Browse Topic: Psychiatry and psychology
Advancements in sensor technologies have led to increased interest in detecting and diagnosing “driver states”—collections of internal driver factors generally associated with negative driving performance, such as alcohol intoxication, cognitive load, stress, and fatigue. This is accomplished using imperfect behavioral and physiological indicators that are associated with those states. An example is the use of elevated heart rate variability, detected by a steering wheel sensor, as an indicator of frustration. Advances in sensor technologies, coupled with improvements in machine learning, have led to an increase in this research. However, a limitation is that it often excludes naturalistic driving environments, which may have conditions that affect detection. For example, reductions in visual scanning are often associated with cognitive load [1]; however, these reductions can also be related to novice driver inexperience [2] and alcohol intoxication [3]. Through our analysis of the
The research activity aims at defining specific Operational Design Domains (ODDs) representative of Italian traffic environments. The paper focuses on the human-machine interaction in Automated Driving (AD), with a focus on take-over scenarios. The study, part of the European/Italian project “Interaction of Humans with Level 4 AVs in an Italian Environment - HL4IT”, describes suitable methods to investigate the effect of the Take-Over Request (TOR) on the human driver’s psychophysiological response. The DriSMI dynamic driving simulator at Politecnico di Milano has been used to analyse three different take-over situations. Participants are required to regain control of the vehicle, after a take-over request, and to navigate through a urban, suburban and highway scenario. The psychophysiological characterization of the drivers, through psychological questionnaires and physiological measures, allows for analyzing human factors in automated vehicles interactions and for contributing to
University of Utah Salt Lake City, UT
This study aims to explore the multifaceted influencing factors of market acceptance and consumer behavior of low-altitude flight services through online surveys and advanced neuroscientific methods (such as functional magnetic resonance imaging fMRI, electroencephalography EEG, functional near-infrared spectroscopy fNIRS) combined with artificial intelligence and video advertisement quantitative analysis. We conducted an in-depth study of the current trends in low-altitude flight vehicle development and customer acceptance of low-altitude services, focusing particularly on the survey methods used for market acceptance. To overcome the influence of strong opinion leaders in volunteer group experiments, we designed specialized surveys targeting broader online and social media groups. Utilizing specialized knowledge in aviation psychology, we designed a distinctive questionnaire and, within just 7 days of its launch, gathered a significant number of valid responses. The data was then
Meet CARMEN — short for Cognitively Assistive Robot for Motivation and Neurorehabilitation — a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory, attention, and executive functioning at home.
Nagoya University Nagoya, Japan
Neurostimulators, also known as brain pacemakers, send electrical impulses to specific areas of the brain via special electrodes. It is estimated that some 200,000 people worldwide are now benefiting from this technology, including those who suffer from Parkinson’s disease or from pathological muscle spasms. According to Mehmet Fatih Yanik, professor of neurotechnology at ETH Zurich, further research will greatly expand the potential applications: instead of using them exclusively to stimulate the brain, the electrodes can also be used to precisely record brain activity and analyze it for anomalies associated with neurological or psychiatric disorders. In a second step, it would be conceivable in future to treat these anomalies and disorders using electrical impulses.
Engineers at the University of California San Diego in collaboration with clinicians, people with MCI, and their care partners have developed CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation — a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory, attention, and executive functioning at home.
Using electrical impedance tomography (EIT), researchers have developed a system using a flexible tactile sensor for objective evaluation of fine finger movements. Demonstrating high accuracy in classifying diverse pinching motions, with discrimination rates surpassing 90 percent, this innovation holds potential in cognitive development and automated medical research.
Advances in healthcare and medical treatments have led to longer life expectancies in many parts of the world. As people receive better healthcare and management of other health conditions, they are more likely to reach an age where neurodegenerative diseases become a greater risk. Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), are complex and can affect various aspects of a person's cognitive, motor, and sensory functions.
Researchers have invented sensor-based noninvasive medical devices to make the monitoring and treatment of certain physiological and psychological conditions timelier and more precise.
In this study, a novel assessment approach of in-vehicle speech intelligibility is presented using psychometric curves. Speech recognition performance scores were modeled at an individual listener level for a set of speech recognition data previously collected under a variety of in-vehicle listening scenarios. The model coupled an objective metric of binaural speech intelligibility (i.e., the acoustic factors) with a psychometric curve indicating the listener’s speech recognition efficiency (i.e., the listener factors). In separate analyses, two objective metrics were used with one designed to capture spatial release from masking and the other designed to capture binaural loudness. The proposed approach is in contrast to the traditional approach of relying on the speech recognition threshold, the speech level at 50% recognition performance averaged across listeners, as the metric for in-vehicle speech intelligibility. Results from the presented analyses suggest the importance of
Artificial intelligence (AI) has become prevalent in many fields in the modern world, ranging from vacuum cleaners to lawn mowers and commercial automobiles. These capabilities are continuing to evolve and become a part of more products and systems every day, with numerous potential benefits to humans. AI is of particular interest in autonomous vehicles (AVs), where the benefits include reduced cognitive workload, increased efficiency, and improved safety for human operators. Numerous investments from academia and industry have been made recently with the intent of improving the enabling technologies for AVs. Google and Tesla are two of the more well-known examples in industry, with Google developing a self-driving car and Tesla providing its Full Self-Driving (FSD) autopilot system. Ford and BMW are also working on their own AVs.
