Browse Topic: Fluids and secretions

Items (679)
A wearable health monitor can reliably measure levels of important biochemicals in sweat during physical exercise. The 3D-printed monitor could someday provide a simple and non-invasive way to track health conditions and diagnose common diseases, such as diabetes, gout, kidney disease or heart disease
A unique wristwatch contains multiple modules, including a sensor array, a microfluidic chip, signal processing, and a data display system to monitor chemicals in human sweat. It can continuously and accurately monitor the levels of potassium (K+), sodium (Na+), and calcium (Ca2+) ions
Scientists at Osaka University, in cooperation with Joanneum Research (Weiz, Austria), have introduced wireless health monitoring patches that use embedded piezoelectric nanogenerators to power themselves with harvested biomechanical energy. This work may lead to new autonomous health sensors as well as battery-less wearable electronic devices
For decades, people with diabetes have relied on finger pricks to withdraw blood or adhesive microneedles to measure and manage their glucose levels. In addition to being painful, these methods can cause itching, inflammation and infection
Determining occupant kinematics in a vehicle crash is essential when understanding injury mechanisms and assessing restraint performance. Identifying contact marks is key to the process. This study was conducted to assess the ability to photodocument the various fluids on different vehicle interior component types and colors with and without the use of ultraviolet (UV) lights. Biological (blood, saliva, sweat and skin), consumable and chemical fluids were applied to vehicle interior components, such as seatbelt webbing, seat and airbag fabrics, roof liner and leather steering wheel. The samples were photodocumented with natural light and UV light (365 nm) exposure immediately after surface application and again 14 days later. The review of the photos indicated that fabric type and color were important factors. The fluids deposits were better visualized on non-porous than porous materials. For example, blood was better documented on curtain airbags than side or driver airbags. Blood and
Boysen, KevinParenteau, ChantalToomey, DanielGregg, Richard H.
Tubing for wound draining is an essential medical component used to manage the drainage of fluids from surgical or traumatic wounds. This tubing is commonly employed after surgical procedures to facilitate the removal of excess fluids (such as blood or serous fluid) from the wound site, or in traumatic Injuries where there is a need to control and remove fluids to aid in the healing process. Other uses include draining abscesses or fluid collections, helping to prevent infection, and promote faster healing, or to manage fluid accumulation in body cavities, preventing complications like seromas or hematomas. By removing excess fluids, tubing promotes a cleaner wound environment, which is conducive to faster healing
Monitoring the success of surgery on blood vessels is challenging, as the first sign of trouble often comes too late. By that time, the patient often needs additional surgery that carries risks similar to the original procedure. A new device could make it easier for doctors to monitor the success of blood vessel surgery
Researchers have invented sensor-based noninvasive medical devices to make the monitoring and treatment of certain physiological and psychological conditions timelier and more precise
Researchers have developed an integrated microfluidic chip (BSI-AST chip) for rapid AST from positive blood cultures (PBCs). Using the chip, the process from bacteria extraction to getting AST results takes less than 3.5 hours, thus promising to be a powerful new tool in managing bloodstream infections
Made with a laser-modified graphene nanocomposite material, a wearable device can detect specific glucose levels in sweat for three weeks while simultaneously monitoring body temperature and pH levels
A Northwestern University research team has developed a revolutionary transistor that is expected be ideal for lightweight, flexible, high-performance bioelectronics. The electrochemical transistor is compatible with blood and water and can amplify important signals
Our brains contain an intricate network of arteries that carry blood throughout the organ along winding paths. For neurosurgeons, following these paths with a wire — which is just a third of a millimeter in diameter and enters the body through the femoral artery — to reach an obstructed blood vessel can be tricky. For instance, if they want to point the wire in a different direction, they often have to pull the instrument out and then reinsert it, lengthening surgery times and increasing the risk of complications
Engineers at the University of California San Diego developed a soft and stretchy ultrasound patch that can be worn on the skin to monitor blood flow through major arteries and veins deep inside a person’s body
Researchers have reported a sustainable, insoluble, and chiral photonic cellulose nanocrystal patch for calcium ion (Ca2+) sensing in sweat
A Rutgers-led team of researchers has developed a microchip that can measure stress hormones in real time from a drop of blood. The study appears in the journal Science Advances
Wearable wireless biosensors are an integral part of digital healthcare and monitoring. Commonly used chipless resonant antenna-based biosensors are simple and affordable but have limited applicability due to their low sensitivity. Now, researchers from Japan have developed a novel, wireless, parity–time symmetry-based bioresonator that can detect minute concentrations of tear glucose and blood lactate. This highly sensitive, tunable, and robust bioresonator has the potential to have a great impact on personalized health monitoring and digitized healthcare systems
