Browse Topic: Anatomy
A silicone membrane for wearable devices is more comfortable and breathable thanks to better-sized pores made with the help of citric acid crystals. The new preparation technique fabricates thin, silicone-based patches that rapidly wick water away from the skin. The technique could reduce the redness and itching caused by wearable biosensors that trap sweat beneath them. The technique was developed by bioengineer and professor Young-Ho Cho and his colleagues at KAIST and reported in the journal Scientific Reports
A thin film that combines an electrode grid and LEDs can both track and produce a visual representation of the brain’s activity in real time. The device is designed to provide neurosurgeons visual information about a patient’s brain to monitor brain states during surgical interventions to remove brain lesions including tumors and epileptic tissue
Komatsu introduced its first battery-electric load-haul-dump (LHD) machine, the WX04B, at the MINExpo tradeshow in September. The WX04B is designed specifically for narrow vein mines in underground hard rock mining operations. Komatsu is pairing the electric LHD with its new OEM-agnostic 150-kW battery charger that was also revealed in Las Vegas. The 4-tonne WX04B LHD features what Komatsu claims is best-in-class energy density, offering up to four hours of runtime on a single charge. The Li-ion NMC (nickel-manganese-cobalt) battery from Proterra has a capacity of 165 kWh and nominal voltage of 660 V. Fewer charge cycles are needed compared to competitors, the company claims, which helps to maximize operational efficiency and minimize downtime. Proterra and Komatsu began their collaboration on the LHD's H Series battery system in 2021, long before Komatsu's acquisition of American Battery Solutions (ABS) in December 2023
University of Utah Salt Lake City, UT
ABSTRACT The study describes the development of a plug-in module of the realistic 3D Digital Human Modeling (DHM) tool RAMSIS that is used to optimize product development of military vehicle systems. The use of DHM in product development has been established for years. DHM for the development of military vehicles requires not only the representation of the vehicle occupants, but also the representation of equipment and simulation of the impact of such equipment on the Warfighter. To simulate occupants in military vehicles, whether land or air based, realistically, equipment must become an integral part of the extended human model. Simply attaching CAD-geometry to one manikin’s element is not sufficient. Equipment size needs to be scalable with respect to anthropometry, impact on joint mobility needs to be considered with respect to anatomy. Those aspects must be integrated in posture prediction algorithms to generate objective, reliable and reproducible results to help design engineers
ABSTRACT In this paper, we discuss a neuroimaging experiment that employed a mission-based scenario (MBS) design, a new approach for designing experiments in simulated environments for human subjects [1]. This approach aims to enhance the realism of the Soldier-task-environment interaction by eliminating many of the tightly-scripted elements of a typical laboratory experiment; however, the absence of these elements introduces several challenges for both the experimental design and statistical analysis of the experimental data. Here, we describe an MBS experiment using a simulated, closed-hatch crewstation environment. For each experimental session, two Soldiers participated as a Commander-Driver team to perform six simulated low-threat security patrol missions. We discuss challenges faced while designing and implementing the experiment before addressing analysis approaches appropriate for this type of experimentation. We conclude by highlighting three example transition pathways from
ABSTRACT Recent advances in neuroscience, signal processing, machine learning, and related technologies have made it possible to reliably detect brain signatures specific to visual target recognition in real time. Utilizing these technologies together has shown an increase in the speed and accuracy of visual target identification over traditional visual scanning techniques. Images containing a target of interest elicit a unique neural signature in the brain (e.g. P300 event-related potential) when detected by the human observer. Computer vision exploits the P300-based signal to identify specific features in the target image that are different from other non-target images. Coupling the brain and computer in this way along with using rapid serial visual presentation (RSVP) of the images enables large image datasets to be accurately interrogated in a short amount of time. Together this technology allows for potential military applications ranging from image triaging for the image analyst
ABSTRACT This study investigated the effect of an innovative chilling device that intends to make subjects more alert and less sleepy. Tests were conducted using a variety of methods including electric-encephalography (EEG) brain tomography. A series of behavioral tests showed an increase in alertness, changes of body temperatures, and performance indicators after usage of this device. The device chills specific areas of the body and disrupts the body’s ability to self-regulate core body temperature. The induced temperature shifts may reduce the body’s capability to go to sleep. Physiological changes and brain wave indicators of alertness were also reviewed in this paper. A full study of alertness indicators in expanded driver simulations is recommended. As for future application of this device to Human Factors aspects, this device may have the potential to enhance alertness in the human dimension of machine operation of manned and unmanned assets with further improvement
