Browse Topic: Body regions

Items (3,384)
The Ministry of Road Transport and Highways (MoRTH), Government of India, has established BHARAT NCAP to provide a fair, meaningful, and objective assessment of the crash safety performance of cars. This program evaluates vehicles across three key areas, including Child Occupant Protection (COP). A critical component of the COP assessment involves dynamic testing using Q-series child dummies representing a 1½-year-old (Q1.5) and a 3-year-old child (Q3). As per the BHARAT NCAP protocol, these dummies are placed in the second-row outboard seating position within Child Restraint Systems (CRSs) and subjected to two primary dynamic impact tests: Offset Deformable Barrier (ODB) conducted at a speed of 64 km/hr. and Mobile Deformable Barrier (MDB) Side Impact tests conducted at 50 km/hr. The dynamic assessment of these child dummies is primarily focused on the head, neck, and chest regions to evaluate the effectiveness of the CRSs and overall vehicle safety system in protecting young
Khopekar, MariaLakshminarayana, ApoorvaMohan, PradeepKurkuri, Mahendra
This invention solves a significant safety issue where drivers have low visibility of the Outside Rear View Mirror (ORVM) in the case of rain, fog, dust or ice formation on the Side Door Window Glass (SDWG). Currently developed methods, such as hydrophobic finishing or films and heated window glass on the doors, provide temporary or weak results, and thus, a more successful and dependable method is demanded. In order to address this problem, we have modified the Outer Waist Seal, which includes a Glass Wiping Mechanism in it. Outer Waist Seal is a type of weather strip fixed on the bottom of the side window of a vehicle on the panel of the door. It does not allow the flow of heavy water, dust and debris into the door cavity, besides supporting the glass on the window when it is in a movement process. The stationary fixed arm of this system is coupled with a rotating arm and an attached wiper blade powered by a low-speed-high-torque motor and interfaced with the Body Control Module (BCM
Neelam, RajatChowdhury, AshokPanchal, GirishKumar, Saurav
Indian passenger car accident data indicates that approximately 44% of crashes are frontal impacts (Refer fig 1). Among the injuries sustained in these crashes, lower leg injuries are notably critical, contributing to nearly 25% of driver occupant injuries (Refer fig 2). To evaluate such injuries, the Bharat New Car Assessment Program (BNCAP) includes lower leg injury metrics as part of the Frontal Offset Deformable Barrier (ODB64) test. While the overall injury performance is assessed at the vehicle level, BNCAP also monitors vehicle interior intrusions—particularly pedal intrusions—as key contributors to lower limb injury severity. A major challenge in frontal crashes is the intrusion of the vehicle's front-end structure into the occupant compartment. Rigid components, particularly the brake pedal assembly, can be displaced rearward during a crash, significantly increasing the risk of lower leg injuries. Therefore, minimizing pedal intrusions into the driver foot-well is critical for
Shetti, Rahul R.Kudale, ShaileshNaik, NagarajBisen, BadalKotak, VijayDudhewar, SwapnilBhagat, AmitDurgaprasad, HNV
Severe rear-impact collisions can cause significant intrusion into the occupant compartment when the structural integrity of the rear survival space is insufficient. Intrusion patterns are influenced by impact configuration—underride, in-line, or override—with underride collisions channeling forces below the beltline through the rear wheels as a primary load path. This force concentration rapidly propels the rear seat-pan forward, contacting the rearward-rotating front seatback. The resulting bottoming-out phenomenon produces a forward impulse that amplifies loading on the front occupant’s upper torso, increasing the risk of thoracic injury even when the head is properly supported by the head restraint. This study analyzes a real-world rear-impact collision that resulted in fatal thoracic injuries to the driver, attributed to the interaction between the driver’s seatback and the forward-moving rear seat pan. A vehicle-to-vehicle crash test was conducted to replicate similar intrusion
Thorbole, Chandrashekhar
The objective of the present study is to examine trends in occupant kinematics and injuries during side impact tests carried out on vehicle models over the period of time. Head, shoulder, torso, spine, and pelvis kinematic responses are analysed for driver dummy in high speed side impacts for vehicle model years, MY2016-2024. Side impact test data from the tests conducted at The Automotive Research Association of India (ARAI) is examined for MY2016-2024. The test procedure is as specified in AIS099 or UNECE R95, wherein a 950kg moving deformable barrier (MDB) impacts the side of stationary vehicle at 50km/hr. An Instrumented 50th percentile male EUROSID-2 Anthropomorphic Test Device is positioned in the driver seat on the impacting side. Occupant kinematic data, including head accelerations, Head Injury Criterion (HIC15), Torso deflections at thorax and abdominal ribs, spine accelerations at T12 vertebra, and pelvis accelerations are evaluated and compared. The “peak” and “time to
