Browse Topic: Electric power

Items (2,086)
In addition to providing safety advantages, sound and vibration are being utilized to enhance the driver experience in Battery Electric Vehicles (BEVs). There's growing interest and investment in using both interior and exterior sounds for pedestrian safety, driver awareness, and unique brand recognition. Several automakers are also using audio to simulate virtual gear shifting of automatic and manual transmissions in BEVs. According to several automotive industry articles and market research, the audio enhancements alone, without the vibration that drivers are accustomed to when operating combustion engine vehicles, are not sufficient to meet the engagement, excitement, and emotion that driving enthusiasts expect. In this paper, we introduce the use of new automotive, high-force, compact, light-weight circular force generators for providing the vibration element that is lacking in BEVs. The technology was developed originally for vibration reduction/control in aerospace applications
Norris, Mark A.Orzechowski, JeffreySanderson, BradSwanson, DouglasVantimmeren, Andrew
Battery Electric Vehicles (BEVs) are extremely sensitive in terms of NVH requirements. While the engine is being replaced with an almost silent electric motor, the transmission noise appears persistent and demands more silent transmission. This has raised demand for improvement in design as well as manufacturing quality. Various innovations are being made to drive an improvement in the NVH. The following paper will discuss the improvement in NVH achieved through a design optimization of the housing using modal analysis. Firstly, the NVH results were co-related with the modal analysis and the cause for the dominant peak in amplitude of the NVH graph associated with the housing modes were mapped. A simple Excel based correlation matrix is used to map the list of all Eigenfrequencies of housing and its corresponding gear tooth frequency. Further optimization is done in housing design to defer the modal frequencies and another NVH test was run. It was proven that housing design
Pingale, Abhijeet SatishDeshpande, Prasannakumar
In this study, vibration characteristics inside an electric power unit at gravity center where direct measurement is impossible were estimated by using virtual point transformation to consider guideline for effective countermeasures to the structure or generated force characteristics inside the power source. Vibration acceleration, transfer function and the generated force in operation at the gravity center of the electrical power source were obtained by vibration characteristics at around the power source which can be measured directly. In addition, the transfer functions from the gravity center to the power source attachment points on the product were also estimated. And then, the contribution from the gravity center to the power unit attachment point was obtained by multiplying generated force with the transfer function. As results, the obtained total contribution was almost same with the actual measured vibration at the attachment point. Furthermore, the rotational contribution
Kubo, RyomaHara, KentaYoshida, Junji
Reducing emissions in individual transport requires electrification and hybridization. Emission reduction depends on the degree of electrification, the specific powertrain design and optimized components. This is especially true for hybrids with the highest number of components, consisting of combustion engine, transmission, electric motors and batteries. The integration of the electric motor in the transmission for dedicated hybrid transmissions leads to many possible concepts. Computer-aided powertrain synthesis is therefore needed to develop new powertrain architectures. In a publicly funded project, we have developed a powertrain synthesis that includes a combustion engine synthesis and a transmission synthesis. In this paper we focus on the impact of the engine concept on the powertrain dimensioning, fuel consumption, performance and operating behavior in a parallel hybrid configuration. In addition to different engine concepts, the electrical power is also varied to discuss the
Sturm, AxelHenze, RomanKüçükay, FeritWolgast, CarstenEilts, Peter
Sustainable aviation fuels are becoming more widely available for current and future engine powered propulsion systems. However, the diversity of ignition behavior in these fuels poses a challenge to achieving robust, efficient operation. Specifically, low cetane fuels with poor ignitability exhibit highly variable torque production unless fuel is injected earlier during compression. The tradeoff is that earlier injection may cause dangerously high in-cylinder pressure rise rates. Novel models that can simulate these competing behaviors are needed so that appropriate strategies may be developed for controlling combustion at low cetane fueling conditions. This work builds upon a previously developed model that simulates asymmetric combustion phasing (CA50) distributions as a function of fuel cetane, fuel injection timing, and electrical power supplied to an in-cylinder thermal ignition assist device. An extension of the model is presented in which the phasing output is used to
Ahmed, OmarMiddleton, RobertStefanopoulou, AnnaKim, KennethKweon, Chol-Bum
