Browse Topic: Diseases
A thin film that combines an electrode grid and LEDs can both track and produce a visual representation of the brain’s activity in real time. The device is designed to provide neurosurgeons visual information about a patient’s brain to monitor brain states during surgical interventions to remove brain lesions including tumors and epileptic tissue
The 22nd annual Create the Future Design Contest for engineers, students, and entrepreneurs worldwide, sponsored by COMSOL, Inc., and Mouser Electronics, drew innovative product ideas from engineers and students more than 55 countries from around the world. The Medical category itself received many innovative entries from 17 countries. Analog Devices and Intel were supporting sponsors, and Zeus sponsored the Medical category. The contest, which was established in 2002, recognizes and rewards engineering innovations that benefit humanity, the environment, and the economy
Sam Currier Priyan Weerrappuli Extrinsic Immunity, West Bloomfield, MI
Hamdi Torun Arda Deniz Yalcinkaya Gunhan Dundar Ozgue Kaya Northumbria University, Newcastle Upon Tyne, UK
Nagoya University Nagoya, Japan
Sam Currier and Priyan Weerrappuli University of Michigan West Bloomfield, MI
The healthcare industry is evolving and facing two major challenges. First, the rise of chronic diseases. By 2050, chronic diseases such as cardiovascular diseases, cancer, diabetes, and respiratory illnesses could account for 86 percent of the 90 million deaths each year, according to the World Health Organization (WHO) in its 2023 World Health Statistics report. This increase is due to factors such as an aging population, lifestyle changes, and risk factors like high blood pressure, high blood sugar, and air pollution. Consequently, this creates a second challenge: added strain on healthcare resources. To address this, WHO recommends tackling the root causes of chronic diseases, promoting healthier behaviors, and ensuring universal access to healthcare resources
Dopamine, a neurotransmitter in our brains, not only regulates our emotions but also serves as a biomarker for the screening of certain cancers and other neurological conditions
Researchers have now developed the first hydrogel implant designed for use in fallopian tubes. This innovation performs two functions: one is to act as a contraceptive, the other is to prevent the recipient from developing endometriosis in the first place or to halt the spread if they do
Detecting diseases early requires the rapid, continuous and convenient monitoring of vital biomarkers. Researchers from the National University of Singapore (NUS) and the Agency for Science, Technology and Research (A*STAR) have developed a novel sensor that enables the continuous, real-time detection of solid-state epidermal biomarkers (SEB), a new category of health indicators
Small wearable or implantable electronics could help monitor our health, diagnose diseases, and provide opportunities for improved, autonomous treatments. But to do this without aggravating or damaging the cells around them, these electronics will need to not only bend and stretch with our tissues as they move, but also be soft enough that they will not scratch and damage tissues
Nanosensors are transforming the field of disease detection by offering unprecedented sensitivity, precision, and speed in identifying biomarkers associated with various health conditions. These tiny sensors, often built at the molecular or atomic scale, can detect minute changes in biological samples, enabling the early diagnosis of diseases such as cancer, infectious diseases, and neurological disorders
Detecting diseases early requires the rapid, continuous and convenient monitoring of vital biomarkers. Researchers from the National University of Singapore (NUS) and the Agency for Science, Technology and Research (A*STAR) have developed a novel sensor that enables the continuous, and real-time detection of solid-state epidermal bio-markers (SEB), a new category of health indicators
Neurostimulators, also known as brain pacemakers, send electrical impulses to specific areas of the brain via special electrodes. It is estimated that some 200,000 people worldwide are now benefiting from this technology, including those who suffer from Parkinson’s disease or from pathological muscle spasms. According to Mehmet Fatih Yanik, professor of neurotechnology at ETH Zurich, further research will greatly expand the potential applications: instead of using them exclusively to stimulate the brain, the electrodes can also be used to precisely record brain activity and analyze it for anomalies associated with neurological or psychiatric disorders. In a second step, it would be conceivable in future to treat these anomalies and disorders using electrical impulses
In the realm of ear health, accurate diagnosis is crucial for effective treatment, especially when dealing with conditions that can lead to hearing loss. Traditionally, otolaryngologists have relied on the otoscope, a device that provides a limited view of the eardrum’s surface. This conventional tool, while useful, has its limitations, particularly when the tympanic membrane (TM) is opaque due to disease
Improvements in trace biological molecule detection can have significant impact on healthcare, food safety, and environmental safety industries. Detection of trace biological molecules can be critical to the diagnosis of early onset of diseases or infections. Researchers at NASA Ames Research Center developed an electrochemical, bead-based biological sensor based on Enzyme-Linked Immunosorbent Assay (ELISA) combining a magnetic concentration of signaling molecules and electrochemical amplification using wafer-scale fabrication of microelectrode arrays
Communicating when traumatic brain injury, stroke, or disease has made speech impossible can be daunting. But specialized eye-tracking technology uses eye movement to enable people living with disabilities to connect one-on-one, over the phone, or via the internet