Mishra, SatishBorse, TanmayKulkarni, DileepMahajan, Rahul
Occupant Safety systems are usually developed using anthropomorphic test devices (ATDs), such as the Hybrid III, THOR-50M, ES-2, and WorldSID. However, in compliance with NCAP and regulatory guidelines, these ATDs are designed for specific crash scenarios, typically frontal and side impacts involving upright occupants. As vehicles evolve (e.g., autonomous layouts, diverse occupant populations), ATDs are proving increasingly inadequate for capturing real-world injury mechanisms. This has led to the adoption of computational Human Body Models (HBMs), such as the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS), which offer superior anatomical fidelity, variable anthropometry, active muscle behaviour modelling, and improved postural flexibility. HBMs can predict internal injuries that ATDs cannot, making them valuable tools for future vehicle safety development. This study uses a sled CAE simulation environment to analyze the kinematics of the HBMs
Raj, PavanRao, GuruprakashPendurthi, Chaitanya SagarNehe, VaibhavChavan, Avinash
In recent years, virtual models have been extremely helpful in predicting potential injury risk to occupants in vehicle crashes. Virtual models offer detailed occupant anthropometry and closest possible bio-fidelity over existing test devices. This study focuses on the assessment of chest deflections in frontal thorax impacts using virtual human body models of a few anthropometries and transforming the assessment of injuries for a broader range of anthropometries (sections of the population). The study utilizes machine learning to enable injury assessment across a wide range of body types. A standard test scenario (Kroell load case) with a frontal blunt thoracic impact is considered for this study. Results from physical tests and simulations from various finite element human body models (HBMs) from literature are used to train supervised machine learning models. The combination of virtual simulation and machine learning reduces the reliance on physical prototypes and expands the reach
Sridhar, RaamArya, BibhuDivakar, PrajwalR, Udhaya KumarBhutki, PrasadKumar, DevendraKurkuri, MahendraMohan, Pradeep
Real-world crashes involve diverse occupants, but traditional restraint systems are designed for a limited range of body types considering the applicable regulations and protocols. While conventional restraints are effective for homogeneous occupant profiles, these systems often underperform in real-world scenarios with diverse demographics, including variations in age, gender, and body morphology. This study addresses this critical gap by evaluating adaptive restraint systems aligned with the forthcoming EURO NCAP 2026 protocols, which emphasize real-world crash diversity and occupant type. Through digital studies of frontal impact scenarios, we analyze biomechanical responses using adaptive restraints across varied occupant demographics, focusing on head and chest injury (e.g., Chest Compression Criterion [CC]). This study used a Design of Experiments (DOE) approach to optimize occupant protection by timing the actuating of these adaptive systems. The results indicate that activating
satija, AnshulSuryawanshi, YuvrajChavan, AvinashRao, Guruprakash
One of the biggest goals for companies in the field of artificial intelligence (AI) is developing “agentic” systems. These metaphorical agents can perform tasks without a guiding human hand. This parallels the goals of the emerging urban air mobility industry, which hopes to bring autonomous flying vehicles to cities around the world. One company wants to do both and got a head start with some help from NASA.
Perceiving the movement characteristics of specific body parts of a driver is crucial for determining their activity. Moreover, the driver’s body posture significantly impacts personnel safety during collision. This study investigates the creation of a dataset using Kinect depth camera for acquiring, organizing, annotating with skeleton tracking assistance, and optimizing interpolation. The pose recognition methods enhanced through an anchor regression mechanism, leading to the refinement of a lightweight anchor regression network capable of end-to-end learning ability from depth images. The improved backbone neck head structure offers advantages of reduced model parameters and enhanced accuracy. This engineering optimization makes it better suited for practical applications within vehicles with limited computational resources limitations and high real-time demands.