Ongoing research in simulated vehicle crash environments utilizes postmortem human subjects (PMHS) as the closest approximation to live human response. Lumbar spine injuries are common in vehicle crashes, necessitating accurate assessment methods of lumbar loads. This study evaluates the effectiveness of lumbar intervertebral disc (IVD) pressure sensors in detecting various loading conditions on component PMHS lumbar spines, aiming to develop a reliable insertion method and assess sensor performance under different loading scenarios. The pressure sensor insertion method development involved selecting a suitable sensor, using a customized needle-insertion technique, and precisely placing sensors into the center of lumbar IVDs. Computed tomography (CT) scans were utilized to determine insertion depth and location, ensuring minimal tissue disruption during sensor insertion. Tests were conducted on PMHS lumbar spines using a robotic test system for controlled loading in flexion
Rear-end vehicle collisions may lead to whiplash-associated disorders (WADs), comprising a variety of neck and head pain responses. Specifically, increased axial head rotation has been associated with the risk of injuries during rear impacts, while specific tissues, including the capsular ligaments, have been implicated in pain response. Given the limited experimental data for out-of-position rear impact scenarios, computational human body models (HBMs) can inform the potential for tissue-level injury. Previous studies have considered external boundary conditions to reposition the head axially but were limited in reproducing a biofidelic movement. The objectives of this study were to implement a novel head repositioning method to achieve targeted axial rotations and evaluate the tissue-level response for a rear impact condition. The repositioning method used reference geometries to rotate the head to three target positions, showing good correspondence to reported interverbal rotations
Thorax injuries are a significant cause of mortality in automotive crashes, with varying susceptibility across sex and age demographics. Finite element (FE) human body models (HBMs) offer the potential for injury outcome analysis by incorporating anthropometric variations. Recent advancements in material constitutive models, cortical bone fracture and continuum damage mechanics model (CFraC) and an orthotropic trabecular bone model (OrthoT), offer the opportunity to further improve rib models. In this study, the CFraC and OrthoT material modes, coupled with age-specific material properties, were progressively implemented to the Global Human Body Model Consortium small female 6th rib. Four distinct 6th rib models were developed and compared against sex and age-specific experimental data. The updated material models notably refined the predictions of force–displacement responses, aligning them more closely with the experimental averages. The CFraC model significantly improved the
In the quest to develop lifelike materials to replace and repair human body parts, scientists face a formidable challenge: Real tissues are often both strong and stretchable and vary in shape and size
Researchers have succeeded in adding finger straightening or extension to soft rehabilitation gloves through a novel foldable pouch actuator (FPA) without compromising the already existing functionality of finger bending or flexion
A flexible and stretchable cell has been developed for wearable electronic devices that require a reliable and efficient energy source that can easily be integrated into the human body. Conductive material consisting of carbon nanotubes, crosslinked polymers, and enzymes joined by stretchable connectors, are directly printed onto the material through screenprinting
Road safety remains a critical concern globally, with millions of lives lost annually due to road accidents. In India alone, the year 2021 witnessed over 4,12,432 road accidents resulting in 1,53,972 fatalities and 3,84,448 injuries. The age group most affected by these accidents is 18-45 years, constituting approximately 67% of total deaths. Factors such as speeding, distracted driving, and neglect to use safety gear increases the severity of these incidents. This paper presents a novel approach to address these challenges by introducing a driver safety system aimed at promoting good driving etiquette and mitigating distractions and fatigue. Leveraging Raspberry Pi and computer vision techniques, the system monitors driver behavior in real-time, including head position, eye blinks, mouth opening and closing, hand position, and internal audio levels to detect signs of distraction and drowsiness. The system operates in both passive and active modes, providing alerts and alarms to the
University of Waterloo Chemical Engineering Researcher Dr. Elisabeth Prince teamed up with researchers from the University of Toronto and Duke University to design the synthetic material made using cellulose nanocrystals, which are derived from wood pulp. The material is engineered to replicate the fibrous nanostructures and properties of human tissues, thereby recreating its unique biomechanical properties
A new coronavirus test can get accurate results from a saliva sample in less than 30 minutes, researchers report in the journal Nature Communications. Many of the components of the handheld device used in this technology can be 3D printed, and the test can detect as little as one viral particle per 1-μL drop of fluid
Items per page:
50
1 – 50 of 5067