Browse Topic: Body regions

Items (3,398)
Road safety remains a critical concern globally, with millions of lives lost annually due to road accidents. In India alone, the year 2021 witnessed over 4,12,432 road accidents resulting in 1,53,972 fatalities and 3,84,448 injuries. The age group most affected by these accidents is 18-45 years, constituting approximately 67% of total deaths. Factors such as speeding, distracted driving, and neglect to use safety gear increases the severity of these incidents. This paper presents a novel approach to address these challenges by introducing a driver safety system aimed at promoting good driving etiquette and mitigating distractions and fatigue. Leveraging Raspberry Pi and computer vision techniques, the system monitors driver behavior in real-time, including head position, eye blinks, mouth opening and closing, hand position, and internal audio levels to detect signs of distraction and drowsiness. The system operates in both passive and active modes, providing alerts and alarms to the
Ganesh, KattaPrasad, Gvl
Forward-facing child restraint systems (FF CRS) and high-back boosters often contact the vehicle seat head restraint (HR) when installed, creating a gap between the back surface of the CRS and the vehicle seat. The effects of HR interference on dynamic CRS performance are not well documented. The objective of this study is to quantify the effects of HR interference for FF CRS and high-back boosters in frontal and far-side impacts. Production vehicle seats with prominent, removeable HRs were attached to a sled buck. One FF CRS and two booster models were tested with the HR in place (causing interference) and with the HR removed (no interference). A variety of installation methods were examined for the FF CRS. A total of twenty-four tests were run. In frontal impacts, HR interference produced small but consistent increases in frontal head excursion and HIC36. Head excursions were more directly related to the more forward initial position rather than kinematic differences caused by HR
Mansfield, Julie A.
Crew Station design in the physical realm is complex and expensive due to the cost of fabrication and the time required to reconfigure necessary hardware to conduct studies for human factors and optimization of space claim. However, recent advances in Virtual Reality (VR) and hand tracking technologies have enabled a paradigm shift to the process. The Ground Vehicle System Center has developed an innovative approach using VR technologies to enable a trade space exploration capability which provides crews the ability to place touchscreens and switch panels as desired, then lock them into place to perform a fully recorded simulation of operating the vehicle through a virtual terrain, maneuvering through firing points and engaging moving and static targets during virtual night and day missions with simulated sensor effects for infrared and night vision. Human factors are explored and studied using hand tracking which enables operators to check reach by interacting with virtual components
Agusti, Rachel S.Brown, DavidKovacin, KyleSmith, AaronHackenbruch, Rachel N.Hess, DavidSimmons, Caleb B.Stewart, Colin
A team led by University of Maryland computer scientists invented a camera mechanism that improves how robots see and react to the world around them. Inspired by how the human eye works, their innovative camera system mimics the tiny involuntary movements used by the eye to maintain clear and stable vision over time. The team’s prototyping and testing of the camera — called the Artificial Microsaccade-Enhanced Event Camera (AMI-EV) — was detailed in a paper published in the journal Science Robotics in May 2024
Most humans rely heavily on our visual abilities to function in the world—we are optically oriented. In the broadest sense, “optics” refers to the study of sight and light. At its foundation, Radiant’s business is all about optics: measuring light and the properties of light in relation to the human eye. Photometry is the science of light according to our visual perception. Colorimetry is the science of color: how our eyes interpret different wavelengths of light
A new groundbreaking “smart glove” is capable of tracking the hand and finger movements of stroke victims during rehabilitation exercises. The glove incorporates a sophisticated network of highly sensitive sensor yarns and pressure sensors that are woven into a comfortable stretchy fabric, enabling it to track, capture, and wirelessly transmit even the smallest hand and finger movements
