Browse Topic: Electronic braking systems

Items (1,896)
Traction control is a critical technique to prevent wheel slip in vehicles, ensuring optimal traction force between the tire and the ground. This study proposes a system that leverages Model-based Predictive Control (MPC) to effectively manage and control longitudinal slip. The proposed system introduces constraints specifically designed to limit longitudinal slip, offering a significant improvement over traditional approaches. The system is evaluated with simulations of a single-corner model, using the Pacejka’s Magic Formula to define the tire force. The results demonstrate the effectiveness of the control in maintaining maximum traction and highlight its advancements compared to previous work.
Rosa, Tobias José Degli EsposteRodrigues, Gustavo SimãoLopes, Elias Dias Rossi
Antilock braking systems (ABS) are critical to ensuring vehicle safety, particularly in challenging off-road environments where the braking dynamics is highly complex. This study focuses on the development of an advanced ABS controller for heavy off-road vehicles to improve operational safety and reliability. For this purpose, a Model-based Predictive Control (MPC) is proposed. The predictive capabilities of MPC, which optimize control actions based on system dynamics and constraints, are highlighted as a key aspect of this approach. The controlled system is modeled and simulated using a quarter-car model and a deformable ground model, providing a realistic representation of off-road conditions. Comparative simulations are conducted to evaluate the performance of both controllers, focusing on their effectiveness in maintaining stability and improving braking efficiency.
Sawada, Fernando SatoshiSantos, Luís Guilherme CavalcanteRodrigues, Gustavo SimãoRossi Lopes, Elias Dias
Vehicle dynamic control is crucial for ensuring safety, efficiency and high performance. In formula-type electric vehicles equipped with in-wheel motors (4WD), traction control combined with torque vectoring enhances stability and optimizes overall performance. Precise regulation of the torque applied to each wheel minimizes energy losses caused by excessive slipping or grip loss, improving both energy efficiency and component durability. Effective traction control is particularly essential in high-performance applications, where maintaining optimal tire grip is critical for achieving maximum acceleration, braking, and cornering capabilities. This study evaluates the benefits of Fuzzy Logic-based traction control and torque distribution for each motor. The traction control system continuously monitors wheel slip, ensuring they operate within the optimal slip range. Then, torque is distributed to each motor according to its angular speed, maximizing vehicle efficiency and performance
Oliveira, Vivian FernandesHayashi, Daniela TiemiDias, Gabriel Henrique RodriguesAndrade Estevos, JaquelineGuerreiro, Joel FilipeRibeiro, Rodrigo EustaquioEckert, Jony Javorski
If road friction coefficient can be measured in a car driving, the performance of advanced driver-assistance systems (ADAS) such as antilock braking system (ABS) and automatic braking systems can be improved. Generally, ADAS uses information obtained from wheel speed sensors, acceleration sensors, and the like. However, it is difficult to measure accurately road friction coefficients with these sensors. Therefore, many studies measured road friction coefficients from strain or deformation in the bottom of a tire (tread), which is the only place to contact with a road surface. However, a sensor installed on the bottom of a tire is easy to peel or damage because greater deformation occurs locally on the bottom of a tire. Therefore, this study develops a method of measuring the road friction coefficient from the strain induced in a tire sidewall. If the tire sidewall can be used, stable measurement can be expected because the sidewall is harder to deform locally than the bottom of a tire
Higuchi, MasahiroTachiya, Hiroshi
(TC)The paper presents a designed and evaluated optimal traction control (TC) strategy for unmanned agriculture vehicle, where onboard sensors acquire various real-time information about wheel speed, load sharing, and terrain characteristics to achieve the precise control of the powertrain by establishing an optimal control command; moreover, the developed AMT-adaptive SMC combines the AMT adaptive control algorithm and the SMC to implement the dynamic gear shifting, torque output, and driving mode switching to obtain an optimal power distribution according to different speed demand and harvest load. Based on the establishment of models of the autonomous agriculture vehicle and corresponding tire model, a MATLAB/Simulink method based on dynamic simulation is adopted to simulate the unmanned agricultural vehicle traversing different terrains conditions. The results from comparison show that the energy saving reaches 19.0%, rising from 2. 1 kWh/km to 1. 7 kWh/km, an increase in
Feng, ZhenghaoLu, YunfanGao, DuanAn, YiZhou, Chuanbo
As one of the main indexes of functional safety evaluation, controllability is of critical significance. According to ISO26262 standard, by analyzing the impact of potential faults such as unexpected torque and regenerative braking force loss on vehicle controllability under different working conditions, this paper designs a vehicle controllability test scheme under abnormal motor function under multiple scenarios such as straights, lane changes and curves, and builds a test scheme under abnormal motor function. The mapping relationship between vehicle dynamic state data and controllability level provides a new idea for quantitative analysis of vehicle controllability.