Sweat contains biomarkers that help doctors make health diagnoses. Wearable sensors can be used to monitor a person’s perspiration rate and provide information about the skin, nervous system activity, and underlying health conditions. But not all sweat is created equal, and some cannot be measured with current sensors. A newly developed superhydrophobic biosensor could be used as a diagnostic tool to detect such types of sweat
An electrochemical sensor detects Parkinson’s disease at different stages. The device was fabricated using an ordinary 3D printer and proved capable of early diagnosis, also serving as a model for the identification of other diseases. The sensor rapidly indicates the level of the protein PARK7/DJ-1 in human blood and synthetic cerebrospinal fluid. The molecule is associated with Parkinson’s at levels below 40 μg/L
Imagine a T-shirt that could analyze sweat, potentially alerting the wearer to any health abnormalities. Well, this is now closer to reality thanks to a research group’s recent innovation. Fibers and fabrics are ever present in our daily lives, and their origins are intertwined with the history of human civilization. While progress has been made, much remains unchanged for fibers and fabrics
Researchers have developed a portable sensor made of simple materials to detect heavy metals in sweat, which is easily sampled. The sensor is simple in terms of the materials used to make it and the stages of its production. The base of the device is polyethylene terephthalate (PET), on top of which is a conductive flexible copper adhesive tape with the sensor printed on it, and a protective layer of nail varnish or spray. The exposed copper is removed by immersion in ferric chloride solution for 20 minutes, followed by washing in distilled water to promote the necessary corrosion
Cardiovascular diseases account for 32 percent of global deaths. Myocardial infarction, or heart attacks, play a large part in heart diseases and the necrosis of cardiac tissue after blood supply is decreased or stopped
There are about 64 million cases of heart failure worldwide. According to the American Heart Association, 6.2 million adults in the United States have heart failure and that number is estimated to increase to 8 million by 2030. Heart failure is a progressive clinical syndrome characterized by a structural abnormality of the heart, in which the heart is unable to pump sufficient blood to meet the body’s requirements
Researchers in Japan have developed the first wearable devices to precisely monitor jaundice, a yellowing of the skin caused by elevated bilirubin levels in the blood that can cause severe medical conditions in newborns. Jaundice can be treated easily by irradiating the infant with blue light that breaks bilirubin down to be excreted through urine. The treatment itself, however, can disrupt bonding time, cause dehydration, and increase the risks of allergic diseases. Neonatal jaundice is one of the leading causes of death and brain damage in infants in low- and middle-income countries
Researchers at the University of Bath working in collaboration with industrial partner, Integrated Graphene, have developed a new sensing technique based on graphene foam for the detection of glucose levels in the blood. Since it is a chemical sensor instead of being enzyme-based, the new technology is robust, has a long shelf-life and can be tuned to detect lower glucose concentrations than current systems
Scientists used photoelectrochemical measurement and x-ray photoelectron spectroscopy to clarify the source of titanium’s biocompatibility when implanted into the body, as with hip replacements and dental implants. They find that its reactivity with the correct ions in the extracellular fluid allows the body to recognize it. This work may lead to a new generation of medical implants that last longer
Engineers have created a flexible electronic sensing patch that can be sewn into clothing to analyze sweat for multiple markers. The patch could be used to diagnose and monitor acute and chronic health conditions or to monitor health during athletic or workplace performance. The device consists of special sensing threads, flexible electronic components, and wireless connectivity for real-time data acquisition, storage, and processing
Inspired by the sticky substance that barnacles use to cling to rocks, engineers have designed a strong, biocompatible glue that can seal injured tissues and stop bleeding. The new paste can adhere to surfaces even when they are covered with blood and can form a tight seal within about 15 seconds of application
Wearable electronic devices and biosensors are used for health monitoring but it has been difficult to find convenient power sources for them. Scientists have now developed and tested a wearable biofuel cell array that generates electric power from the lactate in the wearer's sweat, opening doors to electronic health monitoring powered by nothing but bodily fluids
Engineers have designed a small tabletop device that can detect SARS-CoV-2 from a saliva sample in about an hour. The diagnostic is just as accurate as the PCR tests now used. The device can also be used to detect specific viral mutations linked to some of the SARS-CoV-2 variants that are now circulating. This result can also be obtained within an hour, potentially making it much easier to track different variants of the virus, especially in regions that don’t have access to genetic sequencing facilities
The Portable EnGineered Analytic Sensor with aUtomated Sampling (PEGASUS) is a miniaturized waveguide-based optical sensor that can detect toxins, bacterial signatures, viral signatures, biothreats, white powders, and more from samples such as blood, water, food, and animal samples
Items per page:
1 – 50 of 679