Electrifying truck fleets has the potential to improve energy efficiency and reduce carbon emissions from the freight transportation sector. However, the range limitations and substantial capital costs with current battery technologies imposes constraints that challenge the overall cost feasibility of electrifying fleets for logistics companies. In this paper, we investigate the coupled routing and charge scheduling optimization of a delivery fleet serving a large urban area as one approach to discovering feasible pathways. To this end, we first build an improved energy consumption model for a Class 7-8 electric and diesel truck using a data-driven approach of generating energy consumption data from detailed powertrain simulations on numerous drive cycles. We then conduct several analyses on the impact of battery pack capacity, cost, and electricity prices on the amortized daily total cost of fleet electrification at different penetration levels, considering availability of fast
Wendimagegnehu, Yared TadesseAyalew, BeshahIvanco, AndrejHailemichael, Habtamu
In the United States (US), the off-road sector (i.e., agriculture, construction, etc.) contributes to approximately 10% of the country’s transportation greenhouse gas (GHG) emissions, similar to the aviation sector. The off-road sector is extremely diverse; as the EPA MOVES model classifies it into 11 sub-sectors, which include 85 different types of equipment. These equipment types have horsepower ranging from 1 to greater than 3000 and have very different utilization, which makes decarbonization a complex endeavor. To address this, Argonne’s on-road vehicle fleet model, VISION, has been expanded to the off-road sector. The GHG emission factors for several energy carriers (biofuels, electricity, and hydrogen) have been incorporated from Argonne’s GREET model for a sector-wide well-to-wheel (WTW) GHG emissions analysis of the present and future fleet. Several technology adoption and energy decarbonization scenarios were modeled to better understand the appropriate actions required to
Tripathi, ShashwatKolodziej, ChristopherGohlke, DavidBurnham, AndrewZhou, YanLongman, Douglas
Based on the harmonic current injection method used to suppress the torsional vibration of the electric drive system, the selection of the phase and amplitude of the harmonic current based on vibration and noise has been explored in this paper. Through the adoption of the active harmonic current injection method, additional torque fluctuations are generated by actively injecting harmonic currents of specific amplitudes and phases, and closed-loop control is carried out to counteract the torque fluctuations of the motor body. The selection of the magnitude of the injected harmonic current is crucial and plays a vital role in the reduction of torque ripple. Incorrect harmonic currents may not achieve the optimal torque ripple suppression effect or even increase the motor torque ripple. Since the actively injected harmonic current is used to counteract the torque ripple caused by the magnetic flux linkage harmonics of the motor body, the target harmonic current command is very important
Jing, JunchaoZhang, JunzhiLiu, YiqiangHuang, WeishanDai, Zhengxing
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) recently received a relevant interest as an electric power generation technology in Fuel Cells Electric Vehicles (FCEVs) to decarbonize hard-to-abate sectors as a complement to Battery Electric Vehicles (BEVs). However, the massive requirements of power and durability indicate the urgent need to develop higher-than-ever power density designs with minimum internal gradients to mitigate degradation, discarding sub-optimal designs since the early design stage. Starting from the outcomes of a first study, confirming that for industry-relevant PEMFCs the parallel channel flow field was the only archetype able to minimize jointly pressure losses and limiting super-saturation at high current density, still several degrees of freedom exist for the cell designer. In this study, the research of the optimal PEMFC design is fine-tuned using a CAE-guided design process. Candidate solutions are explored using an optimization software and solving for
Rossi, EdoardoCroci, FedericoMartoccia, LorenzoCicalese, GiuseppeD'Adamo, Alessandro
As the first pure electric flagship sedan under the Geely Galaxy brand, a challenging aerodynamic target was set at the early stage of Geely Galaxy E8 for reducing electric power consumption and improving vehicle range. In response, the aerodynamic team formulated a detailed development plan and an overall drag reduction strategy. After conducting numerous loops of simulations and wind tunnel tests, along with continuous cross-disciplinary communication and collaboration, a product with outstanding aerodynamic performance was successfully developed. During the aerodynamic development of the E8, the primarily utilized steady-state simulations sometimes revealed significant discrepancies when compared to wind tunnel test results, particularly in schemes such as the air curtain, aerodynamic rims, and rear light feature optimizations. Some trends were even contradictory. Further investigations demonstrated that unsteady simulation methods captured different flow field information
Li, QiangLiu, HuanYang, TianjunLiang, ChangqiuZhu, ZhenyingLiao, Huihong
This SAE Aerospace Standard (AS) establishes the minimum performance standards for equipment used as secondary alternating current (AC) electrical power sources in aerospace electric power systems.