Yang, XuezhuHe, LeiLi, ChaoRen, Zhiqiang
To tackle persistent operational instability and excessive energy consumption in marine observation platforms under wave-induced disturbances, this paper introduces a novel ultra-low-power stabilization system based on pendulum dynamics. The system employs an innovative mechanical configuration to deliberately decouple the rotation axis from the center of mass, creating controlled dynamic asymmetry. In this behavior, the fixed axis serves as a virtual suspension pivot while the camera payload functions as a concentrated mass block. This configuration generates intrinsic gravitational restoring torque, enabling passive disturbance attenuation. And its passive foundation is synergistically integrated with an actively controlled brushless DC motor system. During platform oscillation, embedded algorithms detect angular motion reversals. In addition, their detection triggers an instantaneous transition from motor drive to regenerative braking mode, and transition facilitates bidirectional
Zhang, TianlinLiu, ShixuanXu, Yuzhe
Power electronics are fundamental to sustainable electrification, enhancing energy, efficiency, integrating renewable energy sources, and reducing carbon emissions. In electric vehicles (EVs), power electronics is crucial for efficient energy conversion, management, and distribution. Key components like inverters, rectifiers, and DC-DC converters optimize power from renewable sources to meet EV system requirements. In EVs, power electronics convert energy from the lithium-ion battery to the electric vehicle motor, with sufficient propulsion and regenerative braking. Inverters is used to transfer DC power from the lithium-ion eEV battery to alternating current for the motor, while DC-DC converters manage voltage levels for various vehicle systems. These components maximize EV energy efficiency, reduce energy losses, and extend driving range. Power electronics also support fast and efficient battery charging, critical for widespread EV adoption. Advanced charging solutions enable rapid
Pipaliya, Akash PravinbhaiHatkar, Chetan
The research work elaborated the structural integrity of airvent by skipping the assembly level snap fit finite element analysis of knob to reduce computational complexity of air vent knob sliding test post stopper. During assembly, the strain based mechanical breakage prediction of airvent sliding knob snaps is investigated in non-prestressed condition. The research work proposes a FEM based analysis approach to evaluate the mechanical breakage load of airvent knob assembly for accidental sliding load. This process skips the assembly level snap insertion load case along with silicone rubber pad compression which could serve as the prerequisite simulation. This prerequisite simulation is computationally expensive and complex to solve due to polymer plasticity and silicone rubber elastomer hyper-elasticity and moving frictional contacts between parts. If the accidental sliding load case without considering pre-tension on snaps is simulated, the load causing mechanical failure in the FEM
Shah, VirenWani, DishantMiraje, Jitendra
High Performance Resistors (HPR), also known as brake resistors are used in zero emission vehicles (ZEVs) to dissipate excess electrical energy produced during regenerative braking, as heat energy. It is necessary to use a suitable cooling technique to release this heat energy into the atmosphere in a regulated manner. Currently in most of the ZEVs, liquid cooled HPR with its dedicated heat exchanger and other auxiliaries such as pump, surge tank, Coolant and coolant lines, is used which increases the cost, packaging space and assembly time. This paper presents air cooling as a substitute heat-exchanging technique for high-performance resistors which eliminates the need of auxiliaries mentioned above, resulting in space optimization and reduction in assembly time. An air cooled HPR, designed for this study consists of a heat exchanger, which accommodates a resistor wire within its tubes. The design was made to fit commercial vehicle use, specific to trucks, due to packaging constraints
Menariya, Pravin GaneshKumar, VishnuArhanth, MahimaUmesha, SathwikJagadish, Harshitha
