Browse Topic: Medical equipment and supplies

Items (2,485)
In the medical device production environment, device packaging and sterilization is vital. The same level of rigorous quality controls and regulations that affect the devices themselves are also extended to their packaging. The mechanical and container closure integrity [CCI] evaluations of medical device packaging requires significant testing performed at multiple points throughout the commercialization and production processes
Engineers at UC Berkeley have developed a new technique for making wearable sensors that enables medical researchers to prototype and test new designs much faster and at a far lower cost than existing methods
For engineers working on soft robotics or wearable devices, keeping things light is a constant challenge: heavier materials require more energy to move around, and — in the case of wearables or prostheses — cause discomfort. Elastomers are synthetic polymers that can be manufactured with a range of mechanical properties, from stiff to stretchy, making them a popular material for such applications. But manufacturing elastomers that can be shaped into complex 3D structures that go from rigid to rubbery has been unfeasible until now
Sustainability remains a dominant trend in packaging and processing, continuing to attract the attention of the life sciences industry and inspire its new initiatives. Although pharmaceutical and medical device manufacturers must prioritize patient safety and product protection, concerns about climate change, greenhouse gas (GHG) emissions, plastic waste, and pressure to move toward a circular economy are prompting a greater focus on improving the sustainability of their products and packaging
In today’s landscape, sustainability has taken center stage. Technological advancements have made our world more connected than ever and companies everywhere, including those in the medical equipment industry, are focusing on how they can reduce their environmental impact
Implants that steadily release the right dose of a drug directly to the target part of the body have been a major advance in drug delivery. However, they still face some key challenges, such as ensuring that the drug is released at a constant rate from the moment it is implanted and ensuring that the implant is soft and flexible enough to avoid tissue damage but tough enough not to rupture. One particular challenge is to avoid triggering the foreign body response, which is when the patient’s body encloses the implant in a tight capsule of tough connective tissue which can slow the drug’s release or prevent it from diffusing out
Linear actuators, in particular, electromechanical linear actuators, have become integral components of modern medical devices because of their high precision, accuracy, and ability to deliver repeatable motion control. Patient comfort, positioning and mobility, robotic surgery, imaging equipment, infusion, and pumping are just a few of the applications where the use of linear actuators has revolutionized the way medical devices are designed, improving patient outcomes and enhancing the overall quality of care
Chalmers University of Technology Gothenburg, Sweden
A new device platform allows for smaller wireless light sources to be placed within the human body. Research indicates that such light sources will enable novel, minimally invasive means of treating and better understanding diseases which currently require the implantation of bulky devices
As electronic medical device technology progresses, their internal printed circuit boards (PCBs) have undergone a transformative evolution to integrate a diverse array of materials. This evolution is driven by the need to fulfill stringent requirements for enhanced performance, compact size, and heightened reliability. However, the proliferation of materials poses a considerable challenge: finding cleaning solutions capable of efficiently removing contaminants without compromising the integrity of these delicate components
Researchers have developed a method for detecting malignant melanoma. A new type of patch equipped with microneedles can identify the biomarker tyrosinase directly in the skin
Daegu Gyeongbuk Institute of Science and Technology Daegu, Republic of Korea
Hey superhero fans, meet the researchers making real life Iron Man technology possible. In a new study, engineers from Korea and the United States have developed a wearable, stretchy patch that could help to bridge the divide between people and machines — and with benefits for the health of humans around the world
Recent advances in technology have opened many possibilities for using wearable and implantable sensors to monitor various indicators of patient health. Wearable pressure sensors are designed to respond to very small changes in bodily pressure, so that physical functions such as pulse rate, blood pressure, breathing rates, and even subtle changes in vocal cord vibrations can be monitored in real time with a high degree of sensitivity
The global medical device market offers opportunities for innovation-driven growth. Demand for smart, new lifesaving and life-enhancing technologies is perhaps stronger than ever. Manufacturers around the world looking to capitalize on this eager global market face a long list of challenges — some big, some small. Supply-chain disruptions, labor shortages, rising materials costs, and other headwinds are leading to delays in both engineering and manufacturing processes. Despite these challenges, the world demands medical device manufacturers’ best. A surging geriatric population, implications of a global pandemic, and the mortality rates for heart disease, cancer, obesity, and other conditions are all contributing to strong and sustained market demand. One study predicts a compound annual growth (CAGR) of 5.4 percent will push global sales of medical devices to nearly $658 billion (USD) by 2028. Of course, the road to success will be littered with familiar roadblocks — and some that are