Xu, HailanLi, WuhuanLu, JunWang, XinHe, WenhaoChen, ZhenmingLiu, Yunjie
With the continuous progress of modern high-speed railroad technology, the speed of train operation is increasing, and its aerodynamic effect when traversing the tunnel is also getting more and more attention from researchers. In this paper, we constructed a three-dimensional flow field model of the wrist-arm insulator in the tunnel and considered the train speed, tunnel structure, size and position of the wrist-arm insulator, and other factors, and then through the simulation software, we simulated the change of the airflow in the tunnel when the high-speed train enters the tunnel. Through the simulation analysis, we obtained the characteristics of the flow field distribution around the wrist-arm insulator in the tunnel when the high-speed train crosses the tunnel. The results show that when the train crosses the tunnel at a high speed, the airflow inside the tunnel is strongly squeezed and disturbed by the train, forming a complex airflow field. When the train passes by, the wrist
Zhang, KangkangMa, Jianqiao
The knowledge of the brake linings coefficient of friction (BLCF) is crucial for the control of the braking moment in modern vehicles equipped with electric powertrains. In the case of race vehicles equipped with carbon–carbon brakes, the coefficient of friction exhibits great variations as a function of the main influencing factors, namely the pressure, the temperature, and the sliding speed at the pad–disc interface. In this work, a Le Mans Hypercar instrumented with more than 150 sensors was adopted to perform the characterization of the BLCF from racetrack acquisitions. The front and rear left suspensions of the vehicle were instrumented with strain gauge channels and position transducers to acquire the reaction loads at the upright and the orientation of the arms. Then, the geometric matrix method was implemented for calculating the moments at the upright from which the braking torque was derived without the need to know any of the wheel inertia, nor the driveshaft torque. Data
Cortivo, DavideVendramin, MattiaDindo, Luigi
In an era where technology increasingly merges with healthcare to enhance patient outcomes, a groundbreaking study conducted by Fuyang Yu and his colleagues introduces an innovative approach to lower limb rehabilitation. Their research, published in Cyborg Bionic Systems, outlines the development of a lower limb rehabilitation robot designed to significantly improve the safety and effectiveness of gait training through a novel method based on human-robot interaction force measurement.
Innovators at the NASA Johnson Space Center have developed a soft, wearable, robotic upper limb exoskeleton garment designed to actively control the shoulder and elbow, both positioning the limb in specific orientations and commanding the limb through desired motions. The invention was developed to provide effective upper extremity motor rehabilitation for patients with neurological impairments (e.g., traumatic brain injury, stroke).
Background. Road safety is a major public concern, as road traffic accidents result in numerous casualties and significant economic losses. In traffic collisions, the pattern of injuries sustained by drivers often varies depending on various accident factors. The interactions between safety device use, alcohol consumption status, and injury locations can reveal important association patterns and insights. Therefore, we examine patterns in injury locations, accounting for safety device use and alcohol consumption. Method. In this study, we applied two complementary graphical approaches, including multiple correspondence (MCA) analyses and mosaic plots (MPs). Results. The MPs reveal the existence of meaningful patterns between injury location, alcohol consumption, and safety device. Likewise, the MCA reveals that head/neck injuries are more likely to be associated with alcohol impairment. In particular, sober status and safety device used tend to be associated with all injury locations
Chen, Ching-FuWa Lukusa, Martin Tshishimbi
Image sensors built into every smartphone and digital camera, distinguish colors like the human eye. In our retinas, individual cone cells recognize red, green and blue (RGB). In image sensors, individual pixels absorb the corresponding wavelengths and convert them into electrical signals.
A team of engineers has developed a low-cost, durable, highly-sensitive robotic ‘skin’ that can be added to robotic hands like a glove, enabling robots to detect information about their surroundings in a way that’s similar to humans.