This study proposes a novel control strategy for a semi-active truck suspension system using an integral–derivative-tilted (ID-T) controller, developed as a modification of the TID controller. The ant colony optimization (ACO) algorithm is employed to tune the controller parameters. Performance is evaluated on an eight-degrees-of-freedom semi-active suspension system equipped with MR dampers. The objective is to minimize essential dynamic responses (displacement, velocity, and acceleration) of the sprung mass, cabin, and seat. The controller also considers the nonlinear effects including suspension travel, pitch dynamics, dynamic tire loads, and seat-level vibration dose value (VDV). System performance is assessed under both single bump and random road excitations. The ACO-tuned ID-T controller is compared against passive suspension, MR passive (OFF/ON), and ACO-tuned PID and TID controllers. Simulation results demonstrate that the proposed controller achieves superior performance in
Gad, S.Metered, H.Bassiuny, A. M.
The objective of this trial was to compare the energy efficiency and performance of battery electric and conventional diesel tractors. Controlled road tests replicating normal operations were conducted using two electric and two diesel day-cab tractors. The test protocol was based on the TMC - Type III RP 1103A and SAE J1526 test procedures. The tests were conducted on a 110 km long route that included a 59 km hilly portion with a maximum altitude difference of 307 m. The tractors were divided into test groups of two vehicles. Trailers and drivers were switched throughout the trial between the tractors in a test group. The tests found that the two electric trucks consumed 60% and 63% less energy than their counterpart diesel trucks, respectively. Considering the average emission factor for production of electricity in Canada, the electric trucks emitted on average 82% less GHG emissions than the conventional diesel-powered tractors. The two diesel trucks showed similar fuel consumption
Surcel, Marius-DorinPartington, MarkTanguay-Laflèche, MaximeSchumacher, Richard
This study investigates an optimal control strategy for a battery electric vehicle (BEV) equipped with a high-speed motor and a continuously variable transmission (CVT). The proposed dual-motor powertrain model activates only one motor at a time, with Motor A routed through a CVT and Motor B through a fixed gear. To improve energy efficiency, two optimization methods are evaluated: a quasi-steady-state map-based approach and a dynamic programming (DP) method. The DP approach applies Bellman’s principle to derive the globally optimal CVT ratio and motor torque trajectory over the WLTC cycle. Simulation results demonstrate that the DP method significantly improves overall efficiency compared to traditional control logic. Furthermore, the study proposes using DP-derived maps to refine practical control strategies, offering a systematic alternative to conventional experimental calibration.
Zhao, HanqingMoriyoshi, YasuoKuboyama, Tatsuya
Electric double-layer capacitors (EDLCs) store charge by adsorbing ions at the electrode–electrolyte interface, offering fast charge–discharge rates, high power density, minimal heat generation, and long cycle life. These characteristics make EDLCs ideal for memory backup in electronic devices and power assistance in electric and hybrid vehicles, where rapid energy response and high-power delivery are critical. However, their energy density remains lower than that of batteries, requiring improvements in capacitance and operating voltage. Activated carbon with high surface area is commonly used as the electrode material, but its microporous structure limits ion transport at high rates, reducing power performance. This limitation is especially critical in automotive motor drive systems. Recent research has shifted toward mesoporous carbon materials, which improve ion diffusion and accessibility. In this study, resorcinol–formaldehyde carbon cryogels (RFCCs) with controlled mesoporous
Cheng, ZairanOkamura, TsubasaOhnishi, YutoNakagawa, Kiyoharu
Increasing the mission capability of ground combat and tactical vehicles can lead to new concepts of operation that enhance safety and effectiveness of warfighters. High-temperature power electronics enabled by wide-bandgap semiconductors such as silicon carbide can provide the required power density to package new capabilities into space-constrained vehicles and provide features including silent mobility, boost acceleration, regenerative braking, adaptive cooling, and power for future protection systems and command and control (C2) on the move. An architecture using high voltage [1] would best satisfy the ever-increasing power demands to enable defense against unmanned aerial systems (UAS) and offensive directed energy (DE) systems for advanced survivability and lethality capabilities.
