Browse Topic: Anatomy
This study introduces a novel in-cabin health monitoring system leveraging Ultra-Wideband (UWB) radar technology for real-time, contactless detection of occupants' vital signs within automotive environments. By capturing micro-movements associated with cardiac and respiratory activities, the system enables continuous monitoring without physical contact, addressing the need for unobtrusive vehicle health assessment. The system architecture integrates edge computing capabilities within the vehicle's head unit, facilitating immediate data processing and reducing latency. Processed data is securely transmitted via HTTPS to a cloud-based backend through an API Gateway, which orchestrates data validation and routing to a machine learning pipeline. This pipeline employs supervised classifiers, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) to analyze features such as temporal heartbeat variability, respiration rate stability, and heart rate. Empirical
Severe rear-impact collisions can cause significant intrusion into the occupant compartment when the structural integrity of the rear survival space is insufficient. Intrusion patterns are influenced by impact configuration—underride, in-line, or override—with underride collisions channeling forces below the beltline through the rear wheels as a primary load path. This force concentration rapidly propels the rear seat-pan forward, contacting the rearward-rotating front seatback. The resulting bottoming-out phenomenon produces a forward impulse that amplifies loading on the front occupant’s upper torso, increasing the risk of thoracic injury even when the head is properly supported by the head restraint. This study analyzes a real-world rear-impact collision that resulted in fatal thoracic injuries to the driver, attributed to the interaction between the driver’s seatback and the forward-moving rear seat pan. A vehicle-to-vehicle crash test was conducted to replicate similar intrusion
Occupant Safety systems are usually developed using anthropomorphic test devices (ATDs), such as the Hybrid III, THOR-50M, ES-2, and WorldSID. However, in compliance with NCAP and regulatory guidelines, these ATDs are designed for specific crash scenarios, typically frontal and side impacts involving upright occupants. As vehicles evolve (e.g., autonomous layouts, diverse occupant populations), ATDs are proving increasingly inadequate for capturing real-world injury mechanisms. This has led to the adoption of computational Human Body Models (HBMs), such as the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS), which offer superior anatomical fidelity, variable anthropometry, active muscle behaviour modelling, and improved postural flexibility. HBMs can predict internal injuries that ATDs cannot, making them valuable tools for future vehicle safety development. This study uses a sled CAE simulation environment to analyze the kinematics of the HBMs
One of the biggest goals for companies in the field of artificial intelligence (AI) is developing “agentic” systems. These metaphorical agents can perform tasks without a guiding human hand. This parallels the goals of the emerging urban air mobility industry, which hopes to bring autonomous flying vehicles to cities around the world. One company wants to do both and got a head start with some help from NASA.
Chimeric antigen receptor (CAR) T cell therapy represents a breakthrough in cancer treatment. By harnessing the body’s immune system, CAR T therapy provides a powerful, personalized treatment option that can be particularly effective for treating blood cancers like leukemia — potentially offering patients a second chance at life when other treatments have failed.
Cornell researchers have developed a low-power microchip they call a “microwave brain,” the first processor to compute on both ultrafast data signals and wireless communication signals by harnessing the physics of microwaves.
Innovators at the NASA Johnson Space Center have developed a soft, wearable, robotic upper limb exoskeleton garment designed to actively control the shoulder and elbow, both positioning the limb in specific orientations and commanding the limb through desired motions. The invention was developed to provide effective upper extremity motor rehabilitation for patients with neurological impairments (e.g., traumatic brain injury, stroke).
In blinding bright light or pitch-black dark, our eyes can adjust to extreme lighting conditions within a few minutes. The human vision system, including the eyes, neurons, and brain, can also learn and memorize settings to adapt faster the next time we encounter similar lighting challenges.
University College London London, England
In an era where technology increasingly merges with healthcare to enhance patient outcomes, a groundbreaking study conducted by Fuyang Yu and his colleagues introduces an innovative approach to lower limb rehabilitation. Their research, published in Cyborg Bionic Systems, outlines the development of a lower limb rehabilitation robot designed to significantly improve the safety and effectiveness of gait training through a novel method based on human-robot interaction force measurement.
Researchers have developed novel ISM-based sweat sensors that feature enhanced signal stability and performance and avoid skin contact, while also being reusable, making them practical for daily use.
KAIST Daejeon, Republic of Korea
A team of Caltech engineers has developed a technique for inkjet printing arrays of special nanoparticles that enables the mass production of long-lasting wearable sweat sensors. These sensors could be used to monitor a variety of biomarkers, such as vitamins, hormones, metabolites, and medications, in real time, providing patients and their physicians with the ability to continually follow changes in the levels of those molecules.