Prior investigations of swarm robot control focus on optimizing communication and coordination between agents, with at most one human control scheme, or with discrete (rather than continuous) human control schemes. In these studies, focus tends to be on human-robot interactions, including human-machine gesture interfaces, human-machine interaction during conversation, or evaluation of higher-level mental states like comfort, happiness and cognitive load. While there is early work in human control of Unmanned Arial Vehicles (UAVs) and interface design, there are few systematic studies of how human operators perceive fundamental properties of small swarms of ground-based semi-autonomous robots. Therefore, the goal of this study is to better understand how humans perceive swarms of semi-autonomous agents across a range of conditions.
Modern in-vehicle experiences are brimming with functionalities and convenience driven by automation, digitalization, and electrification. While automotive manufacturers are competing to provide the best systems to their customers, there is no common ground to evaluate these in-vehicle experiences as they become increasingly complex. Existing automotive guidelines do not offer thresholds for cognitive distraction, or—more appropriately—“disengagement.” What can researchers can do to change this? Evaluation of the In-vehicle Experience discusses acceptable levels of disengagement by evaluating the driving context and exploring how system reliability can translate to distraction and frustration. It also covers the need to test systems for their complexity and ease of use, and to prevent users from resorting to alternative systems while driving (e.g., smartphones). It highlights the value in naturalistic data generation using vehicles already sold to customers and the issues around
A team of Cornell University researchers has laid the foundation for developing a new class of untethered soft robots that can achieve more complex motions with less reliance on explicit computation. By taking advantage of viscosity — the very thing that previously stymied the movement of soft robots — the new approach offloads control of a soft robot’s cognitive capability from the “brain” onto the body using the robot’s mechanical reflexes and ability to leverage its environment.
Automated driving is considered a key technology for reducing traffic accidents, improving road utilization, and enhancing transportation economy and thus has received extensive attention from academia and industry in recent years. Although recent improvements in artificial intelligence are beginning to be integrated into vehicles, current AD technology is still far from matching or exceeding the level of human driving ability. The key technologies that need to be developed include achieving a deep understanding and cognition of traffic scenarios and highly intelligent decision-making. Automated Vehicles, the Driving Brain, and Artificial Intelligenceaddresses brain-inspired driving and learning from the human brain's cognitive, thinking, reasoning, and memory abilities. This report presents a few unaddressed issues related to brain-inspired driving, including the cognitive mechanism, architecture implementation, scenario cognition, policy learning, testing, and validation. Click here
In electric vehicles (EVs), the ear-piercing acoustic noise contributed by the electric drive systems (EDSs) has become a critical issue in sensitive situations. This paper provides a comprehensive sound quality evaluation associated with objective psychological parameters in EDSs with multi-power levels and full-operational conditions. The experimental test sets, prototype categories and acoustic samples are firstly proposed to reveal the sound pressure level distributions. Then, the objective psychological parameters are introduced and divided into six dimensions. The principal component analysis (PCA) method has been employed to achieve dimensionality reduction, in which the original six dimensions can be reduced to two dimensions. The calculated and evaluated results show that the loudness and sharpness are the main contributing components with a cumulative contribution of 99.93%. All results are sensitive to the operational conditions. The proposed work and the related results can
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data. To this end
Reliably operating electromagnetic (EM) systems including radar, communications, and navigation, while deceiving or disrupting the adversary, is critical to success on the battlefield. As threats evolve, electronic warfare (EW) systems must remain flexible and adaptable, with performance upgrades driven by the constant game of cat and mouse between opposing systems. This drives EW researchers and systems engineers to develop novel techniques and capabilities, based on new waveforms and algorithms, multifunction RF systems, and cognitive and adaptive modes of operation.
How do different parts of the brain communicate with each other during learning and memory formation? A new study by researchers at the University of California San Diego takes a first step at answering this fundamental neuroscience question.
Today, as the spread of vehicles equipped with autonomous driving functions increases, accidents caused by autonomous vehicles are also increasing. Therefore, issues regarding safety and reliability of autonomous vehicles are emerging. Various studies have been conducted to secure the safety and reliability of autonomous vehicles, and the application of the International Organization for Standardization (ISO) 26262 standard for safety and reliability improvement and the importance of verifying the safety of autonomous vehicles are increasing. Recently, Mobileye proposed an RSS model called Responsibility Sensitive Safety, which is a mathematical model that presents the standardization of safety guarantees of the minimum requirements that all autonomous vehicles must meet. In this article, the RSS model that ensures safety and reliability was derived to be suitable for variable focus function cameras that can cover the cognitive regions of radar and lidar with a single camera. It is
Acoustic range managers need a better system for identifying high-value decision points before conducting test events. When this research was conducted, a qualitative process model that represents the acoustic range decision process did not exist.
Items per page:
50
1 – 50 of 478