Eddins, R.Lambert, C.Habic, D.Haynes, A.Spina, J.Schwartz, E.
In recent years, motorsport has increasingly focused on environmental concerns, leading to the rise of hybrid and fully electric competitions. In this scenario, electric motors and batteries take a crucial role in reducing the environmental impact by recovering energy during braking. However, due to inherent limitations, motors and battery cannot fully capture all braking power, necessitating the use of standard friction brakes. To achieve an efficient balance between electric motors and friction brakes, the brake pressure can no longer be directly controlled by the driver. Instead, it must be computed by the Vehicle Control Unit (VCU) and sent to a smart actuator, i.e. the Brake-By-Wire (BBW), which ensures that the required pressure is applied. The standard approach to achieve precise pressure control is to design a nested Proportional-Integral-Derivative (PID) control architecture, which requires an accurate nominal model of the system dynamics to meet the desired tracking
Gimondi, AlexDubbini, AlbertoRiva, GiorgioCantoni, Carlo
The emergence of Software Defined Vehicles (SDVs) has introduced significant complexity in automotive system design, particularly for safety-critical domains such as braking. A key principle of SDV architecture is the centralization of control software, decoupled from sensing and actuation. When applied to Brake-by-Wire (BbW) systems, this leads to decentralized brake actuation that demands precise coordination across numerous distributed electronic components. The absence of mechanical backup in BbW systems further necessitates fail-operational redundancy, increasing system complexity and placing greater emphasis on rigorous system-level design validation. A comprehensive understanding of component interdependencies, failure propagation, and redundancy effectiveness is essential for optimizing such systems. This paper presents a custom-built System Analysis Tool (SAT), along with a specialized methodology tailored for modeling and analyzing BbW architectures in the context of SDVs
Heil, EdwardZuzga, SeanBabul, Caitlin
Electro-mechanical braking (EMB) system has emerged as a potential candidate that serves the brake-by-wire technology. Several mechanisms are used to transmit the clamp force, where each has efficiency losses due to static friction and viscous damping. Compensating these losses is essential for accurate responses such that meeting the performance goal and improving the stopping distance of the EMB. Mathematical and empirical models are used to estimate these losses so that clamp force is accurately estimated and controlled. However, none of these models are capable of addressing the part-to-part variation or predicting the impact of other noise factors on these losses such as operating temperature and degradation. The purpose of this work is to online estimate the EMB coulomb friction by introducing an external torque command over a period of time while observing the system’s response. This approach continuously measures the coulomb friction while the system is in normal operation
Aljoaba, SharifRamakrishnan, RajaDobbs, Jeremy
The electro-mechanical brake (EMB) is a promising brake actuating system for electrified vehicle. To enhance the system function safety while saving space from redundancy sensors, this paper studied sensorless climbing force control for the EMB where a new climbing force estimator is proposed by fusing the information from vehicle dynamics and EMB states. The work was done with three contributions: 1) The priori clamping force characteristics were implemented to build the estimator with two parallel models, one of which was derived from the actuator rigid-body dynamics while the other was derived from vehicle longitudinal dynamics model; 2) a proportional-integral (PI) observer utilizing wheel speed residual signals was developed to correct the initial estimates iteratively; 3) a fuzzy control controller was proposed to optimize the key parameters of the PI observer. Comparative study was conducted on a co-simulation platform and the results showed that the actuator-to-vehicle joint
Xing, YipuZhou, QuanCheng, YulinLi, CongcongHan, WeiZhuo, GuirongXiong, Lu
