Browse Topic: Body regions

Items (3,397)
The introduction of unrestrained torso neck braces as a safety intervention for helmeted motorcycle riders has introduced a set of unsolved challenges. Understanding the injury prevention afforded by these devices depends on a reliable test methodology by which to critically evaluate their efficacy against the most common mechanisms of neck injury. An inverted pendulum test is proposed to evaluate compression flexion (CF), tension flexion (TF), and tension extension (TE) of the neck using a Hybrid III anthropomorphic test device (HIII ATD) neck and a motorcycle-specific ATD (MATD) neck. In addition to investigating methods to quantify the beneficial effects of a neck brace, potential adverse effects of such a device are evaluated by measuring and evaluating relevant neck response measures. To that end, measured data using a current neck brace were analyzed and applied to various injury criteria related to the ATD neck used to compare the injury risk predicted by each parameter. The
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
With the capability of predicting detailed injury of occupants, the Human Body Model (HBM) was used to identify potential injuries for occupants in car impact events. However, there are few publications on using HBM in the aviation industry. This study aims to investigate and compare the head, neck, lumbar spine and thoracic responses of the Hybrid III and the THUMS (Total Human Model for Safety) model in the horizontal 26g and vertical 19g sled tests required by the General Aviation Aircraft Airworthiness Regulations. The HIC of THUMS and Hybrid III did not exceed the requirements of airworthiness regulations. Still, THUMS had higher intracranial pressures and intracranial stresses, which could result in brain injury to the occupants. In vertical impact, the highest stress of the neck of THUMS appears at the cervical spine C2 and the upper neck is easily injured; in horizontal impact, the cervical spine C7 has the highest load, and the lower neck is easily injured. Due to the low
Shi, XiaopengDing, XiangheGuo, KaiLiu, TianfuXie, Jiang
Ongoing research in simulated vehicle crash environments utilizes postmortem human subjects (PMHS) as the closest approximation to live human response. Lumbar spine injuries are common in vehicle crashes, necessitating accurate assessment methods of lumbar loads. This study evaluates the effectiveness of lumbar intervertebral disc (IVD) pressure sensors in detecting various loading conditions on component PMHS lumbar spines, aiming to develop a reliable insertion method and assess sensor performance under different loading scenarios. The pressure sensor insertion method development involved selecting a suitable sensor, using a customized needle-insertion technique, and precisely placing sensors into the center of lumbar IVDs. Computed tomography (CT) scans were utilized to determine insertion depth and location, ensuring minimal tissue disruption during sensor insertion. Tests were conducted on PMHS lumbar spines using a robotic test system for controlled loading in flexion
Burns, Michael R.Caldwell, A. JamesShin, JeesooSochor, Sara H.Kopp, Kevin P.Shaw, GregGepner, BronislawKerrigan, Jason R.
Exploring the mechanical properties of soft tissues under compressive loading is crucial for understanding their role in automobile incidents. Soft tissues, which serve as cushions or padding between bone and vehicle interiors, significantly influence contact duration and forces, thereby altering incident kinematics and injury. In this investigation, muscle and soft connective tissues from post-mortem human subjects (PMHS) forearms were excised and subjected to compression and indentation testing methods at various rates and strains. Specific samples with higher proportions of muscle were compared against samples without muscle tissues to evaluate the role of compositional changes. Anthropomorphic test device (ATD) upper extremity foam and vinyl–foam composite analog tissues underwent similar testing for comparison. High impact rates simulating those in high-speed automotive collisions were achieved using a custom-built drop tower impactor setup. The results revealed significantly
Dennis, Cole J.Quenneville, Cheryl E.