AE-7B Power Management, Distribution and Storage
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, independent of their level of hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study primarily examines the use of Haste alloy in vehicle applications and suggests creating regression models to predict performance parameters in ECM. The experiments are formulated based on Taguchi's ideas, and mathematical equations are derived using multiple regression models. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. ANOVA is employed to evaluate the statistical significance of process parameters that impact performance indicators. The proposed regression models for Haste alloy are more versatile
Natarajan, ManikandanPasupuleti, ThejasreeD, PalanisamySilambarasan, RKrishnamachary, PC
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study focuses on Cupronickel and suggests creating predictive models to anticipate performance metrics in ECM through regression analysis. The experiments are formulated based on Taguchi's principles, and a multiple regression model is utilized to deduce the mathematical equations. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. The proposed prediction technique for Cupronickel is more adaptable, efficient, and accurate in comparison to current models, providing enhanced monitoring capabilities. The updated models have
Pasupuleti, ThejasreeNatarajan, ManikandanSagaya Raj, GnanaSilambarasan, RSomsole, Lakshmi Narayana
Electrochemical machining (ECM) is a remarkably effective technique for producing detailed designs in materials that can conduct electricity, regardless of their level of hardness. As the desire for high-quality products and the necessity for rapid design changes grow, decision-making in the industrial sector becomes increasingly intricate. This work focuses on Titanium Grade 19 and proposes the development of prediction models using regression analysis to estimate performance measurements in ECM. The experiments are designed using Taguchi's methodology, employing a multiple regression approach to produce mathematical equations. The Taguchi technique is utilized for the purpose of single-objective optimization in order to determine the optimal combination of process parameters that will optimize the rate at which material is removed. ANOVA is a statistical method used to assess the relevance of process factors that impact performance indicators. The suggested prediction technique for
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeSilambarasan, RD, Palanisamy
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, independent of their level of hardness. With the growing demand for superior products and the increasing necessity for quick design modifications, decision-making in the manufacturing industry becomes increasingly complex. The primary objective of this work is to concentrate on Cupronickel and suggest the creation of predictive models through the utilization of a Taguchi-grey technique for the purpose of multi-objective optimization in ECM. The trials follow Taguchi’s principles and utilize a Taguchi-grey relational analysis (GRA) technique to maximize numerous performance indicators concurrently. This involves optimizing the pace at which material is removed while decreasing the roughness of the surface and obtaining precise geometric tolerances. ANOVA is a statistical method used to determine the importance of process factors that influence these
Natarajan, ManikandanPasupuleti, ThejasreeC, NavyaSomsole, Lakshmi NarayanaSilambarasan, R
The process of electrochemical machining, often known as ECM, is capable of effectively shaping complicated structures in materials that conduct electricity, independent of the materials' level of hardness hence especially used for automobile and aerospace applications. As a result of the demand for high-quality products and the desire for rapid design changes, the manner in which decisions are made in the manufacturing industry has become increasingly contentious. With the assistance of regression analysis, this study proposes the development of predictive models for the purpose of forecasting the performance measures in electrochemical machining of Nimonic alloy. The trials are designed in accordance with Taguchi's principles, and a multiple regression model is utilized in order to derive the mathematical equations. Taguchi's method can be applied as a methodology for single objective optimization in order to attain the most optimal combination of process parameters for the purpose
Natarajan, ManikandanPasupuleti, ThejasreeSagaya Raj, GnanaSilambarasan, RKiruthika, Jothi
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their level of hardness. With the rising demand for superior products and the necessity for quick design modifications, decision-making in the industrial sector becomes increasingly complex. This study specifically examines Titanium Grade 7 and suggests creating prediction models through regression analysis to estimate performance measurements in ECM. The experiments are formulated based on Taguchi's ideas, utilizing a multiple regression approach to deduce mathematical equations. The Taguchi method is utilized for single-objective optimization in order to determine the ideal combination of process parameters that will maximize the material removal rate. ANOVA is a statistical method used to determine the relevance of process factors that affect performance measures. The suggested prediction technique for Titanium Grade 7 exhibits
Natarajan, ManikandanPasupuleti, ThejasreeKumar, VKrishnamachary, PCSomsole, Lakshmi NarayanaSilambarasan, R
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, regardless of their level of hardness. Due to the growing demand for superior products and the necessity for quick design adjustments, decision-making in the manufacturing industry has grown increasingly intricate. This study specifically examines Titanium Grade 7 and suggests the creation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for predictive modelling in ECM. The study employs a Taguchi-grey relational analysis (GRA) methodology to attain multi-objective optimization, with the goal of concurrently maximizing material removal rate, minimizing surface roughness, and achieving precise geometric tolerances. Analysis of variance (ANOVA) is used to assess the relevance of process characteristics that impact these performance measures. The ANFIS model presented for Titanium Grade 7 provides more flexibility, efficiency, and accuracy in
