Browse Topic: Medical equipment and supplies

Items (2,523)
This paper studies the effect of single vacancy defect on the fundamental frequency of carbon nanotube using finite element method. Cantilevered and bridged boundary conditions have been used for carbon nanotube with and without attached mass. There is less effect on the frequency of cantilevered structure due to presence of defect at center rather than its presence at other positions. Presence of defect near to fixed end shows more effect on fundamental frequency of bridged structure as opposed to other positions. Cantilevered structure with mass attached shows increase in effect due to presence of defect when mass ranges from 10-3 to 10-6 femtogram, while it seems to remain constant with further decrease in mass. This paper is mainly concerned about the overall effect of single vacancy defect at the different positions and with different parameters of carbon nanotube with and without attached mass on the frequency and frequency shift. Nano materials are playing a vital role in all
Kharche, GauravBhaskara Rao, LokavarapuB, SrivatsanBalakrishna Sriganth, PranavBiswas, Sayan
Wearable devices that use sensors to monitor biological signals can play an important role in health care. These devices provide valuable information that allows providers to predict, diagnose, and treat a variety of conditions while improving access to care and reducing costs.
Whether for vascular catheters or implantable devices, medical tubing must meet tough standards for flexibility, strength, and biocompatibility. That’s why more manufacturers are turning to thermoplastic polyurethanes (TPUs) that strike the ideal balance between these key properties, making them an excellent choice for high-performance medical tubing. Unlocking the best that TPUs have to offer means optimizing the extrusion process. This article looks at why TPUs are a top pick, the common obstacles in extrusion, and the ways manufacturers can fine-tune their process to get the most out of different grades.
Researchers have successfully demonstrated the four-dimensional (4D) printing of shape memory polymers in submicron dimensions that are comparable to the wavelength of visible light. 4D printing enables 3D-printed structures to change their configurations over time and is used in a variety of fields such as soft robotics, flexible electronics, and medical devices.
The global medical device market is projected to reach a value of $656 billion USD by 2032 with a CAGR of 3 percent over the coming decade.1 The preceding decades of globalization and increased prosperity has provided advancement in both medical technology and access to advanced medical care for a greater proportion of the world’s population. Further, an aging population in North America, Europe, and parts of Asia will increase the need for healthcare-related services and medical devices in the coming decades. At present, the North America market continues to dominate the industry, accounting for approximately 43 percent of the market’s revenue share; however, markets in the Asia-Pacific region have the highest expected growth rates in the coming decades.1 Growth and innovation in the medical device market will be critical in the years to come.
When a physician injects a patient with medication from a glass vial, they want to know that the drug inside that vial is sterile and stable. That’s where Genesis Packaging Technologies comes in. Genesis Packaging Technologies, formally a division of the West Company, was founded in 1946. Today, Genesis is a one of the leaders in the science and technology of parenteral vial sealing and residual seal force testing.
This specification covers insecticides for use in disinsection of aircraft as required on international passenger flights.
AMS J Aircraft Maintenance Chemicals and Materials Committee
Electrosurgery has revolutionized the field of medicine, offering precise and efficient methods for tissue cutting, coagulation and ablation. With advancements in technology, new trends are emerging and pushing the boundaries of what’s possible in surgical interventions. Among these trends, pulsed field ablation (PFA) stands out as a promising technique with the potential to redefine electrosurgical procedures. In this blog, we’ll delve into the current trends in electrosurgery, with a special focus on pulsed field ablation.
Did you know that pythons initially hold onto their prey with their sharp, backward-curving teeth? Medical researchers have long been aware that these teeth are perfect for grasping soft tissue rather than cutting through it, but no one has yet been able to put this concept into surgical practice.
Scientists have developed an innovative wearable fabric that is flexible but can stiffen on demand. Developed through a combination of geometric design, 3D printing, and robotic control, the new technology, RoboFabric, can quickly be made into medical devices or soft robotics.
Researchers have shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.
A new bioink has been designed for engineering human skin constructs using norbornene-pullulan-based hydrogels. The researchers introduced a novel photocrosslinkable bioink designed for engineering human skin constructs, based on thiol-norbornene-pullulan (N-PLN) formulations combined with various crosslinkers.
When wounds happen, we want them to heal quickly and without complications, but sometimes infections and other complications prevent it. Chronic wounds are a significant health concern affecting tens of millions of Americans.
In the quest to develop lifelike materials to replace and repair human body parts, scientists face a formidable challenge: Real tissues are often both strong and stretchable and vary in shape and size.
Brain-machine interfaces (BMIs) have emerged as a promising solution for restoring communication and control to individuals with severe motor impairments. Traditionally, these systems have been bulky, power-intensive, and limited in their practical applications. Researchers at EPFL have developed the first high-performance, miniaturized brain-machine interface (MiBMI), offering an extremely small, low-power, highly accurate, and versatile solution.
Dopamine, a neurotransmitter in our brains, not only regulates our emotions but also serves as a biomarker for the screening of certain cancers and other neurological conditions.
Researchers have now developed the first hydrogel implant designed for use in fallopian tubes. This innovation performs two functions: one is to act as a contraceptive, the other is to prevent the recipient from developing endometriosis in the first place or to halt the spread if they do.