A kinematic model of primary piston motion was developed along with a simplified combustion model for the purpose of evaluating various factors that could impact the piston skirt thrust loads of an Opposed Piston Two Stroke Diesel engine. The assessment considered connecting rod length, wrist pin mass, peak cylinder pressure, indicated torque, and wrist pin offset. The results show that small changes in connecting rod length could realize significant improvements in piston skirt friction as well as increased engine performance. The results indicate that small increases in overall engine width should be considered when optimizing for reduced oil consumption and enhanced piston skirt lubrication.
Srodawa, John
The return to Earth is a rough ride for astronauts, from the violent turbulence of atmospheric entry to a jarring landing. Hitting the ground in a Soyuz capsule is the equivalent of driving a car backward into a brick wall at 20 mph, and it’s resulting in more head and neck injuries than NASA computer models predicted. To collect more data, NASA’s Johnson Space Center in Houston commissioned a Small Business Innovation Research (SBIR) project to develop a wearable data recorder for astronaut spacesuits. One result, created by Diversified Technical Systems Inc. (DTS), is a miniature commercial device that now collects and transmits data for any application from airplane test flights to tracking high-value shipments.
Innovators at NASA Johnson Space Center have developed a programmable steering wheel called the Tri-Rotor, which allows an astronaut the ability to easily operate a vehicle on the surface of a planet or moon despite the limited dexterity of their spacesuit. This technology was originally conceived for the operation of a lunar terrain vehicle (LTV) to improve upon previous Apollo-era hand controllers. In re-evaluating the kinematics of the spacesuit, such as the rotatable wrist joint and the constant volume shoulder joint, engineers developed an enhanced and programmable hand controller that became the Tri-Rotor.
The development of drones has raised questions about their safety in case of high-speed impacts with the head. This has been recently studied with dummies, postmortem human surrogates and numerical models but questions are still open regarding the transfer of skull fracture tolerance and procedures from road safety to drone impacts. This study aimed to assess the performance of an existing head FE model (GHBMC M50-O v6.0) in terms of response and fracture prediction using a wide range of impact conditions from the literature (low and high-speed, rigid and deformable impactors, drones). The fracture prediction capability was assessed using 156 load cases, including 18 high speed tests and 19 tests for which subject specific models were built. The GHBMC model was found to overpredict peak forces, especially for rigid impactors and fracture cases. However, the model captured the head accelerations tendencies for drone impacts. The formulation of bone elements, the failure representation
Pozzi, ClémentGardegaront, MarcAllegre, LucilleBeillas, Philippe
Researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) previously conducted a full-scale crash test of a Fokker F28 MK1000 aircraft to study occupant injury risks. The goal of the current study was to investigate the injury predictions of the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS) occupant models in the tested aircraft crash condition and explore possible utilization of both human body models (HBMs) in this context. Eight crash conditions were simulated utilizing each of the models. The HBMs were positioned in two postures, a neutral upright posture with hands resting on the legs and feet contacting the floor and a braced posture with head and hand contact with the forward seat back. Head and neck injury metrics and lumbar vertebra axial force were calculated and compared for all simulations. Both HBMs reported similar kinematic responses in the simulated impact conditions. However, the GHBMC
Jones, NathanielPutnam, JacobUntaroiu, Costin Daniel
Subjective perception of vehicle secondary ride is dependent on simultaneous touchpoint vibrations and audible inputs to the occupants. Standards such as ISO 2361 provide guidelines for objective assessments of human body thresholds to vibration [1]. However, when a human experiences vibration inputs at multiple touchpoints, as well as aural inputs, it becomes complicated to judge each individual contribution to the overall subjective perception [2]. Additional factors, such as ambient conditions, ergonomics, age, gender etc. also play a role. Secondary ride, which is defined as energy in the 10-30 Hz frequency range, is one such event that affects the customers’ perception of ride comfort and quality. The goal of this work is to develop a sound and vibration simulator model and execute a secondary ride jury study of vehicle driving over cleats. The aim of the study is to rank the contributions of each touch point vibration input, as well as sound to the overall subjective perception