Natarajan, ManikandanPasupuleti, ThejasreeD, PalanisamyKiruthika, JothiSilambarasan, R
The selection of the key components of proton exchange membrane fuel cell (PEMFC) crucially impacts the performance. This work developed a model of the fuel cell system model to simulate the power consumption of component and system and the temperature dynamic response of stack in real systems. A PEMFC simulation model was developed based on AMESim, encompassing the air supply subsystem, hydrogen supply subsystem, and the hydrothermal management subsystem. The parameters for the flow and pressure of hydrogen, air, and water were established based on the operational requirements to ensure efficient stack performance. Furthermore, a PID control model was employed to regulate the flow and pressure parameters of hydrogen, air, and water, in accordance with the operational requirements, to ensure optimal PEMFC system performance.The purpose of this study is to predict the power consumption of the key components and the overall system, as well as to analyze the compliance with fuel supply
Yu, PeiwenWang, YanboZhao, XiaojunPan, FengwenShi, BaofanYang, FengQiao, XingnianShan, FengxiangCheng, XiaoxianZhang, YaranZhang, ChunSun, YulingGao, YongFeng, Gang
The integration of phase change materials (PCMs) with thermoelectric generators (TEGs) presents a solution to the challenge of unstable output resulting from fluctuations in the heat source. This study involved the establishment of an experimental test setup for PCM-TEG system to examine the impact of heat source power on the thermoelectric performance of PCM-TEG system. The results suggest that incorporating PCM effectively mitigates output voltage fluctuations, while higher heating power levels correspond to a notable extension in effective operational duration. In situations of low heat source power, incomplete PCM melting may lead to a significant decline in electricity generation during non-heating stages. Notably, the electricity generation during non-heating stages at 90 W heating power surpasses that at 30 W heating power by a factor of 11.78. Furthermore, the electricity generated during non-heating stages contributes to 22.4% of the total electricity generation. These
Tian, MengWu, FengyuZuo, AoXuan, ZhiweiZhao, Yulong
The inductance parameter is important for the flux regulation performance of the hybrid excitation motor, and the axial structure leads to the change in the inductance parameter of the axial-radial hybrid excitation motor (ARHEM). To clarify the inductance characteristic of the ARHEM with different winding construction and the mutual coupling effect between the axial excitation and permanent magnet excitation on the inductance. Firstly, the structure of the ARHEM is presented. Secondly, the self and mutual inductance characteristics of ARHEM are analyzed using the winding function method. Then, the influence of the axial excitation structure on the armature reaction field and saliency ratio of ARHEM. On this basis, the mechanism of the mutual coupling, between the axial excitation and permanent magnet field under different excitation currents on the main air gap magnetic field, and the inductance of ARHEM with fractional slot are revealed.
Fu, DongXueZhao, HeweiWu, QiminYuan, ChunweiWang, DongQiu, Hongbo
With the increase in vehicle population, the environmental problems caused by excessive carbon emissions from vehicles are becoming increasingly serious. Currently, China is actively promoting the development of electric vehicles to reduce carbon emissions. However, the electricity used by electric vehicles is a secondary energy source, and thermal power generation still dominates China's current power structure, so electric vehicles will indirectly contribute to carbon emissions during use. Calculating and analysing the carbon emissions of fuel vehicles and electric vehicles will give a better idea of the environmental advantages of electric vehicles. In this paper, the World Light Vehicle Test Cycle (WLTC) are selected, and the energy consumption is calculated by the energy consumption formula of fuel and electric vehicles under different conditions, and the carbon emission is obtained by the carbon emission coefficients of gasoline and electric energy. Through MATLAB calculation
Xie, HaonanLin, Guangyu
This paper proposes a theoretical drive cycle for the competition, considering the battery pack project under design. The vehicle has a non-reversible, double-stage gear train, created without a dynamic investigation. To evaluate the effect on performance, several ratios were analyzed. Dynamic model uses Eksergian’s Equation of Motion to evaluate car equivalent mass (generalized inertia), and external forces acting on the vehicle. The circuit is divided into key locations where the driver is likely to accelerate or brake, based on a predicted behavior. MATLAB ODE Solver executed the numerical integration, evaluating time forward coordinates, creating the drive cycle. Linear gear train results provided data as boundary conditions for a second round of simulations performed with epicyclic gear trains. Model is updated to include their nonlinearity by differential algebraic equation employment with Lagrange multipliers. All data undergoes evaluation to ascertain the mechanical and
Rodrigues, Patrícia Mainardi TortorelliSilveira, Henrique Leandro
It’s common knowledge that a major challenge for solar energy is how to store excess energy produced when conditions are right, like noon-time sun, so that it can be used later. The usual answer is batteries. But renewable energy resources are causing problems for the electricity grid in other ways as well. In a warm, sunny location like California, mid-afternoon had been a time of peak demand for the electric utility, but with solar it’s now a time of peak output.