Over the life of a typical vehicle (often estimated as 15 years or 300,00 km), an average driver can be expected to apply the brakes about 1.6 million times – almost 9 times per mile and over 290 times per day, and an “exuberant” driver can be expected to do this over 2.2 million times. Without question, the driver becomes accustomed to how the vehicle responds to braking control (and all of the normal variation around it), and even develops expectations for how it will respond the next time the brakes are employed. In the rare event of a failure or malfunction in the brake system resulting in an appreciably different vehicle response to the brake input, this can be surprising and even alarming to the driver, sometimes to the extent of causing hesitation in braking. Fortunately, with the rise of mechatronic braking actuators in the 1980’s and 1990’s paved the way for features such as “Driver Brake Assist” (which provides additional pressure beyond what the primary brake actuator can at
Antanaitis, David
As the ICE vehicle changes into the EV, we can use regenerative brake. It can improve not only the energy consumption but also reduce the hydraulic brake usage. The less hydraulic brake usage mitigates the heat loading on the brake disc. From this reason, the lightweight brake can be used in the EV. However, when the lightweight brake is applied, the brake NVH can be increased. The optimization design of the lightweight brake should be done to prevent the brake NVH. In this paper, the optimal brake disc thickness and brake interfaces are determined by using of disc heat capacity analysis. The lightweight brake should be optimized by using of the brake squeal analysis. We can verify the results from both analysis and test. Finally, we can have the lightweight brake, which is competitive in terms of cost, weight and robust to the brake NVH.
Kim, SunghoKim, JeongkyuHwang, JaekeunKang, Donghoon
An optimization framework for trip and charging planning for electric heavy-duty vehicles is proposed in this paper. Building upon and extending previous work on light-duty vehicles, our approach models energy-aware routing by constructing a state-augmented graph that jointly captures geographic position and battery state-of-charge. We refine the route model to include detailed vehicle dynamics and speed constraints specific to heavy-duty vehicles, and introduce an alternative graph construction method that avoids the computational complexity of lexicographic products by generating only feasible nodes. The resulting framework enables efficient trip planning that accounts for driving behavior, road characteristics, and charging infrastructure. Simulation results demonstrate the effectiveness of the approach in reducing energy consumption and ensuring operational feasibility for long-haul freight transport.
Zonetti, DanieleSciarretta, AntonioDe Nunzio, Giovanni
The brake system is a critical safety component in motor vehicles. Advances in the electrification of the powertrain and the rise of autonomous driving technologies are significantly impacting the brake system, which allows innovative approaches and necessitating the development of new brake concepts and new deceleration strategies. A major technological advance is the decoupling of the driver from the brake system through Brake-by-wire technology. A crucial attribute of Brake-by-wire systems is the attainment of a concept-independent deceleration behavior. To establish a consistent and brand-specific deceleration behavior in the early development phase, objective metrics and perceptual thresholds are required to describe the desired subjective braking behavior. Moreover, objective metrics are indispensable for the virtual phase of the vehicle development process. This article focuses on deceleration from a straight-ahead drive. To identify objective metrics and perceptual thresholds
Biller, RalphUdovicic, MatejKetzmerick, ErikKirch, SebastianMayr, StefanProkop, GüntherWagner, Andreas
This paper examines the influence of a detailed dynamic model of a Surface Permanent Magnet Synchronous Motor (SPMSM) on the accurate evaluation of kinetic energy recovery during braking in a mild hybrid vehicle. The model, implemented in MATLAB Simulink, is based on the motor’s DQ equivalent circuit, accounting for transient effects, inductance variability, and magnetic saturation. Also, a 2nd Order Thevenin Equivalent model of the battery is used in order to take into account the bus voltage variability. Simulations reveal that the dynamic model predicts significant variations in energy recovery potential, with differences of up to 25% compared to static models under specific braking conditions. These discrepancies are particularly pronounced during high-speed high-torque transitions, where transient electrical behaviors strongly influence energy recovery. The model’s accuracy enhances the reliability of energy simulations, especially in scenarios involving frequent or intense
Lombardi, SimoneFederici, LeonardoTribioli, LauraBella, Gino