Jayakumar, VigneshJoodi, BenjaminGeissler, ChristianPilz, FernandoLynch, LukeConklin, ChrisWeilnau, KelbyHodgkins, Jeffrey
The possibilities and challenges of adding a rider model to the motorcycle dynamics simulation were investigated for the future planning of a full virtual test. The human model was added to a multi-body dynamics model that reproduces the equations of motion of a motorcycle, called the 10 degrees of freedom (10-DoF) model. The human model is composed from multiple masses and joints, and the steering angle can be controlled by determining the angle of the arms and shoulder. To study the effect of this model, three distinct simulations were carried out: ‘the eigenvalue analysis’, ‘the steady-state circular test simulation’ and ‘the slalom running simulation’. In the eigenvalue analysis, the eigenvalues of the wobble mode shifted to a stable side in the root locus when both hands were fixed on the handlebars. As a result of the slalom running simulation, the response of the handlebar control through the human model produced a more convex trajectory than a direct control of the steering
Ueki, MotohitoTakayama, AkihiroYabe, Noboru
The arc welding process is essential for motorcycle frames, which are difficult to form in one piece because of their complex shapes, because a single frame has dozens of joints. Many of the damaged parts of the frames under development are from welds. Predicting the strength of welds with high reliability is important to ensure that development proceeds without any rework. In developing frames, CAE is utilized to build up strength before prototyping. Detailed weld shapes are not applicable to FE models of frames because weld shapes vary widely depending on welding conditions. Even if CAE is performed on such an FE model and the evaluation criteria are satisfied, the model may fail in the actual vehicle, possibly due to the difference between CAE and actual weld bead geometry. Therefore, we decided to study the extent to which the stresses in the joint vary with the variation of the weld bead geometry. Morphing, a FE modeling method and design of experiment method, was utilized to
Hada, YusukeSugita, Hisayuki
Visual object tracking technology is the core foundation of intelligent driving, video surveillance, human–computer interaction, and the like. Inspired by the mechanism of human eye gaze, a new correlation filter (CF) tracking algorithm, named human eye gaze (HEG) tracking algorithm, was proposed in this study. The HEG tracking algorithm expanded the tracking detection idea from the traditional detection-tracking to detection-judging-tracking by adding a judging module to check the initial and retrack the unreliable tracking result. In addition, the detection module was further integrated into the edge contour feature on the basis of the HOG (histogram of oriented gradients) extracting feature and the color histogram to reduce the sensitivity of the algorithm to factors such as deformation and illumination changes. The comparison conducted on the OTB-2015 dataset showed that the overall overlap precision, distance precision, and center location error of the HEG tracking algorithm were
Jiang, YejieJiang, BinhuiChou, Clifford C.
The skull-brain interface is structurally complex, and various simplification methods have been employed in existing head models to simulate the interaction between the skull and the brain. The modeling approach of the skull-brain interface determines how loads are transmitted to the interior, which is critical for accurately simulating head injuries. Thus, understanding the impact of current skull-brain interface modeling approaches on intracranial simulation results is significant. This study aims to explore the influence of different skull-brain interface modeling methods on the results of finite element models during the development of Advanced Chinese Human Body Models (AC-HUMs) based on the LS-DYNA solver. By comparing the responses of rigidly bonded connections (tied Contact), failure-allowing bonded contacts (tiebreak Contact), shared nodes, and arbitrary Lagrangian-Eulerian (ALE) methods under the Nahum 37 test load conditions, the study analyzes the effects of different
Gan, Qiuyujiang, YejieJunpeng, XuZhou, RunzhouZhang, LiyingJiang, Binhui
In a three-phase voltage source inverter, in order to prevent the direct short circuit of the upper and lower tubes of the bridge arm and ensure the normal operation of the inverter, microsecond-level dead time needs to be added when the power devices are turned on and off. However, due to the dead-time effect, slight distortion may occur in the inverter within the modulation period, and this distortion will eventually lead to harmonic components in the output current after accumulation, thereby generating torque ripple. Against the above background, implementing dead-time compensation strategies is very important. To compensate for the voltage error caused by the dead-time effect, current polarity determination is required first. Then, the dead time is compensated, thereby indirectly compensating for the voltage error caused by the dead-time effect. Regarding the dead-time compensation time, without changing the hardware, this paper proposes a solution to turn off the dead-time