In the future, power sockets used to recharge smartphones, tablets, and laptops could become obsolete. The electricity would then come from our own clothes. By means of a new polymer that is applied on textile fibers, clothing could soon function as solar collectors and thus as a mobile energy supply.
The Korea Research Institute of Standards and Science (KRISS) has developed a metamaterial that traps and amplifies micro-vibrations in small areas. This innovation is expected to increase the power output of energy harvesting, which converts wasted vibration energy into electricity, and accelerate its commercialization.
This document provides recommended best practice methods and processes for the in-service inspection, evaluation and cleaning of all physical contact (PC) fiber optic interconnect components (termini, alignment sleeves and connectors), test equipment and test leads for maintainers qualified to the approved aerospace fiber optic training courses developed in accordance with ARP5602 or ARINC807. This document also provides a decision-making disposition flowchart to determine whether the fiber optic components are acceptable for operation. For definitions of individual component parts refer to ARP5061.
AS-3 Fiber Optics and Applied Photonics Committee
As the U.S. military embraces vehicle electrification, high-reliability components are rising to the occasion to support their advanced electrical power systems. In recent years, electronic device designers have started using wide band-gap (WBG) materials like silicon carbide (SiC) and gallium nitride (GaN) to develop the semiconductors required for military device power supplies. These materials can operate at much higher voltages, perform switching at higher frequencies, and feature better thermal characteristics. Compared to silicon, SiC-based semiconductors provide superior performance. The growing availability of these materials, in terms of access and cost, continues to encourage electrification. With the ever-present pressure of size, weight, and power (SWaP) optimization in military applications, and a desire to keep up with the pace of innovation, there's a need for capacitors that can deliver higher power efficiency, switching frequency, and temperature resistance under harsh
Sustainable mobility is a pressing challenge for modern society. Electrification of transportation is a key step towards decarbonization, and hydrogen Fuel Cell Hybrid Electric Vehicles (FCHEVs) offer a promising alternative to Battery Electric Vehicles (BEVs), especially for long-range applications: they combine a battery system with a fuel cell, which provides onboard electric power through the conversion of hydrogen. Paramount importance is then given to the design and sizing of the hybrid powertrain for achieving a compromise between high performance, efficiency, and low cost. This work presents a Hardware-in-the-Loop (HIL) platform developed for designing and testing the powertrain layout of an FCHEV. The platform comprises two systems: a simulation model reproducing the dynamics of a microcar and a hardware system for the fuel cell hybrid electric powertrain. The former simulates the vehicle's behavior, while the latter is composed of a 2kW real fuel cell stack and a 100Ah Li-ion
Bartolucci, LorenzoCennamo, EdoardoCordiner, StefanoDonnini, MarcoGrattarola, FedericoMulone, Vincenzo
The aim of paper is to present the workflow of battery sizing for electric L7e-CU type vehicle. The intention is to use it as last-mile delivery multi-purpose vehicle. Based on legislation limits and pursuing the real-world driving cycle, major vehicle characteristics as total vehicle mass including payload and wheel size are determined. Vehicle total energy consumption is calculated knowing vehicle power in time. Accordingly, to selected gearbox ratio the electric motor nominal power-speed curve is defined as well as the nominal torque-speed curve. Applying vehicle acceleration dynamics involving limits considering resistive forces, acting on the vehicle, e.g. slope, friction, air drag, and total inertia, referred to the electric motor through the gearbox the electric motor over-load-ability characteristics are calculated. Next, the motor design is defined and optimized. Defining required vehicle range at given driving cycle and knowing the vehicle and all powertrain characteristics
Rupnik, UrbanVukotić, MarioManko, RomanAlić, AlenČorović, SelmaMiljavec, Damijan
Penn Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.