Power hop is a vibration phenomenon that occurs during high accelerations from low speed. In severe cases it can lead to component damage or deformation. Therefore, the affected vehicles must be safeguarded against these vibrations by a safe design of the components and by additional software-based functions. Conventional software-based solutions, such as Traction Control Systems (TCS), often perform delayed interventions and apply harsh torque adjustments that reduce driving comfort. Motivated by these challenges, this paper proposes a novel approach for power hop detection in a high-torque vehicle based on Long Short-Term-Memory Network (LSTM) and real-time measurements. Unlike conventional methods, our LSTM precisely detects the start of power hop, enabling proactive torque adjustments. Due to its impact on vehicle stability, the model must achieve a high level of reliability and robustness. Given the importance of data quality in Machine Learning (ML), we consider data-related
Chehoudi, MoatezMoisidis, IoannisSailer, MarcPeters, Steven
Electrification of city busses is an important factor for decarbonisation of the public transport sector. Due to its strictly scheduled routes and regular idle times, the public transport sector is an ideal use case for battery electric vehicles (BEV). In this context, the thermal management has a high potential to decrease the energy demand or to increase the vehicles range. The thermal management of an electric city bus controls the thermal behaviour of the components of the powertrain, such as motor and inverters, as well as the conditioning of the battery system and the heating, ventilation, and air conditioning (HVAC) of the drivers’ front box and the passenger room. The focus of the research is the modelling of the thermal behaviour of the important components of an electric city bus in MATLAB/Simscape including real-world driving cycles and the thermal management. The heating of the components, geometry and behaviour of the cooling circuits as well as the different mechanisms of
Schäfer, HenrikMeywerk, MartinHellberg, Tobias
In electric vehicles, the control of driveline oscillations and tire traction is critical for guaranteeing driver comfort and safety. Yet, achieving sufficient driveline control performance remains challenging in the presence of rapidly varying road conditions. Two promising avenues for further improving driveline control are adaptive model predictive control (MPC) and model-based reinforcement learning (RL). We derive such controllers from the same non-linear vehicle model and validate them through pre-defined test scenarios. The MPC approach employs input and output trajectory tracking with soft constraints to ensure feasible control actions even in the presence of constraint violations and is further supported by a Kalman filter for robust state estimation and prediction. In contrast, the RL controller leverages the model-based DreamerV3 algorithm to learn control policies autonomously, adapting to different road conditions without relying on external information. The results
Uhl, Ramón TaminoSchüle, IsabelLudmann, LaurinGeist, A. René
The article investigates how to detect as quickly as possible whether the driver will lose control of a vehicle, after a disturbance has occurred. Typical disturbances refer to wind gusts, obstacle avoidance, a sudden steer, traversing a pothole, a kick by another vehicle, and so on. The driver may be either human or non-human. Focus will be devoted to human drivers, but the extension to automated or autonomous cars is straightforward. Since the dynamic behavior of vehicle and driver is described by a saddle-type limit cycle, a proper theory is developed to use the limit cycle as a reference trajectory to forecast the loss of control. The Floquet theory has been used to compute a scalar index to forecast stable or unstable motion. The scalar index, named degree of stability (DoS), is computed very early, in the best case, in a few milliseconds after the disturbance has ended. Investigations have been performed at a dynamic driving simulator. A 14 DoF vehicle model, virtually driven by
Della Rossa, FabioFontana, MatteoGiacintucci, SamueleGobbi, MassimilianoMastinu, GiampieroPreviati, Giorgio
This research presents a semi-active suspension system that combines an air spring and a magneto-rheological (MR) fluid damper to produce both active force and variable damping rates based on the road conditions. The suspension system used for the military light utility vehicle (MLUV) has seven degrees of freedom. A nonlinear model predictive control system generates the desired active force for the air spring control signal, while the linear quadratic regulator (LQR) estimates the target tracking of the intended damping force. The recurrent neural network is designed to develop a controller for an identification system. To achieve the optimal voltage for the MR damper without log time, it is used to simultaneously determine the active control force of the air spring by modifying the necessary damping force tracking. The MLUV suspension system is integrated with the traction control system to improve overall vehicle stability. A fuzzy traction controller adjusts the throttle angle