Jing, JunchaoZhang, JunzhiZuo, BotaoLiu, YiqiangYang, TianyuZhu, Lulong
The development of autonomous driving technology will liberate the space in the car and bring more possibilities of comfortable and diverse sitting postures to passengers, but the collision safety problem cannot be ignored. The aim of this study is to investigate the changes of injury pattern and loading mechanism of occupants under various reclined postures. A highly rotatable rigid seat and an integrated three-point seat belt were used, with a 23g, 50kph input pulse. Firstly, the sled test and simulation using THOR-AV in a reclined posture were conducted, and the sled model was verified effective. Based on the sled model, the latest human body model, THUMS v7, was used for collision simulation. By changing the angle of seatback and seat pan, 5 seat configurations were designed. Through the calculation of the volunteers' pose regression function, the initial position of THUMS body parts in different seat configurations was determined. The responses of human body parts were output
Yang, XiaotingWang, QiangLiu, YuFei, JingWang, PeifengLi, ZhenBai, Zhonghao
In the pre-crash emergency braking scenario, the occupant inside the vehicle will move forward due to inertia, deviating from the standard upright seating position for which conventional restraint systems are designed. Previous studies have mainly focused on the influence of out-of-position (OOP) displacement on occupant injuries in frontal collisions, and provided solutions such as active pretensioning seatbelts (APS). But little attention has been paid to the influence of OOP on whiplash injury during a subsequent rear-end collision. To investigate the forward OOP impact on whiplash injuries and the effectiveness of APS in this accident scenario, a vehicle interior model with an active human body model (AHBM) was setup in the MADYMO simulation platform. Different braking strengths (0.8g and 1.1g), APS triggering times (from 0.2s before to 0.2s after the braking initiation) and pretensioning forces (from 100N to 600N) were input to the simulation matrix. The occupant’s forward OOP
Fei, JingQiu, HangWang, PeifengLiu, YuCheng, James ChihZhou, QingTan, Puyuan
The National Highway Safety Administration (NHTSA) recently published an Advanced Notice of Proposed Rulemaking (ANPRM) to evaluate seat performance in rear impacts [1]. The ANPRM was issued partially in response to two petitions requesting an increase in seatback strength requirements and high-speed testing with various size Anthropometric Test Devices (ATDs). To better understand the effect of these requests, this study evaluates ATD responses with two high-speed rear sled conditions, three occupant sizes and various seat designs. Seat designs varied from modern conventional seats with yielding properties to stronger and stiffer seats represented by seat integrated restraint (SIR) designs, and rigidized SIR seats. Twenty-four rear sled tests were analyzed. The tests were matched by crash severity, seat designs (strength), ATD sizes and initial postures (nominal/in-position, leaned forward and leaned outboard). The test data and videos were reviewed to identify time coinciding with
Parenteau, ChantalBurnett, Roger
There are numerous commercially available neck and back support/cushion/pillow devices which are commonly attached to seats by vehicle owners. To our knowledge, there has been no published research on the biomechanical effects of these devices in low-speed rear impacts. To address this, a series of 54 simulated low-speed rear impact tests were conducted using a validated remote-controlled crash sled system. All tests utilized an instrumented BioRID II rear impact anthropomorphic test device (ATD) restrained using a 3-point seatbelt system in a 2018 Toyota Camry LE driver’s seat. Two delta-V ranges were used: a lower range from 7.2 to 8.0 kph (4.5 to 5.0 mph) and a higher range from 10.5 to 11.3 kph (6.5 to 7.0 mph). Six neck only devices, one combination neck and back device, and three back only devices were assessed. Two tests per delta-V range for each device and each device adjustment position were conducted and compared against five reference tests without any devices at each delta
Phan, AndrewGross, JamieUmale, SagarCrowley, ShannonGlasser, GabrielFurbish, Christopher