A team of engineers has invented a soft, thin, stretchy device measuring just over 1 sq in. that can be attached to the skin outside the throat to help people with dysfunctional vocal cords regain their voice function
As medical devices in today’s modern medicine continue to advance, they require power supplies that allow them to perform an ever-widening roles. These lightweight, wearable — and even implantable — medical devices comprise everything from activity/exercise watches, hearing aids, and medical call buttons to pacemakers, insulin pump monitors, and neuro- or gastric stimulators, as well as implantable cardiac pacemakers and defibrillators (ICDs). The rechargeable batteries used in these devices must provide for such vital functions as monitoring, signal processing, collecting and transmitting data, and providing specialized electronic pulses when needed to stimulate cardiac output and other physiological activity
A small ultrasound sticker can monitor the stiffness of organs deep inside the body. The sticker, about the size of a postage stamp, can be worn on the skin and is designed to pick up on signs of disease, such as liver and kidney failure and the progression of solid tumors
The paramount importance of titanium alloy in implant materials stems from its exceptional qualities, yet the optimization of bone integration and mitigation of wear and corrosion necessitate advanced technologies. Consequently, there has been a surge in research efforts focusing on surface modification of biomaterials to meet these challenges. This project is dedicated to enhancing the surface of titanium alloys by employing shot peening and powder coatings of titanium oxide and zinc oxide. Comparative analyses were meticulously conducted on the mechanical and wear properties of both treated and untreated specimens, ensuring uniformity in pressure, distance, and time parameters across all experiments. The outcomes underscore the efficacy of both methods in modifying the surface of the titanium alloy, leading to substantial alterations in surface properties. Notably, the treated alloy exhibited an impressive nearly 12% increase in surface hardness compared to its untreated counterpart
Balasubramanian, K.Bragadeesvaran, S. R.Raja, R.Jannet, Sabitha
Years ago, Eugene Malinskiy saw a physician assistant trip over the cords of an arthroscopic camera during a medical procedure. He recalls the story when people ask why he and his brother co-founded Lazurite Holdings LLC, a medical device company in Cleveland
In the dynamic industry of medical technology, innovation, adaptability, and efficiency have become key factors. In this context, programmable mixed-signal devices can be considered as a useful resource for innovative developments in medical applications. This article delves into the characteristics of both GreenPAK and AnalogPAK (by Renesas), focusing on their individual capabilities and the embedded resources that can be fully leveraged for medical device design
In the intricate world of orthopedic device manufacturing, precision quality isn’t just a requirement, it’s the cornerstone of life-changing patient outcomes. SpiTrex Orthopedics, a global leader in medical device contract manufacturing, specializes in implants for the spine, trauma, and extremity markets (Spi.Tr.Ex.), including spinal rods, cross connectors, hooks, and a variety of stateof-the-art screws, nails, and plates. The company has a multi-site smart factory manufacturing footprint across North America and Europe
In a new study, engineers from Korea and the United States have developed a wearable, stretchy patch that could help to bridge the divide between people and machines — and with benefits for the health of humans around the world
Robotics, prostheses that react to touch, and health monitoring are three fields in which scientists are working to develop electronic skin. Researchers have developed a sensor that, similar to human skin, can sense temperature variation that originates from the touch of a warm object as well as the heat from solar radiation. The sensor combines pyroelectric and thermoelectric effects with a nano-optical phenomenon
Medical component manufacturing must meet stringent regulations for quality and product consistency, making process control a critical issue with materials, machining, assembly and packaging. This is vitally important with fluid dispensing applications used in the assembly of medical devices, point-of-care testing and near-patient testing products, medical wearables and other life sciences applications, which require accurate and consistent deposition of fluid amounts of UV-cure adhesives, silicones and other fluids in their manufacture
Researchers have created a new technique to treat Type 1 diabetes: implanting a device inside a pocket under the skin that can secrete insulin while avoiding the immunosuppression that typically stymies management of the disease. The approach would offer an easier, long-term, and less-invasive alternative to insulin injections or traditional transplants that require immunosuppression
A neural implant provides information about activity deep inside the brain while sitting on its surface. The implant is made up of a thin, transparent, and flexible polymer strip that is packed with a dense array of graphene electrodes. The technology, tested in transgenic mice, brings the researchers a step closer to building a minimally invasive brain-computer interface (BCI) that provides high-resolution data about deep neural activity by using recordings from the brain surface
Researchers have developed a biomimetic scaffold that generates electrical signals upon the application of pressure by utilizing the unique osteogenic ability of hydroxyapatite (HAp). HAp is a basic calcium phosphate material found in bones and teeth
Researchers at the Georgia Institute of Technology have developed low-cost, painless, and bloodless tattoos that can be self-administered and have many applications, from medical alerts to tracking neutered animals to cosmetics