Shehata Gad, Ahmed
Brake-by-wire (BBW) systems, characterized by fast response, high precision, ease installation, and simplified maintenance, are highly likely to become the future braking systems. However, the reliability of BBW is currently inferior to that of traditional hydraulic braking systems. Considering ECE R13 regulations, actuator reliability, and braking efficiency, this article first proposes a new braking force distribution strategy to prevent braking failure and enhance vehicle safety without modifying the actuator itself. The strategy reduces the operating frequency of rear actuators during low- and medium-intensity braking, thereby extending their service life and operational reliability. Then, the co-simulation model combining Simulink and AMESim was established for simulation validation based on direct drive braking actuator. Additionally, the real-vehicle test platform was built for typical braking scenarios. The simulation and experimental results show that this strategy
Li, TianleGong, XiaoxiangHe, ChunrongDeng, ZhenghuaZhang, HongXu, RongHe, HaitaoWang, XunZhang, Huaiyue
Letter from the Guest Editors
Wang, ZhenfengZhang, YunqingQi, RonghuaiLu, Yukun
To optimize vehicle chassis handling stability and ride safety, a layered joint control algorithm based on phase plane stability domain is proposed to promote chassis performance under complicated driving conditions. First, combining two degrees-of-freedom vehicle dynamics model considering tire nonlinearity with phase plane theory, a yaw rate and side slip angle phase plane stability domain boundary is drew in real time. Then based on the real-time stability domain and hierarchical control theory, an integrated control system with active front steering (AFS) and direct yaw moment control (DYC) is designed, and the stability of the controller is validated by Lyapunov theory. Finally, the lateral stability of the vehicle is validated by Simulink and CarSim simulations, real car data, and driving simulators under moose test and pylon course slalom test. The experimental results confirm that the algorithm can enhance the maneuverability and ride safety for intelligent vehicles.
Liao, YinshengZhang, ZhijieSu, AilinZhao, BinggenWang, Zhenfeng
The trend towards electrification propulsion in the automotive industry is highly in demand due to zero-emission and becoming more significant across the world. Battery electric vehicles have lower overall noise as compared to conventional I.C Engine counterparts due to the absence of engine combustion and mechanical noise. However, other narrowband and tonal noises are becoming dominant and are strongly perceived inside the cabin. With the ongoing push towards electrification, there is likely to be increased focus on the noise impact of gearing required for the transmission of power from the electric motor to the road. Direct coupling of E-motors with Axle has resulted in severe tonal noises from the driveline due to instant e-motor torque ramp up from 0 rpm and reverse torque on driving axle during regenerative braking. The tonal noises from the rear axle during vehicle running become very critical for customer perception. For automotive NVH engineers, it has become a challenge to
Doshi, SohinKalsule, DhanajiSawangikar, PradeepSuresh, VineethSharma, Manish
With the advancement of control technology in the automotive field, there is a possibility of cross-system redundant control between various actuators. As for the braking system, current brake-by-wire system often uses mechanical backup braking methods to give the vehicle a certain braking capacity after failure. However, in the mechanical backup braking mode, the brake master cylinder is connected to the supporting wheel cylinder, and the brake assist is lost, which leads to an increase in brake pressure and makes it difficult for the driver to step on the brake pedal. Meanwhile, due to the limitation of the brake master cylinder stroke, the maximum braking deceleration of the vehicle is only 3 m/s2 after the driver fully presses the brake pedal. The above two defects greatly affect the safety of the vehicle during backup braking. To solve the above problems, this article takes electric vehicles as the research object, designs a new type of hydraulic circuit for the braking system