To expand the availability of electricity generated from nuclear power, several countries have started developing designs for small modular reactors (SMRs), which could take less time and money to construct compared to existing reactors.
Solar panels are an increasingly popular way to generate electricity from the sun’s energy. Although humans are still figuring out how to reliably turn that energy into fuel, plants have been doing it for eons through photosynthesis. Now, a team reporting in ACS Engineering Au has mimicked the process to produce methane, an energy-dense fuel, from carbon dioxide, water and sunlight. Their prototype system could help pave the way toward replacing nonrenewable fossil fuels.
The automotive PowerNet is in the middle of a major transformation. The main drivers are steadily increasing power demand, availability requirements, and complexity and cost. These factors result in a wide variety of possible future PowerNet topologies. The increasing power demand is, among other factors, caused by the progressive electrification of formerly mechanical components and a constantly increasing number of comfort and safety loads. This leads to a steady increase in installed electrical power. X-by-wire systems1 and autonomous driving functions result in higher availability requirements. As a result, the power supply of all safety-critical loads must always be kept sufficiently stable. To reduce costs and increase reliability, the car manufacturers aim to reduce the complexity of the PowerNet system, including the wiring harness and the controller network. The wiring harness e.g., is currently one of the most expensive parts of modern cars. These challenges are met with a
Jagfeld, Sebastian Michael PeterWeldle, RichardKnorr, RainerFill, AlexanderBirke, Kai Peter
With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer. Technologies are compared in respect of their TLR level and
Rothbart, Martin
Dynamic wireless charging (DWC) systems can make up electrified roads (eRoads) on which electricity from the grid is supplied to electric vehicles (EVs) wirelessly while the EVs travel along the roads. Electrification of roads contributes to decarbonizing the transport sector and offers a strong solution to high battery cost, range anxiety, and long charging times of EVs. However, the DWC eRoads infrastructure is costly. This article presents a model to minimize the infrastructure cost so that the deployment of eRoads can be economically more feasible. The investment for eRoad infrastructure consists of the costs of various components including inverters, road-embedded power transmitter devices, controllers, and grid connections. These costs depend on the traffic flow of EVs. The configuration and deployment strategy of the proposed eRoads in Southeastern Canada are designed with optimized charging power and DWC coverage ratio to attain the best cost-effectiveness. Well-designed
Qiu, KuanrongRibberink, HajoEntchev, Evgueniy
The purpose of the Air Generation System is to provide a constant supply of conditioned fresh air to meet the necessary oxygen availability and to prevent CO2 concentrations for the occupants in an aircraft. The engine bleed energy or electrical load energy consumed towards this circumstance accounts to be approximately 5% of total fuel burn and in turn, contributes to the global emissions of greenhouse gases. This paper studies the improvement areas of the present conventional system such as fuel burn consumption associated with an aircraft ECS depending on the amount of bleed, ram air usage and electric power consumption. Improved systems for sustainability and hybridization in environmental control systems are desirable in aircraft. This paper explains how a new design of the sustainable hybrid module assists the conventional system, by using a proposed modular MPBR. The MPBR system generates oxygen-enriched air, which is mixed with the traditional fresh air generated from
Subrahmanya, ShreeshaKumar, NaveenRanjan, JayantKotnadh, Shivaprasad
A new electrical power converter design achieves a much higher efficiency at lower cost and maintenance than before. The direct current voltage boost converter is poised to be a significant contribution to the further development of improved electric and electronic components for healthcare devices.