The advent of neck braces for the helmeted motorcycle rider has introduced a pertinent research question: To what extent do they reduce measures related to the major mechanism of neck injury in unrestrained torso accidents, i.e., compression flexion (CF)? This question requires a suitable method of testing and evaluating the measures for a load case resulting in the required mechanism. This study proposes a weighted swinging anvil striking the helmeted head of a supine HIII ATD by means of a near vertex impact with a low degree of anterior head impact eccentricity to induce CF of the neck. The applied impact was chosen for the baseline (no neck brace) so that the upper and lower neck axial forces approached injury assessment reference values (IARV). The head impact point evaluated represents those typically associated with high-energy burst fractures occurring within the first 20 ms, with possible secondary disruption of posterior ligaments. The proposed test can be used to evaluate
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team, led by Professor Shoji Takeuchi of the University of Tokyo, included special perforations in a robot face, which helped a layer of skin take hold. Their research could be useful in the cosmetics industry and to help train plastic surgeons
This research aims at understanding how the driver interacts with the steering wheel, in order to detect driving strategies. Such driving strategies will allow in the future to derive accurate holistic driver models for enhancing both safety and comfort of vehicles. The use of an original instrumented steering wheel (ISW) allows to measure at each hand, three forces, three moments, and the grip force. Experiments have been performed with 10 nonprofessional drivers in a high-end dynamic driving simulator. Three aspects of driving strategy were analyzed, namely the amplitudes of the forces and moments applied to the steering wheel, the correlations among the different signals of forces and moments, and the order of activation of the forces and moments. The results obtained on a road test have been compared with the ones coming from a driving simulator, with satisfactory results. Two different strategies for actuating the steering wheel have been identified. In the first strategy, the
Previati, GiorgioMastinu, GianpieroGobbi, Massimiliano
A research paper by scientists at the University of Coimbra proposed a soft robotic hand comprising soft actuator cores and an exoskeleton, featuring a multimaterial design aided by finite element analysis to define the hand geometry and promote finger’s bendability. The new research paper, published on August 8 in the journal Cyborg and Bionic Systems, presented the development, fabrication, and control of a bioinspired soft robotic hand and demonstrated finite element analysis can serve as a valuable tool to support the design and control of the hand’s fingers
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances. While developing the vehicle architecture in the early design phase, it is customary to specify targets for various ergonomic attributes and arrive at the above-mentioned
Rajakumaran, SriramS, RahulVasireddy, Rakesh MitraNair, Suhas
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam. However, the change in the average biofidelity
Pradhan, VikramRamachandra, RakshitKang, Yun Seok
The Large Omnidirectional Child (LODC) developed by the National Highway Traffic Safety Administration (NHTSA) has an improved biofidelity over the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD). The LODC design incorporates enhancements to many body region subassemblies, including a redesigned HIII-10C head with pediatric mass properties, and the neck, which produces head lag with Z-axis rotation at the atlanto-occipital joint, replicating the observations made from human specimens. The LODC also features a flexible thoracic spine, a multi-point thoracic deflection measurement system, skeletal anthropometry that simulates a child's sitting posture, and an abdomen that can measure belt loading directly. This study presents the development and validation of a dynamic nonlinear finite element model of the complete LODC dummy. Based on the three-dimensional CAD model, Hypermesh was used to generate a mesh of the finite element (FE) LODC model. LS
Challa, Balaji Naga Sai AbhishiktYang, PeiyuCarlson, MichaelSuntay, BrianStammen, JasonNoll, Scott
Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt. Three different rubber contents with 14, 28, 33 weight percent (% wt.) were implemented as the ground alongside one regular non-rubberized (0%) asphalt mixture, one baseline, and one extra-compliant
Sahandifar, PooyaWallqvist, VivecaKleiven, Svein