Rear-end vehicle collisions may lead to whiplash-associated disorders (WADs), comprising a variety of neck and head pain responses. Specifically, increased axial head rotation has been associated with the risk of injuries during rear impacts, while specific tissues, including the capsular ligaments, have been implicated in pain response. Given the limited experimental data for out-of-position rear impact scenarios, computational human body models (HBMs) can inform the potential for tissue-level injury. Previous studies have considered external boundary conditions to reposition the head axially but were limited in reproducing a biofidelic movement. The objectives of this study were to implement a novel head repositioning method to achieve targeted axial rotations and evaluate the tissue-level response for a rear impact condition. The repositioning method used reference geometries to rotate the head to three target positions, showing good correspondence to reported interverbal rotations
Reis, Matheus SeifCronin, Duane
Mitigating both neck and head injuries in the pediatric population relies heavily on improving our understanding of the underlying biomechanics of the pediatric cervical spine. The tensile response for individual motion segments and the whole cervical spine (WCS) has been reported, but there is no data characterizing the intersegmental kinematics of pediatric WCS under axial loading conditions. The structural response of motion segments and WCS provide valuable data for the design and validation of biofidelic physical and computational models for the pediatric population. However, the use of motion segment data to construct WCS response or the use of WCS axial response to accurately characterize intersegmental response may present limitations to accurately modeling the pediatric cervical spine response. In this secondary analysis of the work of Luck et al. (2008, 2013), the fixed-fixed, low load, quasi-static tensile response of the WCS and individual motion segments (O-C2, C4-C5, and
Liu, MirandaLuck, Jason F.
Seventeen research posters were prepared and presented by student authors. The posters covered a wide breadth of works-in-progress and recently completed projects. Topics included a variety of body regions and injury scenarios: Biofidelity Corridors of Powered Two-Wheeler Rider Kinematics from Full-Scale Crash Testing Using Postmortem Human Subjects, Meringolo et al. Cervical Vertebral and Spinal Cord Injuries Remain Overrepresented in Rollover Occupants, Al-Salehi et al. The Effect of Surfaces on Knee Biomechanics during a 90-Degree Cut, Rhodes et al. Investigating the Variabilities in the Spinal Cord Injury in Pig Models Using Benchtop Test Model and Ultrasound Analyses, Borjali et al. Relationship between Tackle Form and Head Kinematics in Youth Football, Holcomb et al. Comparing Motor Vehicle Collision Injury Incidence between Pregnant and Nonpregnant Individuals: A Case–Control Study, Levine et al. Development of an Automated Pipeline to Characterize Full Rib Cage Shape
Bautsch, Brian T.Cripton, Peter A.Cronin, Duane
Thorax injuries are a significant cause of mortality in automotive crashes, with varying susceptibility across sex and age demographics. Finite element (FE) human body models (HBMs) offer the potential for injury outcome analysis by incorporating anthropometric variations. Recent advancements in material constitutive models, cortical bone fracture and continuum damage mechanics model (CFraC) and an orthotropic trabecular bone model (OrthoT), offer the opportunity to further improve rib models. In this study, the CFraC and OrthoT material modes, coupled with age-specific material properties, were progressively implemented to the Global Human Body Model Consortium small female 6th rib. Four distinct 6th rib models were developed and compared against sex and age-specific experimental data. The updated material models notably refined the predictions of force–displacement responses, aligning them more closely with the experimental averages. The CFraC model significantly improved the
Corrales, Miguel A.Holcombe, SvenAgnew, Amanda M.Kang, Yun-SeokMarkusic, CraigSugaya, HisakiCronin, Duane S.
Researchers have succeeded in adding finger straightening or extension to soft rehabilitation gloves through a novel foldable pouch actuator (FPA) without compromising the already existing functionality of finger bending or flexion
Thorax injury remains a primary contributor to mortality in car crash scenarios. Although human body models can be used to investigate thorax response to impact, isolated rib models have not been able to predict age- and sex-specific force-displacement response and fracture location simultaneously, which is a critical step towards developing human thorax models able to accurately predict injury response. Recent advancements in constitutive models and quantification of age- and sex-specific material properties, cross-sectional area, and cortical bone thickness distribution offer opportunities to improve rib computational models. In the present study, improved cortical and trabecular bone constitutive models populated with age-specific material properties, age- and sex-specific population data on rib cross-sectional area, and cortical bone thickness distribution were implemented into an isolated 6 th rib from a contemporary human body model. The enhanced rib model was simulated in
Corrales, Miguel A.Holcombe, SvenAgnew, Amanda M.Kang, Yun-SeokCronin, Duane S.