Advances in IoT and electronic technology are enabling more personalized, continuous medical care. People with medical conditions that require a high degree of monitoring and continuous medication infusion can now take advantage of wearable medicine injection devices to treat their problems. Wireless communication allows medical personnel to monitor and adjust the amount and flow rate of an individual’s medication. The small size of the injectors enables the individual to be active and not be burdened or limited by a line-powered instrument (see Figure 1).
Researchers have succeeded in adding finger straightening or extension to soft rehabilitation gloves through a novel foldable pouch actuator (FPA) without compromising the already existing functionality of finger bending or flexion.
November 20–21, 2024 Santa Clara Convention Center
Asha Parekh CEO and Cofounder Front Line Medical Technologies Ontario, Canada
A research team at RCSI University of Medicine and Health Sciences has developed a new implant that conveys electrical signals and may have the potential to encourage nerve cell (neuron) repair after spinal cord injury.
Borophene is more conductive, thinner, lighter, stronger, and more flexible than graphene, the 2D version of carbon. Now, researchers have made the material potentially more useful by imparting chirality — or handedness — on it, which could make for advanced sensors and implantable medical devices. The chirality, induced via a method never before used on borophene, enables the material to interact in unique ways with different biological units such as cells and protein precursors.
Silicone elastomers have become a vital material in the medical device industry due to their unique properties, including biocompatibility, durability and chemical inertness. Silicone materials are categorized based on their unvulcanized consistency, which significantly affects their processability and their physical properties. This article compares high consistency silicone rubbers (HCRs), liquid silicone rubbers (LSRs), and low consistency elastomers (LCEs), analyzing their characteristics and the implications in selecting each during different phases in the development of silicone medical devices.
Small wearable or implantable electronics could help monitor our health, diagnose diseases, and provide opportunities for improved, autonomous treatments. But to do this without aggravating or damaging the cells around them, these electronics will need to not only bend and stretch with our tissues as they move, but also be soft enough that they will not scratch and damage tissues.
September 25–26, 2024 Boston Convention and Exhibition Center, Boston, MA
In the medical device production environment, device packaging and sterilization is vital. The same level of rigorous quality controls and regulations that affect the devices themselves are also extended to their packaging. The mechanical and container closure integrity [CCI] evaluations of medical device packaging requires significant testing performed at multiple points throughout the commercialization and production processes.
Engineers at UC Berkeley have developed a new technique for making wearable sensors that enables medical researchers to prototype and test new designs much faster and at a far lower cost than existing methods.
For engineers working on soft robotics or wearable devices, keeping things light is a constant challenge: heavier materials require more energy to move around, and — in the case of wearables or prostheses — cause discomfort. Elastomers are synthetic polymers that can be manufactured with a range of mechanical properties, from stiff to stretchy, making them a popular material for such applications. But manufacturing elastomers that can be shaped into complex 3D structures that go from rigid to rubbery has been unfeasible until now.
Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team, led by Professor Shoji Takeuchi of the University of Tokyo, included special perforations in a robot face, which helped a layer of skin take hold. Their research could be useful in the cosmetics industry and to help train plastic surgeons.
Implants that steadily release the right dose of a drug directly to the target part of the body have been a major advance in drug delivery. However, they still face some key challenges, such as ensuring that the drug is released at a constant rate from the moment it is implanted and ensuring that the implant is soft and flexible enough to avoid tissue damage but tough enough not to rupture. One particular challenge is to avoid triggering the foreign body response, which is when the patient’s body encloses the implant in a tight capsule of tough connective tissue which can slow the drug’s release or prevent it from diffusing out.
Sustainability remains a dominant trend in packaging and processing, continuing to attract the attention of the life sciences industry and inspire its new initiatives. Although pharmaceutical and medical device manufacturers must prioritize patient safety and product protection, concerns about climate change, greenhouse gas (GHG) emissions, plastic waste, and pressure to move toward a circular economy are prompting a greater focus on improving the sustainability of their products and packaging.
In today’s landscape, sustainability has taken center stage. Technological advancements have made our world more connected than ever and companies everywhere, including those in the medical equipment industry, are focusing on how they can reduce their environmental impact.
Researchers have developed a method for detecting malignant melanoma. A new type of patch equipped with microneedles can identify the biomarker tyrosinase directly in the skin.
Daegu Gyeongbuk Institute of Science and Technology Daegu, Republic of Korea
As electronic medical device technology progresses, their internal printed circuit boards (PCBs) have undergone a transformative evolution to integrate a diverse array of materials. This evolution is driven by the need to fulfill stringent requirements for enhanced performance, compact size, and heightened reliability. However, the proliferation of materials poses a considerable challenge: finding cleaning solutions capable of efficiently removing contaminants without compromising the integrity of these delicate components.
A new device platform allows for smaller wireless light sources to be placed within the human body. Research indicates that such light sources will enable novel, minimally invasive means of treating and better understanding diseases which currently require the implantation of bulky devices.
Chalmers University of Technology Gothenburg, Sweden
Linear actuators, in particular, electromechanical linear actuators, have become integral components of modern medical devices because of their high precision, accuracy, and ability to deliver repeatable motion control. Patient comfort, positioning and mobility, robotic surgery, imaging equipment, infusion, and pumping are just a few of the applications where the use of linear actuators has revolutionized the way medical devices are designed, improving patient outcomes and enhancing the overall quality of care.
Items per page:
1 – 50 of 2523