A wearable health monitor can reliably measure levels of important biochemicals in sweat during physical exercise. The 3D-printed monitor could someday provide a simple and non-invasive way to track health conditions and diagnose common diseases, such as diabetes, gout, kidney disease or heart disease
Tracking the spread of COVID-19 through communities provided essential data for public-health officials and individuals to make informed decisions during the pandemic. One method that proved useful was collecting, concentrating, and testing municipal wastewater for the presence of the virus that caused the illness. As this testing ramped up, a technology developed for NASA to identify pathogens inside spacecraft saved time and produced dependable results on Earth
Understanding heart function and disease, as well as testing new drugs for heart conditions, has long been a complex and time-consuming task. A promising way to study disease and test new drugs is to use cellular and engineered tissue models in a dish, but existing methods to study heart cell contraction and calcium handling require a good deal of manual work, are prone to errors, and need expensive specialized equipment
Researchers at NASA Johnson Space Center have developed the Portable Knee Dynamometer, a device that enables quadricep and hamstring strength assessment, rehabilitation, and exercise capabilities for a user outside of a traditional clinical setting. Clinical orthopedic dynamometers for high-strength muscle groups tend to be large, heavy, and typically not readily transportable. NASA’s novel device can be easily carried to a patient who may be homebound or otherwise unable to travel to a clinic due to surgery, injury, or pathology
An artificial intelligence (AI) tool developed by researchers at the University of Rochester can help people with Parkinson’s disease remotely assess the severity of their symptoms within minutes. A study in npj Digital Medicine describes the new tool, which has users tap their fingers 10 times in front of a webcam to assess motor performance on a scale of 0-4
A new device platform allows for smaller wireless light sources to be placed within the human body. Research indicates that such light sources will enable novel, minimally invasive means of treating and better understanding diseases which currently require the implantation of bulky devices
Drug-delivery researchers have developed a device with the potential to improve gene therapy for patients with inherited lung diseases such as cystic fibrosis. In cell culture and mouse models, scientists demonstrated a novel technique for the aerosolization of inhalable nanoparticles that can be used to carry messenger RNA, the technology underpinning COVID-19 vaccines, to patients’ lungs
Researchers have developed a method for detecting malignant melanoma. A new type of patch equipped with microneedles can identify the biomarker tyrosinase directly in the skin
The global medical device market offers opportunities for innovation-driven growth. Demand for smart, new lifesaving and life-enhancing technologies is perhaps stronger than ever. Manufacturers around the world looking to capitalize on this eager global market face a long list of challenges — some big, some small. Supply-chain disruptions, labor shortages, rising materials costs, and other headwinds are leading to delays in both engineering and manufacturing processes. Despite these challenges, the world demands medical device manufacturers’ best. A surging geriatric population, implications of a global pandemic, and the mortality rates for heart disease, cancer, obesity, and other conditions are all contributing to strong and sustained market demand. One study predicts a compound annual growth (CAGR) of 5.4 percent will push global sales of medical devices to nearly $658 billion (USD) by 2028. Of course, the road to success will be littered with familiar roadblocks — and some that are
A small ultrasound sticker can monitor the stiffness of organs deep inside the body. The sticker, about the size of a postage stamp, can be worn on the skin and is designed to pick up on signs of disease, such as liver and kidney failure and the progression of solid tumors
For decades, people with diabetes have relied on finger pricks to withdraw blood or adhesive microneedles to measure and manage their glucose levels. In addition to being painful, these methods can cause itching, inflammation and infection
Developed by engineers at the University of Bath, the prototype LoCKAmp device uses innovative Lab-on-a-Chip technology and has been proven to provide rapid and low-cost detection of COVID-19 from nasal swabs. The research team said the technology could easily be adapted to detect other pathogens such as bacteria — or even conditions like cancer
Avoiding lethal outcomes from sepsis — a severe, life-threatening reaction to infection within the body — requires a rapid, accurate diagnosis. Historically, it has been a challenge for healthcare providers to beat the clock and intervene with life-saving care. This has contributed to the disease’s lethality, making sepsis the leading cause of hospital-related deaths in the United States
University of North Carolina at Chapel Hill scientists created a new drug-delivery system, called the Spatiotemporal On-Demand Patch (SOP), which can receive commands wirelessly from a smartphone or computer to schedule and trigger the release of drugs from individual microneedles. The patch’s thin, soft platform resembles a Band-Aid and was designed to enhance user comfort and convenience, since wearability is a crucial factor for chronically ill patients
Researchers have created a new technique to treat Type 1 diabetes: implanting a device inside a pocket under the skin that can secrete insulin while avoiding the immunosuppression that typically stymies management of the disease. The approach would offer an easier, long-term, and less-invasive alternative to insulin injections or traditional transplants that require immunosuppression