The history of construction materials and methods has evolved over time, with Portland cement concrete being the most widely used material on Earth. Constructing habitats and infrastructure on the Moon and Mars, however, requires a different approach given the lack of such conventional construction resources and materials. Recognizing the need for in-situ resource utilization (ISRU) to support long-duration human missions to the Moon and Mars, NASA’s Kennedy Space Center and Sidus Space have developed a novel three-dimensional print head apparatus using regolith-polymer mixtures as a building material
Innovators at NASA Johnson Space Center have developed a programmable steering wheel called the Tri-Rotor, which allows an astronaut the ability to easily operate a vehicle on the surface of a planet or Moon despite the limited dexterity of their spacesuit. This technology was originally conceived for the operation of a lunar terrain vehicle (LTV) to improve upon previous Apolloera hand controllers. In re-evaluating the kinematics of the spacesuit, such as the rotatable wrist joint and the constant volume shoulder joint, engineers developed an enhanced and programmable hand controller that became the Tri-Rotor
In numerous industries such as aerospace and energy, components must perform under significant extreme environments. This imposes stringent requirements on the accuracy with which these components are manufactured and assembled. One such example is the positional tolerance of drilled holes for close clearance applications, as seen in the “EN3201:2008 Aerospace Series – Holes for metric fasteners” standard. In such applications, the drilled holes must be accurate to within ±0.1 mm. Traditionally, this required the use of Computerised Numerical Control (CNC) systems to achieve such tight tolerances. However, with the increasing popularity of robotic arms in machining applications, as well as their relatively lower cost compared to CNC systems, it becomes necessary to assess the ability of robotic arms to achieve such tolerances. This review paper discusses the sources of errors in robotic arm drilling and reviews the current techniques for improving its accuracy. The main sources of
Cho, Yun HangSawyer, DanielaBurkinshaw, ChristopherScraggs, Chris
Robotic arms are widely known to fall short in achieving the tolerances required when it comes to the metal machining industry, especially for the aerospace sector. Broadly speaking, two of the main reasons for that are a lack of stiffness and a lack of accuracy. Robotic arm manufacturers have responded to the lack of stiffness challenge by producing bigger robots, capable of holding high payloads (e.g., Fanuc M-2000iA/2300) or symmetric robots (e.g., ABB IRB6660). Previous research proved that depending on the application and the material being machined, lack of stiffness will still be an issue, even for structurally bigger robotic arms, due to their serial nature. The accuracy issue has been addressed to a certain extent by using secondary encoders on the robotic arm joints. The encoder enhanced robotic arm solutions tend to be expensive and prior knowledge proves that there are still limitations when it comes to achieved accuracy. The current work aims to provide a performance
Sawyer, DanielaScraggs, Chris
An assistive planar robot includes a cutting-edge closed-loop feedback system to monitor the muscle and brain activity of the user in order to trigger the execution of reach and grab in an adaptive way
For people who have suffered neurotrauma such as a stroke, everyday tasks can be extremely challenging because of decreased coordination and strength in one or both upper limbs. These problems have spurred the development of robotic devices to help enhance their abilities. However, the rigid nature of these assistive devices can be problematic, especially for more complex tasks like playing a musical instrument
A significant portion of the global population about 13.6% of the world's population faces challenges due to upper limb disabilities caused by accidents, genetics, health issues or aging. These people struggle with everyday mobility tasks and often need help. Hence, the research is focused on creating special vehicle control systems to help them. This study gathers knowledge from various science and technology fields to develop foot-operated steering systems letting those with upper limb differences control vehicles with their feet. The research explores various technologies like modified steering, brain-controlled vehicles, foot-operated steering, steer-by-wire and Ackermann steering. Most of these systems are custom-made for people with upper limb differences. Ensuring safety, security, malfunction prevention, precise steering, user-friendliness and affordability is a significant challenge that demands advanced technology. Furthermore, there is a requirement to develop this system to
Soundararajan, R.Babu, N.Ashoka Varthanan, P.Shijo Joseph, C.S.