Road safety remains a critical concern globally, with millions of lives lost annually due to road accidents. In India alone, the year 2021 witnessed over 4,12,432 road accidents resulting in 1,53,972 fatalities and 3,84,448 injuries. The age group most affected by these accidents is 18-45 years, constituting approximately 67% of total deaths. Factors such as speeding, distracted driving, and neglect to use safety gear increases the severity of these incidents. This paper presents a novel approach to address these challenges by introducing a driver safety system aimed at promoting good driving etiquette and mitigating distractions and fatigue. Leveraging Raspberry Pi and computer vision techniques, the system monitors driver behavior in real-time, including head position, eye blinks, mouth opening and closing, hand position, and internal audio levels to detect signs of distraction and drowsiness. The system operates in both passive and active modes, providing alerts and alarms to the
Ganesh, KattaPrasad, Gvl
Forward-facing child restraint systems (FF CRS) and high-back boosters often contact the vehicle seat head restraint (HR) when installed, creating a gap between the back surface of the CRS and the vehicle seat. The effects of HR interference on dynamic CRS performance are not well documented. The objective of this study is to quantify the effects of HR interference for FF CRS and high-back boosters in frontal and far-side impacts. Production vehicle seats with prominent, removeable HRs were attached to a sled buck. One FF CRS and two booster models were tested with the HR in place (causing interference) and with the HR removed (no interference). A variety of installation methods were examined for the FF CRS. A total of twenty-four tests were run. In frontal impacts, HR interference produced small but consistent increases in frontal head excursion and HIC36. Head excursions were more directly related to the more forward initial position rather than kinematic differences caused by HR
Mansfield, Julie A.
A team led by University of Maryland computer scientists invented a camera mechanism that improves how robots see and react to the world around them. Inspired by how the human eye works, their innovative camera system mimics the tiny involuntary movements used by the eye to maintain clear and stable vision over time. The team’s prototyping and testing of the camera — called the Artificial Microsaccade-Enhanced Event Camera (AMI-EV) — was detailed in a paper published in the journal Science Robotics in May 2024
A new groundbreaking “smart glove” is capable of tracking the hand and finger movements of stroke victims during rehabilitation exercises. The glove incorporates a sophisticated network of highly sensitive sensor yarns and pressure sensors that are woven into a comfortable stretchy fabric, enabling it to track, capture, and wirelessly transmit even the smallest hand and finger movements
Most humans rely heavily on our visual abilities to function in the world—we are optically oriented. In the broadest sense, “optics” refers to the study of sight and light. At its foundation, Radiant’s business is all about optics: measuring light and the properties of light in relation to the human eye. Photometry is the science of light according to our visual perception. Colorimetry is the science of color: how our eyes interpret different wavelengths of light
The advent of neck braces for the helmeted motorcycle rider has introduced a pertinent research question: To what extent do they reduce measures related to the major mechanism of neck injury in unrestrained torso accidents, i.e., compression flexion (CF)? This question requires a suitable method of testing and evaluating the measures for a load case resulting in the required mechanism. This study proposes a weighted swinging anvil striking the helmeted head of a supine HIII ATD by means of a near vertex impact with a low degree of anterior head impact eccentricity to induce CF of the neck. The applied impact was chosen for the baseline (no neck brace) so that the upper and lower neck axial forces approached injury assessment reference values (IARV). The head impact point evaluated represents those typically associated with high-energy burst fractures occurring within the first 20 ms, with possible secondary disruption of posterior ligaments. The proposed test can be used to evaluate
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team, led by Professor Shoji Takeuchi of the University of Tokyo, included special perforations in a robot face, which helped a layer of skin take hold. Their research could be useful in the cosmetics industry and to help train plastic surgeons
