Browse Topic: Wind power
Mitigating environmental impacts is ever more crucial as wind energy technology expands to help meet the Nation’s goal of achieving a carbon pollution-free power sector by 2035 and net zero emissions economy by no later than 2050
Ice build-up on aircraft and wind turbines can impact the safety and efficiency of their systems
NASA engineers have developed a new approach to mitigating unwanted motion in floating structures. Ideally suited to applications including offshore wind energy platforms and barges, the innovation uses water ballast as a motion damping fluid
Solar power is abundant — when the Sun is shining. Wind power is steady — when the wind is blowing. And a power grid is extremely convenient — until there’s an outage. But creating a steady supply of electricity from intermittent power sources is a challenge. NASA was focused on this problem more than 45 years ago, when the agency designed a new type of liquid battery during the energy price shocks of the 1970s
The ability to precisely control electrical voltages on a large scale has made possible many efficient, powerful innovations, from high-speed electric trains to wind turbines to electric drive motors for everything from heavy earthmoving equipment to personal electric vehicles (EVs). But the equipment that manages this process — including power inverters, thyristors and variable-speed drives — requires high-performance power electronics cooling. As temperatures rise,the efficiency, reliability, and life spans of these devices drop, and the power electronics inside HEVs and EVs are no exception. Advancements in power electronic thermal management technologies will enable next generation automotive to fulfill increasingly demanding mission objectives. DC-DC converter and inverter systems slated for higher performances, reliable and sustainable applications. Even with very high efficiencies, the components of these systems produce kilowatts of power loss in the form of heat. The current
Variable renewable energy (VRE), such as photovoltaic solar and wind turbines, will require new approaches to buffering energy within the grid. This must include significant ancillary services and longer duration storage to buffer seasonal variations in supply and demand. Such services may be economically provided by leveraging the battery resources of electric vehicles (EVs) for frequency response and energy storage for durations of up to a few hours, together with baseload and dispatchable power for longer duration buffering. Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity. Hybrid and fuel cell EVs have significant potential to act as “peakers” for longer duration buffering, and this approach has the potential to provide all the long-term energy buffering
Dr. Brandon Ennis, Sandia National Laboratories’ offshore wind technical lead, had a radically new idea for offshore wind turbines: instead of a tall, unwieldy tower with blades at the top, he imagined a towerless turbine with blades pulled taut like a bow
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with colleagues at the University of Cambridge, have developed a new method to dramatically extend the lifetime of organic aqueous flow batteries, improving the commercial viability of a technology that has the potential to safely and inexpensively store energy from renewable sources such as wind and solar
This article presents an original methodology for the multi-objective optimization of Continuously Variable Transmission (CVT) for a wind turbine (WT). The objective functions of this optimization problem are to minimize the weight and maximize efficiency. This methodology also considers the variations of parameters caused by different factors (manufacturing tolerance, uncertainties in the operating conditions). Using a probabilistic model, the proposed algorithm combines a propagation of uncertainties and an optimization of the function objectives. The optimization is performed using the Non-dominated Sorting Genetic Algorithm (NSGA-II) with the advantage of exploring the global design space and finding the best compromise between the objectives. In order to verify the solution obtained by this approach, results were compared to the ones obtained by a previous study
Given their high-power density, large range of speed change, and reputation of being quieter than counter-shaft gear sets, planetary gear sets (PGS) have advantages to be applied in electric vehicle (EV) applications. Since electric drive unit (EDU) designs are often subject to accelerated development timelines with more versatile gear set layouts than conventional automotive transmissions, accurate prediction of PGS load sharing is needed. In the past, PGS load sharing imbalance used to be considered as a gear set problem focusing only on the effect to gear performance. Finding a closed-form formula has been a focus in gear design. However, early bearing failure in wind turbine gearboxes exposed the limitation of this strategy. With extensive field and laboratory testing, engineers started to notice that load sharing imbalance is essentially a system issue. Non-torque loads on PGS should be considered in the estimation by a gearbox system model. In this study, a virtual design
, a Dutch-based startup and a spinoff from the University of Groningen, developed an inventive way to store offshore renewable energy where it is produced: offshore
