Browse Topic: Nervous system
The wealth of information provided by our senses that allows our brain to navigate the world around us is remarkable. Touch, smell, hearing, and a strong sense of balance are crucial to making it through what to us seem like easy environments such as a relaxing hike on a weekend morning.
There are some paradoxical keys to NVH engineering success that are not taught in engineering schools. This paper will describe these in detail and provide examples to add context. The first unexpected key is that a good generalist makes a better expert. The more you understand the complete product development process, and the better contacts you have throughout the product development organization, the easier it will be for you to find cost effective solutions to your specific issues. Next, you need to know your customers, and that means both internal and external customers. If you work for a supplier, it means knowing original equipment manufacturer (OEM) and end user customers. The more you understand the customers’ needs, the better you can address them and make your product stand out. Another key is to try to turn a crazy idea into something practical. Sometimes you might find a completely insane solution to your problem, such as making a major component out of solid gold. If you
A conductive ink can be printed directly on the surface of a patient’s head and measure their brainwaves. These e-tattoos serve as the sensors for electroencephalography (EEG), a medical test that measures the brain’s electrical activity. EEG can help diagnose and monitor brain tumors, sleep disorders and other brain issues.
With over 15,000 products, Boston Scientific is a market leader in pacemakers, defibrillators, monitoring equipment, spinal and brain stimulation, stents, catheters, and ablation devices. On one recent cardiac monitoring battery component, the company had an application running year-round on multiple mills, rectangular in shape, consisting of multiple milling operations per part, requiring an operator per mill at all times. Both Mill operations consist of multi-part fixtures as the process involved running Mill OP-1, light hand deburring and prepping the parts for Mill OP-2 fixture & process, following manual deburring step. The overall process was running around seven minutes per part.
Two years ago, a medical professional approached scientists at the University of Tabriz in Iran with an interesting problem: Patients were having headaches after pacemaker implants. Working together to investigate, they began to wonder if the underlying issue is the materials used in the pacemakers.
The development of neural networks to create artificial intelligence in computers was originally inspired by how biological systems work. These ‘neuromorphic’ networks, however, run on hardware that looks nothing like a biological brain, which limits performance. Now, researchers from Osaka University and Hokkaido University plan to change this by creating neuromorphic ‘wetware.’
Wearable devices like smartwatches and fitness trackers interact with parts of our bodies to measure and learn from internal processes, such as our heart rate or sleep stages. Now, MIT researchers have developed wearable devices that may be able to perform similar functions for individual cells inside the body.
Researchers have developed a fully embedded wireless brain neural signal recorder. The device was created by Prof. Jang Kyung-in of the department of robotics and mechanical electronics at DGIST in collaboration with a research team led by Lee Young-jeon of the Korea Research Institute of Bioscience & Biotechnology.
Brain-machine interfaces enable direct communication between a brain’s electrical activity and an external device such as a computer or a robotic limb that allows people to control machines using their thoughts. Researchers have developed a novel biohybrid neuroprosthetic research platform comprised of a dexterous artificial hand electrically interfaced with biological neural networks.
University of Utah Salt Lake City, UT
A thin film that combines an electrode grid and LEDs can both track and produce a visual representation of the brain’s activity in real time. The device is designed to provide neurosurgeons visual information about a patient’s brain to monitor brain states during surgical interventions to remove brain lesions including tumors and epileptic tissue.
The industrial internet of things (IIoT) is the nervous system in manufacturing facilities worldwide, with programmable logic controllers (PLCs) serving as its vital synapses. This digital neural network is transforming isolated machines into interconnected ecosystems of unprecedented intelligence and efficiency. PLCs have evolved from simple control devices into sophisticated nodes in a vast, responsive network.
Neurostimulators, also known as brain pacemakers, send electrical impulses to specific areas of the brain via special electrodes. It is estimated that some 200,000 people worldwide are now benefiting from this technology, including those who suffer from Parkinson’s disease or from pathological muscle spasms. According to Mehmet Fatih Yanik, professor of neurotechnology at ETH Zurich, further research will greatly expand the potential applications: instead of using them exclusively to stimulate the brain, the electrodes can also be used to precisely record brain activity and analyze it for anomalies associated with neurological or psychiatric disorders. In a second step, it would be conceivable in future to treat these anomalies and disorders using electrical impulses.
A research team at RCSI University of Medicine and Health Sciences has developed a new implant that conveys electrical signals and may have the potential to encourage nerve cell (neuron) repair after spinal cord injury.
A research team at The University of Texas at Austin created a noninvasive electroencephalogram (EEG) sensor that was installed in a Meta VR headset that can be worn comfortably for long periods. The EEG measures the brain’s electrical activity during the immersive VR interactions.
Researchers have created a flexible paper-based sensor that operates like the human brain. They fabricated a photo-electronic artificial synapse device composed of gold electrodes on top of a 10 μm transparent film consisting of zinc oxide (ZnO) nanoparticles and cellulose nanofibers (CNFs).
In a study published in Advanced Materials, researchers Pietro Veglianese, Valeria Veneruso and Emilia Petillo from Istituto di Ricerche Farmacologiche Mario Negri IRCCS in collaboration with Filippo Rossi of the Politecnico di Milano have demonstrated that an innovative nanovector (nanogel), which they developed, is able to deliver anti-inflammatory drugs in a targeted manner into glial cells actively involved in the evolution of spinal cord injury, a condition that leads to paraplegia or quadriplegia.
On a cold, sunny day, you’re driving on a rural road, surrounded by snow-covered fields. In an instant, your eyes process the scene, picking out individual objects to focus on — a stop sign, a barn — while the rest of the scene blurs in the periphery. Your brain stores the focused and blurred images as a memory that can be pictured in your mind later, while sitting at your desk.