This research aims at understanding how the driver interacts with the steering wheel, in order to detect driving strategies. Such driving strategies will allow in the future to derive accurate holistic driver models for enhancing both safety and comfort of vehicles. The use of an original instrumented steering wheel (ISW) allows to measure at each hand, three forces, three moments, and the grip force. Experiments have been performed with 10 nonprofessional drivers in a high-end dynamic driving simulator. Three aspects of driving strategy were analyzed, namely the amplitudes of the forces and moments applied to the steering wheel, the correlations among the different signals of forces and moments, and the order of activation of the forces and moments. The results obtained on a road test have been compared with the ones coming from a driving simulator, with satisfactory results. Two different strategies for actuating the steering wheel have been identified. In the first strategy, the
Previati, GiorgioMastinu, GianpieroGobbi, Massimiliano
A research paper by scientists at the University of Coimbra proposed a soft robotic hand comprising soft actuator cores and an exoskeleton, featuring a multimaterial design aided by finite element analysis to define the hand geometry and promote finger’s bendability. The new research paper, published on August 8 in the journal Cyborg and Bionic Systems, presented the development, fabrication, and control of a bioinspired soft robotic hand and demonstrated finite element analysis can serve as a valuable tool to support the design and control of the hand’s fingers
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam. However, the change in the average biofidelity
Pradhan, VikramRamachandra, RakshitKang, Yun Seok
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances. While developing the vehicle architecture in the early design phase, it is customary to specify targets for various ergonomic attributes and arrive at the above-mentioned
Rajakumaran, SriramS, RahulVasireddy, Rakesh MitraNair, Suhas
The Large Omnidirectional Child (LODC) developed by the National Highway Traffic Safety Administration (NHTSA) has an improved biofidelity over the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD). The LODC design incorporates enhancements to many body region subassemblies, including a redesigned HIII-10C head with pediatric mass properties, and the neck, which produces head lag with Z-axis rotation at the atlanto-occipital joint, replicating the observations made from human specimens. The LODC also features a flexible thoracic spine, a multi-point thoracic deflection measurement system, skeletal anthropometry that simulates a child's sitting posture, and an abdomen that can measure belt loading directly. This study presents the development and validation of a dynamic nonlinear finite element model of the complete LODC dummy. Based on the three-dimensional CAD model, Hypermesh was used to generate a mesh of the finite element (FE) LODC model. LS
Challa, Balaji Naga Sai AbhishiktYang, PeiyuCarlson, MichaelSuntay, BrianStammen, JasonNoll, Scott
Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt. Three different rubber contents with 14, 28, 33 weight percent (% wt.) were implemented as the ground alongside one regular non-rubberized (0%) asphalt mixture, one baseline, and one extra-compliant
Sahandifar, PooyaWallqvist, VivecaKleiven, Svein
Innovators at NASA Johnson Space Center have developed a programmable steering wheel called the Tri-Rotor, which allows an astronaut the ability to easily operate a vehicle on the surface of a planet or Moon despite the limited dexterity of their spacesuit. This technology was originally conceived for the operation of a lunar terrain vehicle (LTV) to improve upon previous Apolloera hand controllers. In re-evaluating the kinematics of the spacesuit, such as the rotatable wrist joint and the constant volume shoulder joint, engineers developed an enhanced and programmable hand controller that became the Tri-Rotor
The history of construction materials and methods has evolved over time, with Portland cement concrete being the most widely used material on Earth. Constructing habitats and infrastructure on the Moon and Mars, however, requires a different approach given the lack of such conventional construction resources and materials. Recognizing the need for in-situ resource utilization (ISRU) to support long-duration human missions to the Moon and Mars, NASA’s Kennedy Space Center and Sidus Space have developed a novel three-dimensional print head apparatus using regolith-polymer mixtures as a building material
In numerous industries such as aerospace and energy, components must perform under significant extreme environments. This imposes stringent requirements on the accuracy with which these components are manufactured and assembled. One such example is the positional tolerance of drilled holes for close clearance applications, as seen in the “EN3201:2008 Aerospace Series – Holes for metric fasteners” standard. In such applications, the drilled holes must be accurate to within ±0.1 mm. Traditionally, this required the use of Computerised Numerical Control (CNC) systems to achieve such tight tolerances. However, with the increasing popularity of robotic arms in machining applications, as well as their relatively lower cost compared to CNC systems, it becomes necessary to assess the ability of robotic arms to achieve such tolerances. This review paper discusses the sources of errors in robotic arm drilling and reviews the current techniques for improving its accuracy. The main sources of
