Browse Topic: Body regions
Indian passenger car accident data indicates that approximately 44% of crashes are frontal impacts (Refer fig 1). Among the injuries sustained in these crashes, lower leg injuries are notably critical, contributing to nearly 25% of driver occupant injuries (Refer fig 2). To evaluate such injuries, the Bharat New Car Assessment Program (BNCAP) includes lower leg injury metrics as part of the Frontal Offset Deformable Barrier (ODB64) test. While the overall injury performance is assessed at the vehicle level, BNCAP also monitors vehicle interior intrusions—particularly pedal intrusions—as key contributors to lower limb injury severity. A major challenge in frontal crashes is the intrusion of the vehicle's front-end structure into the occupant compartment. Rigid components, particularly the brake pedal assembly, can be displaced rearward during a crash, significantly increasing the risk of lower leg injuries. Therefore, minimizing pedal intrusions into the driver foot-well is critical for
Severe rear-impact collisions can cause significant intrusion into the occupant compartment when the structural integrity of the rear survival space is insufficient. Intrusion patterns are influenced by impact configuration—underride, in-line, or override—with underride collisions channeling forces below the beltline through the rear wheels as a primary load path. This force concentration rapidly propels the rear seat-pan forward, contacting the rearward-rotating front seatback. The resulting bottoming-out phenomenon produces a forward impulse that amplifies loading on the front occupant’s upper torso, increasing the risk of thoracic injury even when the head is properly supported by the head restraint. This study analyzes a real-world rear-impact collision that resulted in fatal thoracic injuries to the driver, attributed to the interaction between the driver’s seatback and the forward-moving rear seat pan. A vehicle-to-vehicle crash test was conducted to replicate similar intrusion
Occupant Safety systems are usually developed using anthropomorphic test devices (ATDs), such as the Hybrid III, THOR-50M, ES-2, and WorldSID. However, in compliance with NCAP and regulatory guidelines, these ATDs are designed for specific crash scenarios, typically frontal and side impacts involving upright occupants. As vehicles evolve (e.g., autonomous layouts, diverse occupant populations), ATDs are proving increasingly inadequate for capturing real-world injury mechanisms. This has led to the adoption of computational Human Body Models (HBMs), such as the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS), which offer superior anatomical fidelity, variable anthropometry, active muscle behaviour modelling, and improved postural flexibility. HBMs can predict internal injuries that ATDs cannot, making them valuable tools for future vehicle safety development. This study uses a sled CAE simulation environment to analyze the kinematics of the HBMs
One of the biggest goals for companies in the field of artificial intelligence (AI) is developing “agentic” systems. These metaphorical agents can perform tasks without a guiding human hand. This parallels the goals of the emerging urban air mobility industry, which hopes to bring autonomous flying vehicles to cities around the world. One company wants to do both and got a head start with some help from NASA.
In an era where technology increasingly merges with healthcare to enhance patient outcomes, a groundbreaking study conducted by Fuyang Yu and his colleagues introduces an innovative approach to lower limb rehabilitation. Their research, published in Cyborg Bionic Systems, outlines the development of a lower limb rehabilitation robot designed to significantly improve the safety and effectiveness of gait training through a novel method based on human-robot interaction force measurement.
Innovators at the NASA Johnson Space Center have developed a soft, wearable, robotic upper limb exoskeleton garment designed to actively control the shoulder and elbow, both positioning the limb in specific orientations and commanding the limb through desired motions. The invention was developed to provide effective upper extremity motor rehabilitation for patients with neurological impairments (e.g., traumatic brain injury, stroke).
Image sensors built into every smartphone and digital camera, distinguish colors like the human eye. In our retinas, individual cone cells recognize red, green and blue (RGB). In image sensors, individual pixels absorb the corresponding wavelengths and convert them into electrical signals.
A team of engineers has developed a low-cost, durable, highly-sensitive robotic ‘skin’ that can be added to robotic hands like a glove, enabling robots to detect information about their surroundings in a way that’s similar to humans.
The return to Earth is a rough ride for astronauts, from the violent turbulence of atmospheric entry to a jarring landing. Hitting the ground in a Soyuz capsule is the equivalent of driving a car backward into a brick wall at 20 mph, and it’s resulting in more head and neck injuries than NASA computer models predicted. To collect more data, NASA’s Johnson Space Center in Houston commissioned a Small Business Innovation Research (SBIR) project to develop a wearable data recorder for astronaut spacesuits. One result, created by Diversified Technical Systems Inc. (DTS), is a miniature commercial device that now collects and transmits data for any application from airplane test flights to tracking high-value shipments.
Innovators at NASA Johnson Space Center have developed a programmable steering wheel called the Tri-Rotor, which allows an astronaut the ability to easily operate a vehicle on the surface of a planet or moon despite the limited dexterity of their spacesuit. This technology was originally conceived for the operation of a lunar terrain vehicle (LTV) to improve upon previous Apollo-era hand controllers. In re-evaluating the kinematics of the spacesuit, such as the rotatable wrist joint and the constant volume shoulder joint, engineers developed an enhanced and programmable hand controller that became the Tri-Rotor.
The effect of seat belt misuse and/or misrouting is important to consider because it can influence occupant kinematics, reduce restraint effectiveness, and increase injury risk. As new seatbelt technologies are introduced, it is important to understand the prevalence of seatbelt misuse. This type of information is scarce due to limitations in available field data coding, such as in NASS-CDS and FARS. One explanation may be partially due to assessment complexity in identifying misuse and/or misrouting. An objective of this study was to first identify types of lap-shoulder belt misuse/misrouting and associated injury patterns from a literature review. Nine belt misuse/misrouting scenarios were identified including shoulder belt only, lap belt only, or shoulder belt under the arm, for example, while belt misrouting included lap belt on the abdomen, shoulder belt above the breasts, or shoulder belt on the neck. Next, the literature review identified various methods used to assess misuse
Items per page:
50
1 – 50 of 3384