Government of India, in 2017, mandated a Side Impact Test (AIS 099 technically aligned to UN ECE Regulation No. 95.03 series of amendments) on M1 category Passenger Vehicles to ensure protection of occupants in lateral impact accident scenarios. Later, in 2022, a draft notification has been issued by the Government mandating installation of 6 airbags (2 Nos of thorax side airbags, 2 Nos of head protection or curtain airbags in addition to already mandated installation of Driver and Passenger Airbags) in all such passenger vehicles. However, the vehicles fitted with side thorax airbag and curtain airbags are proposed to be assessed as per AIS099 test only. Curtain Airbags are typically installed to protect occupant’s head from severe injuries in narrow object impacts simulated in Pole Side Impact Test Configurations. However, at present, India has not notified an equivalent standard to UN R135 demanding performance of the vehicle in pole side impact scenarios. Typically, OEMs may need
Jaju, DivyanKulkarni, DileepMahindrakar, RahulMahajan, Rahul
Seatback and head restraints are the primary restraining devices in rear-impact collisions. The seatback failures expose front seat occupants to dive deep into the rear compartment survival space. Furthermore, it allows the occupants to get in a position with lower spinal tolerance to the impact direction. This paper employs sled tests to demonstrate the dangers of seatback failures in severe rear impact by allowing the occupants to orient their spine in its lowest tolerance zone to the impact direction. Furthermore, the sled test shows the potential of head pocketing phenomena and torso augmentation producing compressive cervical spine loading enough to cause first-order neck buckling. Finally, the results of collapsing seatback dynamics are compared to the strong seatback performance by conducting a similar test with a strong ABTS seatback. The study demonstrates that the strong seatbacks in severe rear impacts produce favorable outcomes while keeping the occupant in their higher
Thorbole, Chandrashekhar
The passive safety performance of a child seat is modulated by the design features of the child seat and the vehicle interior. For example, in the rear-facing configuration, the child seat impacting front structures increases the head injury risk during a frontal crash. Therefore, this study evaluates the effectiveness of the load leg countermeasure in improving the child seat's overall kinematics and its capability to prevent the secondary impact on the vehicle interior structure in a severe frontal crash scenario. An in-depth, real-world crash investigation involving a properly installed rear-facing child seat impacting the center console was selected for the study where the infant sustained a severe brain injury. In addition, this crash is employed to choose the crash parameters for evaluating the effectiveness of the load leg countermeasure in a similar scenario. Finally, crash sled tests are conducted using the crash signature of the vehicle as obtained from the NHTSA NCAP rigid
Thorbole, Chandrashekhar
A new soft sensor developed by UBC and Honda researchers opens the door to a wide range of applications in robotics and prosthetics. When applied to the surface of a prosthetic arm or a robotic limb, the sensor skin provides touch sensitivity and dexterity, enabling tasks that can be difficult for machines such as picking up a piece of soft fruit. The sensor is also soft to the touch, like human skin, which helps make human interactions safer and more lifelike
The role of Virtual Reality (VR) platform for experimental studies to mitigate severe injuries is known. A Virtual Reality (VR) module was developed to provide an Indian auto-rickshaw driver experience using commercially available Oculus Quest 2 VR headset. A Driver Behaviour Questionnaire (DBQ) was developed and a study carried out among 20 auto-rickshaw drivers in Thanjavur, India. The DBQ questions provided data to shortlist the most likely near crash experiences among the surveyed drivers. A virtual reality environment was created using UNITY HUB software for one selected scenario from the DBQ survey analysis. A group of 10 volunteers to experience the event using VR gear in the biomechanical laboratory with reflective markers fixed on the body joints of the volunteers to obtain corresponding joint angles in the Neck, Lumbar, Shoulder, Hip, and Knee regions. This study identified various pre-crash reactions from drivers and compared them to the normal driving posture to determine
S, RagulG, SundhareswaranSankarasubramanian, HariharanPrasanna, SelvaVijayaraghavan, Sriram