Cho, Yun HangSawyer, DanielaBurkinshaw, ChristopherScraggs, Chris
Robotic arms are widely known to fall short in achieving the tolerances required when it comes to the metal machining industry, especially for the aerospace sector. Broadly speaking, two of the main reasons for that are a lack of stiffness and a lack of accuracy. Robotic arm manufacturers have responded to the lack of stiffness challenge by producing bigger robots, capable of holding high payloads (e.g., Fanuc M-2000iA/2300) or symmetric robots (e.g., ABB IRB6660). Previous research proved that depending on the application and the material being machined, lack of stiffness will still be an issue, even for structurally bigger robotic arms, due to their serial nature. The accuracy issue has been addressed to a certain extent by using secondary encoders on the robotic arm joints. The encoder enhanced robotic arm solutions tend to be expensive and prior knowledge proves that there are still limitations when it comes to achieved accuracy. The current work aims to provide a performance
Sawyer, DanielaScraggs, Chris
For people who have suffered neurotrauma such as a stroke, everyday tasks can be extremely challenging because of decreased coordination and strength in one or both upper limbs. These problems have spurred the development of robotic devices to help enhance their abilities. However, the rigid nature of these assistive devices can be problematic, especially for more complex tasks like playing a musical instrument
An assistive planar robot includes a cutting-edge closed-loop feedback system to monitor the muscle and brain activity of the user in order to trigger the execution of reach and grab in an adaptive way
A significant portion of the global population about 13.6% of the world's population faces challenges due to upper limb disabilities caused by accidents, genetics, health issues or aging. These people struggle with everyday mobility tasks and often need help. Hence, the research is focused on creating special vehicle control systems to help them. This study gathers knowledge from various science and technology fields to develop foot-operated steering systems letting those with upper limb differences control vehicles with their feet. The research explores various technologies like modified steering, brain-controlled vehicles, foot-operated steering, steer-by-wire and Ackermann steering. Most of these systems are custom-made for people with upper limb differences. Ensuring safety, security, malfunction prevention, precise steering, user-friendliness and affordability is a significant challenge that demands advanced technology. Furthermore, there is a requirement to develop this system to
Soundararajan, R.Babu, N.Ashoka Varthanan, P.Shijo Joseph, C.S.
The passive safety performance of a child seat is modulated by the design features of the child seat and the vehicle interior. For example, in the rear-facing configuration, the child seat impacting front structures increases the head injury risk during a frontal crash. Therefore, this study evaluates the effectiveness of the load leg countermeasure in improving the child seat's overall kinematics and its capability to prevent the secondary impact on the vehicle interior structure in a severe frontal crash scenario. An in-depth, real-world crash investigation involving a properly installed rear-facing child seat impacting the center console was selected for the study where the infant sustained a severe brain injury. In addition, this crash is employed to choose the crash parameters for evaluating the effectiveness of the load leg countermeasure in a similar scenario. Finally, crash sled tests are conducted using the crash signature of the vehicle as obtained from the NHTSA NCAP rigid
Thorbole, Chandrashekhar
Seatback and head restraints are the primary restraining devices in rear-impact collisions. The seatback failures expose front seat occupants to dive deep into the rear compartment survival space. Furthermore, it allows the occupants to get in a position with lower spinal tolerance to the impact direction. This paper employs sled tests to demonstrate the dangers of seatback failures in severe rear impact by allowing the occupants to orient their spine in its lowest tolerance zone to the impact direction. Furthermore, the sled test shows the potential of head pocketing phenomena and torso augmentation producing compressive cervical spine loading enough to cause first-order neck buckling. Finally, the results of collapsing seatback dynamics are compared to the strong seatback performance by conducting a similar test with a strong ABTS seatback. The study demonstrates that the strong seatbacks in severe rear impacts produce favorable outcomes while keeping the occupant in their higher
Thorbole, Chandrashekhar
Items per page:
1 – 50 of 3397