This study proposes a self-powered and aerodynamically robust design of an EV. The vehicle design is proposed using the principles of bio mimicry following the standard procedures of transportation design. Speedform (a primitive form of the vehicle design generally considered as the visual vocabulary for transportation design) was developed computationally using AutoCAD. To enhance the Aerodynamic robustness of the vehicle, unique Aerodynamic Spoilers were proposed. VAWT (Vertical Axis Wind Turbine) incorporated with the Aerodynamic spoilers helps in generating the required power for the vehicle. The final external design of the vehicle was modelled on AutoDesk MAYA. The enhanced down force and reduced air drag were analyzed using Computational Fluid Dynamics (CFD). The realizable k-e turbulence model was used for the CFD analysis on ANSYS Fluent. Drag coefficient, lift coefficient and velocity contours were considered for optimizing and validating the geometry
For years, spring set/electrically released brakes have provided failsafe braking and holding in a multitude of applications. Generally mounted on a motor or drive shaft, the brakes offer holding and dynamic stopping in applications ranging from large wind turbines to small servo motors. Specially designed brake controls are a critical factor of brake performance in any application
Combustion engines using alternative and/or renewable fuels are vital to reduce emission of greenhouse gases. The property of such fuels may vary significantly. The heat release rate of bio and natural gas varies of natural reasons, which is known to cause problems when used in internal combustion engines. Hydrogen is an attractive renewable fuel that has a high potential to reduce greenhouse gas emission. Bio and natural gas can be mixed with hydrogen and the content may vary depending on the availability, e.g., depending on the production from solar and wind power. Variations in the fuel property reduces the engine efficiency, unless the combustion phase is estimated and the ignition (combustion) timing is adapted to compensate for the varying fuel property. Hereby the drivability can be improved, and the fuel consumption decreased significantly, reducing the total cost of ownership and emission of greenhouse gases. However, there is not yet any widespread industrially available
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9
On account of boundless presence and eco-friendly nature of Sustainable Energy Sources (SES) like Wind system, PV etc. power generation using SES became more captivating. This work concentrates on Energy Management (EM) of grid synchronized Hybrid Renewable Energy System (HRES) along with fuzzy logic control. Where the HRES system is a combination of solar panel and wind turbine as sources. Along with an electrical battery for energy storage via an interface using a DC-DC fused CUK-SEPIC converter with multiple input is adopted. This convertor is employed to incorporate the HRES to the main grid. In addition to grid integration a Fuzzy Logic Based (FLB) controller is employed to increase the efficiency of the system. The converter topology used is a crossbreed of wind and solar power system, which is used to eliminate the inclusion of MPPT. A two level framework is imposed, which includes a logic controller to ensure efficient EM when HRESs are interconnected with the grid. Simulation
Wind turbine icing represents the most significant threat to the integrity of wind turbines in cold weather. Ice formation on wind turbine blades was found to cause significant aerodynamic performance degradation, resulting in a substantial drop in energy production. Recently developed Dielectric barrier discharge (DBD) plasma-based anti-/de-icing systems showed very promising effects for aircraft icing mitigation. In this present study, DBD plasma-based anti-/de-icing systems were employed for wind turbine icing mitigation. First, a comprehensive parametric study is conducted to investigate the effects of various DBD plasma actuation parameters on its thermodynamic characteristics. An infrared (IR) thermal imaging system is used to quantitatively measure the temperature distributions over the test plate under various test conditions. DBD plasma actuators are embedded over the surface of a DU91-W2-250 wind turbine blade model, and a series of experiments were conducted by using the
Given approximately one million small and light aircraft in operation worldwide, icing detection and icing quantification of in-flight icing are still an open research topic. Despite technical means are available to de-ice on ground, there is a lack of a suitable control system based on sensor data to de-ice while the aircraft is airborne. Most often, it is still task of the pilot to visually inspect the icing status of the airfoil and/or other critical parts of the aircraft such as engine air intakes, which distracts the flight crew from flying the aircraft especially in IMC conditions. Based on preliminary simulation and tests in 2014 in a collaborative research project lasting from 2015 until 2018, the technology of energy self-sustaining, wireless, self-adhesive smart sensors for industrial sensing in an aerodynamically critical environment (i.e. wind turbines) was further investigated to fulfil general aviation requirements. Prototype hardware setups have been designed and built
Items per page:
50
1 – 50 of 163