Imagine a thin, digital display so flexible that you can wrap it around your wrist, fold it in any direction, or even curve it over your car’s steering wheel. Well, imagine no more — researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have designed such a material; it can even bend in half or stretch to more than twice its original length — and still emit a fluorescent pattern
Traumatic brain injury is a leading cause of global death and disability. Clinically relevant large animal models are a vital tool for understanding the biomechanics of injury, providing validation data for computation models, and advancing clinical translation of laboratory findings. It is well-established that large angular accelerations of the head can cause TBI, but the effect of head impact on the extent and severity of brain pathology remains unclear. Clinically, most TBIs occur with direct head impact, as opposed to inertial injuries where the head is accelerated without direct impact. There are currently no active large animal models of impact TBI. Sheep may provide a valuable model for studying TBI biomechanics, with relatively large brains that are similar in structure to that of humans. The aim of this project is to develop an ovine model of impact TBI to study the relationships between impact mechanics and brain pathology. An elastic energy impact injury device has been
Magarey, Charlie CQuarrington, Ryan DJones, Claire F
Letter from the Special Issue Editors
Mueller, BeckyBautsch, BrianMansfield, Julie
Objective: This study aimed to optimize restraint systems and improve safety equity by using parametric human body models (HBMs) and vehicle models accounting for variations in occupant size and shape as well as vehicle type. Methodology: A diverse set of finite element (FE) HBMs were developed by morphing the GHBMC midsize male simplified model into statistically predicted skeleton and body shape geometries with varied age, stature, and body mass index (BMI). A parametric vehicle model was equipped with driver, front passenger, knee, and curtain airbags along with seat belts with pretensioner(s) and load limiter and has been validated against US-NCAP results from four vehicles (Corolla, Accord, RAV4, F150). Ten student groups were formed for this study, and each group picked a vehicle model, occupant side (driver vs. passenger), and an occupant model among the 60 HBMs. About 200 frontal crash simulations were performed with 10 combinations of vehicles (n = 4) and occupants (m = 8
Yang, ZhenhaoDesai, AmoghsiddBoyle, KyleRupp, JonathanReed, MatthewHu, Jingwen
Computational and experimental studies have been undertaken to investigate injurious head-first impacts (HFI), which can occur during automotive rollovers. Recent studies assume a torso surrogate mass (TSM) boundary condition, wherein the first or first two thoracic vertebrae are potted and constrained to only move in the vertical loading direction. The TSM boundary condition has not been compared with a full body (FB) model computationally or experimentally for HFI. In this study, the Global Human Body Models Consortium 50th percentile male detailed human body model (M50-O, Version 6.0) was applied to compare the kinematic, kinetic, and injury response of an HFI with a TSM boundary condition (M50-TSM), and a full body boundary condition (M50-FB). Impacts (to M50-TSM and M50-FB) were simulated between the head and a rigid plate using a commercial FE code (LS-DYNA). The impact velocity of 3.1 m/s corresponded to the onset of spinal injury in diving reconstructions, and the impact
Morgan, M.I.Corrales, M.Cripton, P.Cronin, D.S.
Bilateral knee impacts were conducted on Hybrid III and THOR 5th percentile female anthropomorphic test devices (ATDs), and the results were compared to previously reported female PMHS data. Each ATD was impacted at velocities of 2.5, 3.5, and 4.9 m/s. Knee–thigh–hip (KTH) loading data, obtained either via direct measurement or through exercising a one-dimensional lumped parameter model (LPM), was analyzed for differences in loading characteristics including the maximum force, time to maximum force, loading rate, and loading duration. In general, the Hybrid III had the highest loading rate and maximum force, and the lowest loading duration and time to peak force for each point along KTH. Conversely, the PMHS generally had the lowest loading rate and maximum force, and the highest loading duration and time to peak force for each point along KTH. The force transfer from the knee to the femur was 79.2 ± 0.3% for the Hybrid III 5th female, 82.7 ± 0.4% for the THOR-05F, and 70.6 ± 1.7% for
Carpenter, Randolff L.Berthelson, Parker R.Donlon, John-PaulForman, Jason L.