Opposed piston two-stroke (OP2S) diesel engines have demonstrated a reduction in engine-out emissions and increased efficiency compared to conventional four-stroke diesel engines. Due to the higher stroke-to-bore ratio and the absence of a cylinder head, the heat transfer loss to the coolant is lower near ‘Top Dead Center.’ The selection and design of the air path is critical to realizing the benefits of the OP2S engine architecture. Like any two-stroke diesel engine, the scavenging process and the composition of the internal residuals are predominantly governed by the pressure differential between the intake and the exhaust ports. Without dedicated pumping strokes, the two-stroke engine architecture requires external devices to breathe. In the unique OP2S engine architecture studied in this work, the external pumping devices present in the air path include an electrically assisted turbocharger (EAT), an electrified EGR pump, and a back-pressure valve (BPv) located downstream of the
Bhatt, AnkurGandolfo, JohnHuo, MingGainey, BrianLawler, Benjamin
The present study was motivated by a need to expand information for consumers offered through the FuelEconomy.Gov website. To that end, a power-based modeling approach has been used to examine the effect of steady-speed driving on estimated range for model year 2020 – 2023 battery electric vehicles (BEVs). This approach allowed rapid study of a broader range of BEV models than could be accomplished through vehicle tests. Publicly accessible certification test results and other data were used to perform a regression between cycle-average tractive power requirements and the resulting electrical power. This regression enabled estimation of electric power and energy use over a range of steady highway speeds. These analyses in turn allowed projection of vehicle range at differing speeds. The projections agree within 6% with available 65 MPH manufacturer test data. Analyses of vehicles from model years 2020 – 2023 show that the 5-cycle range and energy use values from the window stickers of
Sluder, C. ScottDavis, Stacy C.Boundy, Robert G.
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission. This hybrid architecture provides EV driving, which enhances the NVH and fuel economy, and provides additional acceleration with
Endo, MotoshiroBridge, AlistairIkeda, AkihiroMiyamoto, KoichiMiyazaki, TerufumiHosoda, FuminoriHerring, CraigWallace, James J.Hu, Mu
The 2023 FISITA White Paper (for which the author was a contributor) on managing in-service emissions and transportation options, to reduce CO2 (CO2-e or carbon footprint) from the existing vehicle fleet, proposed 6 levers which could be activated to complement the rapid transition to vehicles using only renewable energy sources. Another management opportunity reported here is optimizing the vehicle’s life in-service to minimize the life-cycle CO2 impact of a range of present and upcoming vehicles. This study of the US vehicle fleet has quite different travel and composition characteristics to European (EU27) vehicles. In addition, the embodied CO2 is based on ANL’s GREET data rather than EU27 SimaPro methodology. It is demonstrated that in-service, whole-of-life mileage has a significant influence on the optimum life cycle CO2 for BEVs and H2 fuelled FCEVs, as well as ICEs and PHEVs. Thus, the object is to show how much present, typical in-service life-mileage differs from the
Watson, Harry C.
This Electric Road System was devised that would provide electric power to EVs directly from the infrastructure so that EVs could undergo intermittent charging while driving. This system is a conductive dynamic charging system that operates from the side of the vehicle (roadside), and research has been underway on the application of this approach to passenger cars and race cars. This paper focused on resolving issues with freight vehicles, which account for most of the CO2 emissions in the transportation sector. This Electric Road System that operates by contact from the roadside was applied to heavy-duty trucks, which have been considered a challenge to convert to EVs, and at the same time the infrastructure technology was also expanded and evolved. And verification tests using actual vehicles were conducted for regenerative energy absorption control of a charging vehicle while driving. The results confirmed that this control system appropriately controls the distribution of power
Tajima, TakamitsuAbe, Hiroyuki
Bhutan is a small nation in the eastern Himalayas, between two of the world's largest neighbors and fastest-growing economies; China, and India. The GDP of the country is $2.707 Billion as of 2022. Bhutan’s largest renewable source is hydropower, which has a known potential of 30,000 MW. However, it has only been able to harvest only 1,480 MW (5% of the potential). The current overall electrification rate is 99% overall with 98.4% in rural areas. It exports 75.5% of total electricity generated in the country to India. However, the reliable supply of electricity remains a big challenge. The government is also pushing the use of renewable energy sources like solar and wind to diversify the energy mix and enhance the power security of the country. The share of renewable energy is very minimal at present amounting to 723 kW Solar PV and 600 kW Wind power. Bioenergy in the form of fuel wood, energy crops & crop residues, and cattle dung has great potential in the country as the country’s
Wangchuk, SingyeKumar, Naveen
Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have invented and patented a new cathode material that replaces lithium ions with sodium and would be significantly cheaper. The cathode is one of the main parts of any battery. It is the site of the chemical reaction that creates the flow of electricity that propels a vehicle.
Items per page:
1 – 50 of 2086