HVAC lines are examples of dash panel pass-throughs that should be selected with care. Acoustic performance of these components is generally characterized in terms of measured quantities such as noise reduction (NR), sound transmission loss (STL), and insertion loss (IL). These measurements need to be carried out per SAE or ASTM standards in appropriate anechoic or reverberant chambers as this is important for consistency. This work explores an in-situ measurement of the grommet STL performance in the vehicle environment. It utilizes a repurposed vehicle with its cabin retrofitted to serve as an anechoic chamber and its frunk acting as a reverberant chamber. Results of this in-situ measurement are then compared to measurements following industry standards to discuss the
Airworthiness certification of aircraft requires an Airworthiness Security Process (AWSP) to ensure safe operation under potential unauthorized interactions, particularly in the context of growing cyber threats. Regulatory authorities mandate the consideration of Intentional Unauthorized Electronic Interactions (IUEI) in the development of aircraft, airborne software, and equipment. As the industry increasingly adopts Model-Based Systems Engineering (MBSE) to accelerate development, we aim to enhance this effort by focusing on security scope definitions – a critical step within the AWSP for security risk assessment that establishes the boundaries and extent of security measures. However, our findings indicate that, despite the increasing use of model-based tools in development, these security scope definitions often remain either document-based or, when modeled, are presented at overly abstract levels, both of which limit their utility. Furthermore, we found that these definitions
Increasing digitalization of the aircraft cabin, driven by the need for improved operational efficiency and an enhanced passenger experience, has led to the development of data-driven services. In order to implement these services, information from different systems is often required, which leads to a multi-system architecture. When designing a network that interconnects these systems, it is important to consider the heterogeneous device and supplier landscape as well as variations in the network architecture resulting from airline customization or cabin upgrades. The novel ARINC 853 Cabin Secure Media-Independent Messaging (CSMIM) standard addresses this challenge by specifying a communication protocol that relies on a data model to encode provided and consumed information. This paper presents an approach to integrate CSMIM-specific communication concepts into a Model-Based Systems Engineering (MBSE) framework using the Systems Modeling Language (SysML). This enables a streamlined
This ARP provides design and performance recommendations for emergency exits in the passenger cabin. This ARP does not apply to Crew Emergency Exits.
This SAE Aerospace Recommended Practice (ARP) establishes safety recommendations for lavatories in transport category airplanes.
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms.
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
From a Noise Vibration Harshness (NVH) perspective, electric vehicles represent a great opportunity since the noise of the combustion engine, dominant in many driving conditions, is no longer present. On the other hand, drivers accustomed to driving cars with a strong personality (for example typically sporty ones) may perceive "silence" as a lack of character. Our internal study, conducted with a jury of people, has in fact already shown that for half of customers silence should characterize (Battery Electric Vehicle - BEV) vehicle; but, at the same time, the other half of the jury expects feedback from the vehicle while driving. The silence inside the passenger compartment, from an NVH point of view, can therefore be compared to a blank sheet of paper, on which, if desired, sounds designed to satisfy the driving pleasure expected by the customer can be introduced. Starting from this scenario, the paper describes: the approach adopted to define how many and what are the levers to
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile. However, occasionally noise may be produced due to uneven bearing or plastic bush loading or a
These recommendations are to aid the international air transport industry by identifying a standard, minimum amount of safety instructions and procedures that should be provided in the PSIS. Aircraft operators are encouraged to customize the PSIS to their own operations. This document also provides recommendations for: a Passenger safety information briefings and associated materials, b Demonstration emergency equipment, c Ensuring passenger suitability for those seated in exit seats, d The standardization of safety briefings for passengers seated at exits who may be responsible for opening exits on transport aircraft during an emergency, and e A standardized protective brace position to reduce the severity of injury during severe turbulence, rapid deceleration, or a sudden impact. In addition, these recommendations pertain to briefings on aircraft on which the cabin crew would conduct the exit seat briefing, and to briefings on aircraft without cabin crew, on which pilots would
This paper presents a workflow that allows noise, vibration and harshness (NVH) engineers to objectively predict the passenger compartment noise levels due to structure-borne and radiated noise arising from the motor of an electric powertrain (ePowertrain). The optimized simulation workflow enables transmission, vehicle design engineers and NVH analyst to collaborate and address potential noise concerns well before production of the ePowertrain unit and vehicle. The NVH targets can be cascaded through a series of transfer functions, linking the electromagnetic (EM) excitation from the motor to passenger compartment noise level requirements. The workflow involves the use of Romax Spectrum and Actran software. The structural modelling of the ePowertrain including the vibration response of the ePowertrain is calculated using Romax Spectrum, whilst Actran computes the acoustic radiation around the complete vehicle, and Virtual SEA then covers the calculation to interior and exterior
There are four basic conditions requiring the dispensing of oxygen through oxygen masks to aircraft occupants in turbine powered aircraft during flight. The following conditions are derived from the Federal Aviation Regulations (FAR) as listed in Section 2.
Automated-driving and ADAS functionalities continue to influence some of the latest cabin safety and materials trends. Evolving market realities have OEMs and automated-driving system developers adjusting once-aggressive timelines for deploying high-level driving automation. But new materials and safety technology for vehicle interiors continue to be influenced by advancing AV and ADAS functionalities. Regardless of how much driving automation is at play, vehicle cabins are evolving because of the possibilities - and challenges - automation and ADAS present. An array of launching or soon-to-arrive safety features, driver-information technology and materials innovations don't need AV applications as a reason for being, however. Drew Winter, Informa Tech Automotive's principal analyst - Cockpit of the Future, said that some of the feature and safety requirements of electric-vehicle and younger-demographic customers align with the technology directions for AVs and ADAS. New sustainable
Aryballe Technology's unique sensors-on-a-chip solution aims to end the subjectivity of the human nose while neutralizing vehicle cabin odors. Whether they're riding in an autonomous shuttle, a transit bus, a train or a rental car, passengers often face cabin air full of “mal odors” - bad smells - including cigarette and vape smoke, pungent food, blatant lack of personal hygiene and worse. Where the off-gassing of plastics and leather in new vehicles had been a minor issue in the past, the olfactory (science of smells) experience is increasingly a key differentiator in rider satisfaction as new mobility solutions emerge. Ensuring a neutral-smelling passenger space is a growing focus of fleet owners and managers, particularly as autonomy becomes established in the commercial-transportation sector. Looking to a future of driverless shuttles, OEMs in the field (i.e., Cruise Automation, Waymo, Navya, Transdev, EasyMile and a host of players in China) are investigating olfaction-based
This recommended practice is intended to provide general guidelines for the selection and proper use of cleaning and disinfecting product characteristics acceptable for use on vehicle interiors and exterior touch points (cleaning before disinfecting being best practice in general for vehicles, as with other situations), and the effectiveness of the disinfecting products with certain characteristics, as well as indicating the product characteristics that will not cause damage to those surfaces.
Items per page:
50
1 – 50 of 1008