Introduction: The use of less lethal impact munitions (LLIMs) by law enforcement has increased in frequency, especially following nationwide protests regarding police brutality and racial injustice in the summer of 2020. There are several reports of the projectiles causing severe injuries when they penetrate the skin including pulmonary contusions, bone fractures, liver lacerations, and, in some cases, death. The penetration threshold of skin in different body regions is due to differences in the underlying structure (varying degree of muscle, adipose tissue, and presence or absence of bone). Objective: The objective of this study was to further investigate what factors affected the likelihood of skin penetration in various body regions and to develop corresponding penetration risk curves. Methods: A total of eight, fresh/never frozen, unembalmed, postmortem human specimens (PMHS) were impacted by two projectile sizes: a 1″ and 5/8″ neoprene rubber ball in various body regions
Foley, SierraSherman, DonaldDavis, AndrewMacDonald, RobertBir, Cynthia
Eighteen research posters were prepared and presented by student authors at the 18th Annual Injury Biomechanics Symposium. The posters covered a wide breadth of works-in-progress and recently completed projects. Topics included a variety of body regions and injury scenarios such as: Head: Defining the mass, center of mass, and anatomical coordinate system of the pig head and brain; the influence of friction on oblique helmet testing; validation of an in-ear sensor for measuring head impact exposure in American football Neck and spine: Design of paramedic mannequin neck informed by adult passive neck stiffness and range of motion data; identifying injury from flexion-compression loading of porcine lumbar intervertebral disc Thorax: Tensile material properties of costal cartilage perichondrium; finite element models of both an ovine thorax and adipose tissue for high-rate non-penetrating blunt impact Pelvis: Injurious pelvis deformation in high-speed rear-facing frontal impacts Lower
Mueller, BeckyBautsch, BrianMansfield, Julie
The objective of this study was to compare head, neck, and chest injury risks between front and rear-seated Hybrid III 50th-percentile male anthropomorphic test devices (ATDs) during matched frontal impacts. Seven vehicles were converted to rear seat test bucks (two sedans, three mid-size SUVs, one subcompact SUV, and one minivan) and then used to perform sled testing with vehicle-specific frontal NCAP acceleration pulses and a rear seated (i.e., second row) Hybrid III 50th male ATD. Matched front seat Hybrid III 50th male ATD data were obtained from the NHTSA Vehicle Crash Test Database for each vehicle. HIC15, Nij, maximum chest acceleration, and maximum chest deflection were compared between the front and rear seat tests, as well as between vehicles with conventional and advanced three-point belt restraint systems in the rear seat. Additionally, a modified version of the NCAP frontal star rating was calculated for the front and rear seat tests. All injury metrics, except for chest
Bianco, Samuel T.Albert, Devon L.Guettler, Allison J.Hardy, Warren N.Kemper, Andrew R.
Oblique motor vehicle crashes can cause serious head or brain injuries due to contact with interior vehicle structures even with the deployment of air bags, as they are not yet completely successful in preventing traumatic brain injury. Rotational head velocity is strongly correlated to the risk of brain injury, and this head motion is potentially related to the tangential friction force developed during contact between the head and air bags. Although crash test dummy head skins are designed with appropriate mass properties and anthropometry to simulate the normal direction impact response of the human head, it is not known whether they accurately represent the frictional properties of human skin during air bag interaction. This study experimentally characterized the dynamic friction coefficient between human/dummy skins and air bag fabrics using a pin-on-disc tribometer. Human skin samples were harvested from five locations (left and right forehead, left and right cheek, and chin
Noll, ScottDong, ShengKang, Yun-SeokBolte, JohnStammen, JasonMoorhouse, Kevin
Grasping objects of different sizes, shapes and textures is a problem that is easy for a human, but challenging for a robot. Researchers from the University of Cambridge designed a soft, 3D-printed robotic hand that cannot independently move its fingers but can still carry out a range of complex movements
Previous volunteer studies focused on low-speed frontal events have demonstrated that muscle activation (specifically pre-impact bracing) can significantly affect occupant response. However, these tests do not always include a sufficient number of small female volunteers to compare their unique responses to the typically studied midsize male population. The purposes of this study were to quantify the occupant kinetics and muscle responses of relaxed and braced small female and midsize male volunteers during low-speed frontal sled tests and to compare between muscle states and demographic groups. Small female and midsize male volunteers experienced multiple low-speed frontal sled tests consisting of two pulse severities (1 g and 2.5 g) and two muscle states (relaxed and braced) per pulse severity. The muscle activity of 30 muscles (15 bilaterally) and reaction forces at the volunteer-test buck interfaces and seat belt were measured before and during each sled test. Compared to the
Chan, HanaAlbert, Devon L.Gayzik, F. ScottKemper, Andrew R.