Rear impacts make up a significant portion of crashes in the United States. To date, regulations on rear impacts have focused on fuel system integrity and seat performance, while most research has focused on seat performance in relation to occupants’ injuries, with some analyses of crash severity and seat belt effects. The performance of seats and seat belts may vary depending on the size of the occupant. Understanding how occupant characteristics, as well as crash scenarios, affect injury outcomes can show opportunities for further enhancements in rear impact occupant protection. This paper presents analyses using survey weighted logistic regression models to understand the factors affecting serious injury outcomes (i.e., MAIS 3+) in rear impacts, exploring the potential for improving occupant outcomes. Three separate models are evaluated, focusing on 1) overall injury level, 2) head, neck, and cervical-spine injuries, and 3) thorax, abdomen, thoracic- and lumbar-spine injuries for
Greib, JoshuaJurkiw, ReneeKryzaniwskyj, TanjaOwen, SusanVan Rooyen, PaulWhelan, StaceyWilliamson, John
The effect of seat belt misuse and/or misrouting is important to consider because it can influence occupant kinematics, reduce restraint effectiveness, and increase injury risk. As new seatbelt technologies are introduced, it is important to understand the prevalence of seatbelt misuse. This type of information is scarce due to limitations in available field data coding, such as in NASS-CDS and FARS. One explanation may be partially due to assessment complexity in identifying misuse and/or misrouting. An objective of this study was to first identify types of lap-shoulder belt misuse/misrouting and associated injury patterns from a literature review. Nine belt misuse/misrouting scenarios were identified including shoulder belt only, lap belt only, or shoulder belt under the arm, for example, while belt misrouting included lap belt on the abdomen, shoulder belt above the breasts, or shoulder belt on the neck. Next, the literature review identified various methods used to assess misuse
Gu, EmilyParenteau, Chantal
With the increasing adoption of Zero-Gravity Seats in intelligent cockpits, there is a growing concern over the safety of occupants in reclined postures during collisions. The newly released anthropomorphic test device (ATD), THOR-AV, has modified the neck, spine, and pelvis structures to better match reclined postures. This study aims to investigate the changes in kinematic response and injury metrics for occupants in reclined postures, through high-speed frontal sled tests utilizing the THOR-AV. The tests were conducted using an adjustable rigid seat with a zero-gravity characteristic and an integrated three-point seat belt. Six tests were performed across four seat configurations: Standard, Semi-Reclined, Reclined, and Zero-gravity postures. The input acceleration pulse for these tests was derived from the equivalent double trapezoidal waveform of the Mobile Progressive Deformable Barrier (MPDB) test. Data from sensors and high-speed video were collected for analysis. The results
Wang, QiangLiu, YuFei, JingYang, XiaotingWang, PeifengBai, Zhonghao
With the widespread application of the Automatic Emergency Braking System (AEB) in vehicles, its impact on pedestrian safety has received increasing attention. However, after the intervention of AEB, the kinematic characteristics of pedestrian leg collisions and their corresponding biological injury responses also change. At the same time, in order to accurately evaluate the pedestrian protection performance of vehicles, the current assessment regulations generally use advanced pedestrian protection leg impactors (aPLI) and rigid leg impactors (TRL) to simulate the movement and injury conditions of pedestrian legs. Based on this, in order to explore the collision boundary conditions and changes in injury between vehicles and APLI and TRL leg impactors under the action of AEB, this paper first analyzes the current passive and active assessment conditions. Secondly, the simulation software LS-DYNA is used to build a finite element model of APLI and TRL impactor-vehicle collisions to
Ye, BinHong, ChengWan, XinmingLiu, YuCheng, JamesLong, YongchenHao, Haizhou
With the increasing prevalence of Automatic Emergency Braking Systems (AEB) in vehicles, their performance in actual collision accidents has garnered increasing attention. In the context of AEB systems, the pitch angle of a vehicle can significantly alter the nature of collisions with pedestrians. Typically, during such collisions, the pedestrian's legs are the first to come into contact with the vehicle's front structure, leading to a noticeable change in the point of impact. Thus, to investigate the differences in leg injuries to pedestrians under various pitch angles of vehicles when AEB is activated, this study employs the Total Human Model for Safety (THUMS) pedestrian finite element model, sensors were established at the leg location based on the Advanced Pedestrian Legform Impactor (APLI), and a corresponding vehicle finite element model was used for simulation, analyzing the dynamic responses of the pedestrian finite element model at different pitch angles for sedan and Sport
Hong, ChengYe, BinZhan, ZhenfeiLiu, YuWan, XinmingHao, Haizhou
Items per page:
1 – 50 of 3384