September 2023 marked the 10-year anniversary of the day the FDA’s Unique Device Identification (UDI) requirement first took effect. In that time, UDI went from an idea to a framework to a law; its GUDID database now uniquely identifies and holds data on more than 4 million medical devices and is the foundation for thousands of daily lookups and transactions
A novel surgical implant developed by Washington State University researchers was able to kill 87 percent of the bacteria that cause staph infections in laboratory tests, while remaining strong and compatible with surrounding tissue like current implants
“Soft robots,” medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism — thanks to a metal-free magnetic gel developed by researchers at the University of Michigan and the Max Planck Institute for Intelligent Systems in Stuttgart, Germany
Researchers have created electrostatic materials that function even with extremely weak ultrasound, heralding the era of permanent implantable electronic devices in biomedicine. Recent research explores implantable medical devices that operate wirelessly, yet finding a safe energy source and protective materials remains challenging. Presently, titanium (Ti) is used due to its biocompatibility and durability. However, radio waves cannot pass through this metal, necessitating a separate antenna for wireless power transmission. Consequently, this enlarges the device size, creating more discomfort for patients
The “Integrated Wheelchair Bed” is an innovative assistive technology designed to address the unique needs of individuals with mobility challenges. This duality concept is born out of a deep understanding of the daily challenges faced by those who require mobility aids for transportation and also need to rest periodically throughout the day, allowing for seamless transitions between mobility and rest. This dichotomy promotes both physical well-being and emotional independence, enhancing the overall quality of life for users. The need for a new wheelchair bed hybrid arises from evolving user requirements, such as improved comfort, compactness, customization, safety, technology integration, cost-efficiency, durability, versatility, aesthetics, healthcare integration, and sustainability. To overcome these problems, we have proposed a wheelchair that can be transformed into a bed using a two-bar linkage with a slot lock mechanism. The two-bar linkage facilitates the easy conversion system
Senthil Kumar, R.Mohamed Hanifa, M.Jayasooriya, M.Lekshmikanth, L.Krishnaraj, S.Subathra, T.
A new collaboration between The University of Manchester and CICECO-Aveiro Institute of Materials could transform the field of biomedical implants
Medical devices are becoming smaller and smaller, and the need for advanced material solutions keeps growing. There’s also a critical call for manufacturers to adhere to stringent regulations while improving device functionality. Through our deep understanding and application of fundamental chemistry, Chemours materials have emerged as effective alternatives — helping innovators in the medical industry achieve continued success across medical device design
Researchers have developed an implantable device that could provide a long-term supply of insulin to the body. The implant was designed to shield insulin-producing, or islet, cells from damaging immune responses, while continuously generating oxygen to sustain them. The results of a study show that transplanted cells within the device were able to survive and produce insulin in animals over the course of one month
Researchers have developed a sensor that can perceive combinations of bending, stretching, compression, and temperature changes, all using a robust system that boils down to a simple concept: color
A single strand of fiber has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline. The newly developed material showed good potential for wearable e-textiles. Researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas
The process of manufacturing high-quality and reliable balloon catheters is critical to a number of advanced medical treatments for patients including balloon angioplasty, stent and drug delivery, transcatheter aortic valve implantation, atherectomy, renal denervation, and laser balloon angioplasty. These minimally invasive procedures have vastly improved quality of life, increased patient safety, decreased recovery times, and lowered treatment costs for patients around the globe
A microprinter can print piezoelectric films 100 times faster for the production of microelectromechanical systems (MEMS) for sensors, wearable, or implantable medical devices, offering the possibility to lower the mass production costs
Researchers have invented sensor-based noninvasive medical devices to make the monitoring and treatment of certain physiological and psychological conditions timelier and more precise
Instead of using toxic chemicals or optical masks for patterning, a research team used laser direct patterning technology to form laser-induced graphene (LIG) on e-textiles and successfully manufactured graphene-based e-textiles
In the realm of medical technology, the quest for reliability and safety is unending. As medical devices become increasingly sophisticated, so too does the challenge of protecting these devices from electromagnetic interference (EMI). The concept of electromagnetic compatibility (EMC) has thus become a pivotal consideration for medical device manufacturers. At the heart of this concern lies high-attenuation shielding, a critical component in safeguarding sensitive medical equipment against the disruptive forces of EMI
Thermoplastic resins, composites, and copolymers can help the healthcare industry address multiple sustainability challenges. Specifically, thermoplastic materials can help manufacturers develop medical devices that
In patients with severe artery blockage in the lower leg, an artery-supporting device called a resorbable scaffold is superior to angioplasty, which has been the standard treatment. A resorbable scaffold is a stent-like structure that props the artery open but is biodegradable and dissolves within a few years, avoiding some of the potential complications of a permanent stent
Items per page:
1 – 50 of 2485