This SAE Standard describes head position contours and procedures for locating the contours in a vehicle. Head position contours are useful in establishing accommodation requirements for head space and are required for several measures defined in SAE J1100. Separate contours are defined depending on occupant seat location and the desired percentage (95 and 99) of occupant accommodation. This document is primarily focused on application to Class A vehicles (see SAE J1100), which include most personal-use vehicles (passenger cars, sport utility vehicles, pick-up trucks). A procedure for use in Class B vehicles can be found in Appendix B
null, null
Head worn displays (HWD) can display a variety of information ranging from a full complement of primary flight information (PFI), including enhanced, synthetic, or combined vision system imagery to simple representations of airspeed, altitude, or heading to operationally specific information that may not be related aircraft performance or control. The display functions discussed in this ARP are limited to intended functions related to aircraft control and management and the presentation of PFI. The material provided in this document consists of recommendations related to the design, analysis, testing, and intended functions of head worn displays (HWDs) for normal, utility, acrobatic, commuter, and transport category aircraft and special classes of aircraft. The content is targeted to HWDs that provide navigation, control and primary flight guidance information including terrain and obstacle avoidance. The content of the document is limited to statements of general design and
G-10HWD Head Worn Display Committee
Engineers have unveiled what they call an intervertebral disc-on-a-chip, a world-first precision engineered toolbox for research into lower back pain, the leading cause of disability worldwide
Researchers have developed a fully knitted, circuit-embedded knee wearable for wireless sensing of joint motion in real time. Compared to other knitted electronics, this model has fewer externally integrated components and a more sensitive sensor, making it less error prone
Scientists have developed electrode arrays that can be funneled through a small hole in the skull and deployed over a relatively large surface over the brain’s cortex. The technology may be particularly useful for providing minimally invasive solutions for epileptic patients
While the use of Human Body Models (HBMs) in the underbody blast (UBB) environment has increased and shown positive results, the potential of these models has not been fully explored. Obtaining accurate kinematic and kinetic response are necessary to better understand the injury mechanisms for military safety applications. The objective of this study was to validate the Global Human Body Models Consortium (GHBMC) M50 lower extremity using a combined objective rating scheme in vertical and horizontal high-rate axial loading. The model’s lower extremity biomechanical response was compared to Post Mortem Human Subjects (PMHS) subjects for vertically and horizontally-applied high rate axial loading. Two distinct experimental setups were used for model validation, comprising a total of 33 distinct end points for validation. A combined Correlation and Analysis (CORA) score that incorporates CORA, time-to-peak (TTP) and peak magnitude of the experimental signals and ISO TS 18571 was used to
Hostetler, Zachary S.Caffrey, JulietteAira, JazmineGayzik, F. Scott
The knee is one of the regions of interest for pedestrian safety assessment. Past testing to study knee ligament injuries for pedestrian impact only included knees in full extension and mostly focused on global responses. As the knee flexion angle and the initial ligament laxity may affect the elongation at which ligaments fail, the objectives of this study were (1) to design an experimental protocol to assess the laxity of knee ligaments before measuring their elongation at failure, (2) to apply it in paired knee tests at two flexion angles (10 and 45 degrees). The laxity tests combined strain gauges to measure bone strains near insertions that would result from ligament forces and a custom machine to exercise the knee in all directions. Failure was assessed using a four-point bending setup with additional degrees of freedom on the axial rotation and displacement of the femur. A template was designed to ensure that the two setups used the exact same starting position. The protocol was
Benadi, SaharTrosseille, XavierPetit, PhilippeUriot, JérômeLafon, YoannBeillas, Philippe
Traumatic brain injury (TBI) is the leading cause of death and long-term disability in road traffic accidents (RTAs). Researchers have examined the effect of vehicle front shape and pedestrian body size on the risk of pedestrian head injury. On the other hand, the relationship between vehicle front shape parameters and pedestrian TBI risks involving a diverse population with varying body sizes has yet to be investigated. Thus, the purpose of this study was to comprehensively study the effect of vehicle front shape parameters and various pedestrian bodies ranging from 95th percentile male (AM95) to 6 years old (YO) child on the dynamic response of the head and the risk of TBIs during primary (vehicle) impact. At three different collision speeds (30, 40, and 50 km/h), a total of 36 car-to-pedestrian collisions (CPCs) were reconstructed using three different vehicle types (Subcompact passenger sedan, mid-sedan, and sports utility vehicle (SUV)) and four distinct THUMS pedestrian finite
Gunasekaran, KalishIslam, Sakib UlMao, Haojie
Items per page:
1 – 50 of 3398