Many surgeries today are performed via minimally invasive procedures, in which a small incision is made, and miniature cameras and surgical tools are threaded through the body to remove tumors and repair damaged tissues and organs. The process results in less pain and shorter recovery times compared to open surgery
Freezing is one of the most common and debilitating symptoms of Parkinson’s disease, a neurodegenerative disorder that affects more than 9 million people worldwide. When individuals with Parkinson’s disease freeze, they suddenly lose the ability to move their feet, often mid-stride, resulting in a series of staccato stutter steps that get shorter until the person stops altogether. These episodes are one of the biggest contributors to falls among people living with Parkinson’s disease
ECGs help manage cardiovascular disease — which affects around 4 million Australians and kills more than 100 people every day — by alerting users to seek medical care
An international team of researchers has developed a handheld, noninvasive device that can detect biomarkers for Alzheimer’s and Parkinson’s diseases. The biosensor can also transmit the results wirelessly to a laptop or smartphone
Scientists used patient stem cells and 3D bioprinting to produce eye tissue that will advance understanding of the mechanisms of blinding diseases. The research team from the National Eye Institute (NEI), part of the National Institutes of Health, printed a combination of cells that form the outer blood-retina barrier — eye tissue that supports the retina’s light-sensing photoreceptors. The technique provides a theoretically unlimited supply of patient-derived tissue to study degenerative retinal diseases such as age-related macular degeneration (AMD
Advances in healthcare and medical treatments have led to longer life expectancies in many parts of the world. As people receive better healthcare and management of other health conditions, they are more likely to reach an age where neurodegenerative diseases become a greater risk. Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), are complex and can affect various aspects of a person's cognitive, motor, and sensory functions
Patients with melanoma, the most concerning form of skin cancer in which pigment-producing cells start to grow out of control, can benefit from existing immunotherapies, but by far not all of them do. More than 50 percent of patients do not respond to current immunotherapy drugs and among those that initially respond, many become resistant to the drugs’ effects. Thus, besides developing more effective immunotherapies, doctors need to be able to determine which patients respond well at the start of treatments and, which ones keep or stop responding in order to make the best treatment decisions
Neuroscientists and neurosurgeons at the EPFL/CHUV/UNIL, Inserm, and the University of Bordeaux have designed a neuroprosthetic intended to correct walking disorders associated with Parkinson's disease. In a study published in Nature Medicine, the scientists set out in detail the process of developing the neuroprosthetic that has allowed a first patient with Parkinson's to be treated, enabling him to walk comfortably, confidently and without falling
A microscale device for implantation in the eye presents new opportunities for cell-based treatment of diabetes and other diseases. The 3D printed device aims to encapsulate insulin-producing pancreatic cells and electronic sensors
Processes and structures within the body that are normally hidden from the eye can be made visible through medical imaging. Scientists use imaging to investigate the complex functions of cells and organs and search for ways to better detect and treat diseases. In everyday medical practice, images from the body help physicians diagnose diseases and monitor whether therapies are working. To be able to depict specific processes in the body, researchers are developing new techniques for labelling cells or molecules so that they emit signals that can be detected outside the body and converted into meaningful images. A research team at the University of Münster has now adapted a cell labelling strategy currently used in microscopy — the so-called SNAP-tag technology — for use in whole-body imaging with positron emission tomography (PET
Research teams have created an entirely new kind of drug-delivery system to give doctors the ability to treat cancer in a more targeted way. The system employs drugs that are activated by ultrasound — and only right where they are needed in the body
Early warning signs of diseases caused by dysfunctional levels of stress hormones could be spotted more easily thanks to a new wearable device developed by endocrine researchers. This is the first time it has been possible to measure changes to people’s stress hormones as they go about normal daily activities, across both day and night
Engineers at MIT and Caltech have demonstrated an ingestible sensor whose location can be monitored as it moves through the digestive tract, an advance that could help doctors more easily diagnose gastrointestinal motility disorders such as constipation, gastroesophageal reflux disease, and gastroparesis
Researchers from MIT Lincoln Laboratory and their collaborators at the Massachusetts General Hospital (MGH) Center for Ultrasound Research and Translation (CURT) have developed a new medical imaging device: the Noncontact Laser Ultrasound (NCLUS). This laser-based ultrasound system provides images of interior body features such as organs, fat, muscle, tendons, and blood vessels. The system also measures bone strength and may have the potential to track disease stages over time
For nearly three decades, Intuitive Surgical has been a leader in robotic-assisted surgical systems. The company is driven by creating a healthcare future that is less invasive and where diseases are identified early and treated quickly. As a mature company, Intuitive is focusing on adoption of its systems
Items per page:
50
1 – 50 of 966