Browse Topic: Electric power
In this study, vibration characteristics inside an electric power unit at gravity center where direct measurement is impossible were estimated by using virtual point transformation to consider guideline for effective countermeasures to the structure or generated force characteristics inside the power source. Vibration acceleration, transfer function and the generated force in operation at the gravity center of the electrical power source were obtained by vibration characteristics at around the power source which can be measured directly. In addition, the transfer functions from the gravity center to the power source attachment points on the product were also estimated. And then, the contribution from the gravity center to the power unit attachment point was obtained by multiplying generated force with the transfer function. As results, the obtained total contribution was almost same with the actual measured vibration at the attachment point. Furthermore, the rotational contribution
The inductance parameter is important for the flux regulation performance of the hybrid excitation motor, and the axial structure leads to the change in the inductance parameter of the axial-radial hybrid excitation motor (ARHEM). To clarify the inductance characteristic of the ARHEM with different winding construction and the mutual coupling effect between the axial excitation and permanent magnet excitation on the inductance. Firstly, the structure of the ARHEM is presented. Secondly, the self and mutual inductance characteristics of ARHEM are analyzed using the winding function method. Then, the influence of the axial excitation structure on the armature reaction field and saliency ratio of ARHEM. On this basis, the mechanism of the mutual coupling, between the axial excitation and permanent magnet field under different excitation currents on the main air gap magnetic field, and the inductance of ARHEM with fractional slot are revealed.
It’s common knowledge that a major challenge for solar energy is how to store excess energy produced when conditions are right, like noon-time sun, so that it can be used later. The usual answer is batteries. But renewable energy resources are causing problems for the electricity grid in other ways as well. In a warm, sunny location like California, mid-afternoon had been a time of peak demand for the electric utility, but with solar it’s now a time of peak output.
In the future, power sockets used to recharge smartphones, tablets, and laptops could become obsolete. The electricity would then come from our own clothes. By means of a new polymer that is applied on textile fibers, clothing could soon function as solar collectors and thus as a mobile energy supply.
The Korea Research Institute of Standards and Science (KRISS) has developed a metamaterial that traps and amplifies micro-vibrations in small areas. This innovation is expected to increase the power output of energy harvesting, which converts wasted vibration energy into electricity, and accelerate its commercialization.
As the U.S. military embraces vehicle electrification, high-reliability components are rising to the occasion to support their advanced electrical power systems. In recent years, electronic device designers have started using wide band-gap (WBG) materials like silicon carbide (SiC) and gallium nitride (GaN) to develop the semiconductors required for military device power supplies. These materials can operate at much higher voltages, perform switching at higher frequencies, and feature better thermal characteristics. Compared to silicon, SiC-based semiconductors provide superior performance. The growing availability of these materials, in terms of access and cost, continues to encourage electrification. With the ever-present pressure of size, weight, and power (SWaP) optimization in military applications, and a desire to keep up with the pace of innovation, there's a need for capacitors that can deliver higher power efficiency, switching frequency, and temperature resistance under harsh
To expand the availability of electricity generated from nuclear power, several countries have started developing designs for small modular reactors (SMRs), which could take less time and money to construct compared to existing reactors.
Penn Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.
Solar panels are an increasingly popular way to generate electricity from the sun’s energy. Although humans are still figuring out how to reliably turn that energy into fuel, plants have been doing it for eons through photosynthesis. Now, a team reporting in ACS Engineering Au has mimicked the process to produce methane, an energy-dense fuel, from carbon dioxide, water and sunlight. Their prototype system could help pave the way toward replacing nonrenewable fossil fuels.
The automotive PowerNet is in the middle of a major transformation. The main drivers are steadily increasing power demand, availability requirements, and complexity and cost. These factors result in a wide variety of possible future PowerNet topologies. The increasing power demand is, among other factors, caused by the progressive electrification of formerly mechanical components and a constantly increasing number of comfort and safety loads. This leads to a steady increase in installed electrical power. X-by-wire systems1 and autonomous driving functions result in higher availability requirements. As a result, the power supply of all safety-critical loads must always be kept sufficiently stable. To reduce costs and increase reliability, the car manufacturers aim to reduce the complexity of the PowerNet system, including the wiring harness and the controller network. The wiring harness e.g., is currently one of the most expensive parts of modern cars. These challenges are met with a
A new electrical power converter design achieves a much higher efficiency at lower cost and maintenance than before. The direct current voltage boost converter is poised to be a significant contribution to the further development of improved electric and electronic components for healthcare devices.
The 2023 FISITA White Paper (for which the author was a contributor) on managing in-service emissions and transportation options, to reduce CO2 (CO2-e or carbon footprint) from the existing vehicle fleet, proposed 6 levers which could be activated to complement the rapid transition to vehicles using only renewable energy sources. Another management opportunity reported here is optimizing the vehicle’s life in-service to minimize the life-cycle CO2 impact of a range of present and upcoming vehicles. This study of the US vehicle fleet has quite different travel and composition characteristics to European (EU27) vehicles. In addition, the embodied CO2 is based on ANL’s GREET data rather than EU27 SimaPro methodology. It is demonstrated that in-service, whole-of-life mileage has a significant influence on the optimum life cycle CO2 for BEVs and H2 fuelled FCEVs, as well as ICEs and PHEVs. Thus, the object is to show how much present, typical in-service life-mileage differs from the
Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have invented and patented a new cathode material that replaces lithium ions with sodium and would be significantly cheaper. The cathode is one of the main parts of any battery. It is the site of the chemical reaction that creates the flow of electricity that propels a vehicle.
The electric power sector accounts for about 30 percent of U.S. emissions of carbon dioxide.
Researchers have created electrostatic materials that function even with extremely weak ultrasound, heralding the era of permanent implantable electronic devices in biomedicine. Recent research explores implantable medical devices that operate wirelessly, yet finding a safe energy source and protective materials remains challenging. Presently, titanium (Ti) is used due to its biocompatibility and durability. However, radio waves cannot pass through this metal, necessitating a separate antenna for wireless power transmission. Consequently, this enlarges the device size, creating more discomfort for patients.
Storing energy is one of the key challenges for implementing sustainable but intermittent electricity sources like solar and wind. Engineers at Sandia National Laboratories are collaborating with New Mexico-based CSolPower LLC to develop a very affordable method of accomplishing that storage.
While many consider electricity a basic human right, there are places where people have never had access to it. Among the United Nations’ Sustainable Development Goals is global access to affordable, reliable, and sustainable energy by 2030. Recently, the U.N. reported that progress in global electrification had slowed due to the challenge of reaching those hardest to reach.
Items per page:
50
1 – 50 of 2091