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world. Although DAMAGE correlates well with MPS in the human brain model across
A neural implant provides information about activity deep inside the brain while sitting on its surface. The implant is made up of a thin, transparent, and flexible polymer strip that is packed with a dense array of graphene electrodes. The technology, tested in transgenic mice, brings the researchers a step closer to building a minimally invasive brain-computer interface (BCI) that provides high-resolution data about deep neural activity by using recordings from the brain surface.
An assistive planar robot includes a cutting-edge closed-loop feedback system to monitor the muscle and brain activity of the user in order to trigger the execution of reach and grab in an adaptive way.
Researchers have designed a lightweight helmet with tiny LEGO-size sensors that scan the brain while a person moves. The helmet is the first of its kind to accurately record magnetic fields generated by brain activity while people are in motion. This advance could make it easier to conduct brain scans in young children and individuals with neurological disorders who can’t always remain still in conventional scanners.
Researchers have laid the groundwork for a soft robotic tool and control system that could grant surgeons an unprecedented degree of maneuverability within the brain. A recent study demonstrates that the new system is both intuitive and highly accurate. The early results suggest that, with further development, the robot could one day speed up and improve the efficacy of minimally invasive surgeries for life-threatening brain aneurysms and other serious conditions.
Researchers have laid the groundwork for a soft robotic tool and control system that could grant surgeons an unprecedented degree of maneuverability within the brain. A recent study demonstrates that the new system is both intuitive and highly accurate. The early results suggest that, with further development, the robot could one day speed up and improve the efficacy of minimally invasive surgeries for life-threatening brain aneurysms and other serious conditions.
Imagine grasping a heavy object, like a pipe wrench, with one hand. You would likely grab the wrench using your entire fingers, not just your fingertips. Sensory receptors in your skin, which run along the entire length of each finger, would send information to your brain about the tool you are grasping.
Eighteen research posters were prepared and presented by student authors at the 18th Annual Injury Biomechanics Symposium. The posters covered a wide breadth of works-in-progress and recently completed projects. Topics included a variety of body regions and injury scenarios such as: Head: Defining the mass, center of mass, and anatomical coordinate system of the pig head and brain; the influence of friction on oblique helmet testing; validation of an in-ear sensor for measuring head impact exposure in American football Neck and spine: Design of paramedic mannequin neck informed by adult passive neck stiffness and range of motion data; identifying injury from flexion-compression loading of porcine lumbar intervertebral disc Thorax: Tensile material properties of costal cartilage perichondrium; finite element models of both an ovine thorax and adipose tissue for high-rate non-penetrating blunt impact Pelvis: Injurious pelvis deformation in high-speed rear-facing frontal impacts Lower
Ultrafine particles, in particular solid sub-100 nm particles pose high risks to human health due to their high lung deposition efficiency, translocation to all organs including the brain and their harmful chemical composition; due to dense traffic, the population in urban environments is exposed to high concentrations of those toxic air contaminants, despite these facts, they are still widely neglected. Therefore, the EU-Commission set up a program for clean and competitive solutions for different problem areas which are regarded to be hotspots of such particles. HORIZON AeroSolfd is an EU project, co-funded by Switzerland that will deliver affordable, adaptable, and sustainable retrofit solutions to reduce exhaust tailpipe emissions from petrol engines, brake emissions and pollution in semi-closed environments. VERT, a Swiss based international industry organization, has a long research history in the field of nanoparticle filtration and it is in charge of reducing tailpipe emissions
Stroke survivors who had ceased to benefit from conventional rehabilitation gained clinically significant arm movement and control by using an external robotic device powered by the patients’ own brains.
A new project at Aalto University is developing techniques that will enable immobilized patients to control devices using their brain activity. The project builds on the multi-locus transcranial magnetic stimulation (mTMS) technology developed at Aalto, adapting it into a brain–computer interface (BCI) that can help patients with neurological conditions.
Scientists have developed electrode arrays that can be funneled through a small hole in the skull and deployed over a relatively large surface over the brain’s cortex. The technology may be particularly useful for providing minimally invasive solutions for epileptic patients.
Sweat contains biomarkers that help doctors make health diagnoses. Wearable sensors can be used to monitor a person’s perspiration rate and provide information about the skin, nervous system activity, and underlying health conditions. But not all sweat is created equal, and some cannot be measured with current sensors. A newly developed superhydrophobic biosensor could be used as a diagnostic tool to detect such types of sweat.
A team of Cornell University researchers has laid the foundation for developing a new class of untethered soft robots that can achieve more complex motions with less reliance on explicit computation. By taking advantage of viscosity — the very thing that previously stymied the movement of soft robots — the new approach offloads control of a soft robot’s cognitive capability from the “brain” onto the body using the robot’s mechanical reflexes and ability to leverage its environment.
Some 30,000 people in the United States are affected by amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, a neurodegenerative condition that damages cells in the brain and spinal cord necessary for movement.
Researchers have combined low power chip design, machine learning algorithms, and soft implantable electrodes to produce a neural interface that can identify and suppress symptoms of various neurological disorders.
A new string-like implant can monitor fluctuations in brain chemicals, like a fitness tracker for the brain.
NASA asks hard questions: What’s it like on the Moon? Has there been life on Mars? How did the first stars form? Finding these big answers often means first solving a series of smaller but equally vexing questions. For example, how does prolonged weightlessness change the way the brain controls muscles? How does the brain control muscles? Before sending humans on the long journey to Mars, NASA wants to better understand the effects the trip will have on astronauts. Now a company that helped the space agency try to solve these questions is helping others find answers as exciting as any NASA discovery.
Items per page:
50
1 – 50 of 683