A team of engineers has developed a low-cost, durable, highly-sensitive robotic ‘skin’ that can be added to robotic hands like a glove, enabling robots to detect information about their surroundings in a way that’s similar to humans.
Although lithium is highly effective to treat bipolar disorder, the chemical has a narrow therapeutic window — too high a dose can be toxic to patients, causing kidney damage, thyroid damage, or even death, while too low a dose renders the treatment ineffective.
Researchers have developed a portable device capable of detecting rare genetic mutations from a single drop of blood. The instrument was shown in lab experiments to quickly and accurately test for a genetic condition called hereditary transthyretin amyloidosis, which can cause heart problems. The disease is caused by a genetic mutation in the transthyretin gene. This mutation can lead to heart failure, especially in people of West African ancestry. The device, which amplifies nucleic acid segments and detects mutations using a microchip aims to bring a device equal to the performance and accuracy of a polymerase chain reaction (PCR) test, typically confined to laboratories, into doctors’ offices, homes, and community centers.
A research team at RCSI University of Medicine and Health Sciences has developed a 3D-printed implant to deliver electrical stimulation to injured areas of the spinal cord offering a potential new route to repair nerve damage. Details of the 3D-printed implant and how it performs in lab experiments have been published in the journal Advanced Science.
ETH Zurich Zurich, Switzerland
Image sensors built into every smartphone and digital camera, distinguish colors like the human eye. In our retinas, individual cone cells recognize red, green and blue (RGB). In image sensors, individual pixels absorb the corresponding wavelengths and convert them into electrical signals.
A wearable wristband could significantly improve diabetes management by continuously tracking not only glucose but also other chemical and cardiovascular signals that influence disease progression and overall health.
Researchers have developed a handheld device that could potentially replace stethoscopes as a tool for detecting certain types of heart disease.
Researchers have created a groundbreaking prototype for a new kind of leadless pacemaker designed for both children and adults. The innovative micropacemaker would be the first fully leadless system to be placed in the pericardial space surrounding the heart. That would allow the device to be implanted in a minimally invasive way in children and those with congenital heart disease, while also providing a lower-risk leadless pacemaker option for adults.
The return to Earth is a rough ride for astronauts, from the violent turbulence of atmospheric entry to a jarring landing. Hitting the ground in a Soyuz capsule is the equivalent of driving a car backward into a brick wall at 20 mph, and it’s resulting in more head and neck injuries than NASA computer models predicted. To collect more data, NASA’s Johnson Space Center in Houston commissioned a Small Business Innovation Research (SBIR) project to develop a wearable data recorder for astronaut spacesuits. One result, created by Diversified Technical Systems Inc. (DTS), is a miniature commercial device that now collects and transmits data for any application from airplane test flights to tracking high-value shipments.
The wealth of information provided by our senses that allows our brain to navigate the world around us is remarkable. Touch, smell, hearing, and a strong sense of balance are crucial to making it through what to us seem like easy environments such as a relaxing hike on a weekend morning.
Innovators at NASA Johnson Space Center have developed a programmable steering wheel called the Tri-Rotor, which allows an astronaut the ability to easily operate a vehicle on the surface of a planet or moon despite the limited dexterity of their spacesuit. This technology was originally conceived for the operation of a lunar terrain vehicle (LTV) to improve upon previous Apollo-era hand controllers. In re-evaluating the kinematics of the spacesuit, such as the rotatable wrist joint and the constant volume shoulder joint, engineers developed an enhanced and programmable hand controller that became the Tri-Rotor.
Cardiovascular disease (CVD) remains a leading — and growing — cause of morbidity and mortality worldwide, with the economic burden of care projected to skyrocket over the coming decades.
A research team has developed DeepNeo, an AI-powered algorithm that automates the process of analyzing coronary stents after implantation. The tool matches medical expert accuracy while significantly reducing assessment time. With strong validation in both human and animal models, Deep-Neo has the potential to standardize monitoring after stent implantation and thus improve cardiovascular treatment outcomes.
Boston Scientific entered 2025 with significant momentum. Fresh off a standout first quarter, the company’s leadership has outlined a compelling vision for sustainable long-term growth rooted in high-performing cardiology franchises, operational precision, and disruptive technologies in electrophysiology (EP). Leaders spoke at a recent Bank of America Healthcare Conference. The discussion marked outgoing CFO Dan Brennan’s final investor presentation and underscored Boston Scientific’s transformation into one of medtech’s most durable growth stories.
Items per page:
50
1 – 50 of 5109