Tian, BoshiLi, LiangLiao, YinshengLv, HaijunHu, ZhimingSun, YueQu, Wenying
This article analyses the fundamental curving mechanics in the context of conditions of perfect steering off-flanging and on-flanging. Then conventional, radial, and asymmetric suspension bogie frame models are presented, and expressions of overall bending stiffness kb and overall shear stiffness ks of each model are derived to formulate the uniform equations of motion on a tangent and circular track. A 4 degree of freedom steady-state curving model is formulated, and performance indices such as stability, curving, and several parameters including angle of attack, tread wear index, and off-flanging performance are investigated for different bogie frame configurations. The compatibility between stability and curving is analyzed concerning those configurations and compared. The critical parameters influencing hunting stability and curving ability are evaluated, and a trade-off between them is analyzed. For the verification, the damped natural frequencies and mean square acceleration
Sharma, Rakesh ChandmalSharma, Sunil KumarPalli, SrihariRallabandi, Sivasankara RajuSharma, Neeraj
The unicycle self-balancing mobility system offers superior maneuverability and flexibility due to its unique single-wheel grounding feature, which allows it to autonomously perform exploration and delivery tasks in narrow and rough terrains. In this paper, a unicycle self-balancing robot traveling on the lunar terrain is proposed for autonomous exploration on the lunar surface. First, a multi-body dynamics model of the robot is derived based on quasi-Hamilton equations. A three-dimensional terramechancis model is used to describe the interaction between the robot wheels and the lunar soil. To achieve stable control of the robot's attitude, series PID controllers are used for pitch and roll attitude self-balancing control as well as velocity control. The whole robot model and control strategy were built in MATLAB and the robot's traveling stability was analyzed on the lunar terrain.
Shi, JunweiZhang, KaidiDuan, YupengWu, JinglaiZhang, Yunqing
With the development of automotive electrification and intelligent technology, vehicles have higher and higher requirements for braking systems. On the one hand, it requires it to have an active braking function, and at the same time facilitates the integration with other control systems of the chassis domain. The system should minimize oil pollution as much as possible, and under the premise of ensuring the pedal force, it can be used to recover the brake energy as much as possible to improve the range of electric vehicles as possible. The new brake system based on Electronic mechanical brake (EMB) as a line -controlled decoupling braking system can not only meet the needs of the brake pedal sensation, but also achieve continuous and accurate control of braking power. It can effectively Taking into account braking economy, braking safety, and braking comfort. In addition, the development of EMB technology is still immature and the failure rate is high, so research on EMB's fault
Li, XuesongQin, KeyunZheng, HongyuKaku, Chuyo
Clamping force control in Electromechanical Brake (EMB) systems must overcome various nonlinear characteristics, such as motor distorted voltage, Back Electromotive Force (EMF), and actuator friction disturbances. Therefore, modeling and parameter identification of these nonlinearities are necessary. This paper first proposes a motor parameter identification method based on the mathematical model of a Permanent Magnet Synchronous Motor (PMSM). A combination of the Least Square Method and Particle Swarm Optimization (PSO) is used to stepwise identify both the electrical and mechanical parameters of the motor. The accuracy of the identified parameters is validated by comparing simulation results with test bench responses. The identified parameters are applied to design the motor Back EMF compensation module, the distorted voltage compensation module, and to tune the current loop parameters. Next, a lumped parameter friction model suitable for closed-loop clamping force control in EMB
Qiao, LeXiong, LuZhuo, GuirongShu, Qiang
As a distributed wire control brake system, the electro-mechanical brake (EMB) may face challenges due to the need to integrate the actuator in the limited space beside the wheel. During extended downhill braking, especially on wet roads with reduced adhesion, the EMB must operate at high intensity. The significant heat generated by friction can lead to thermal deformation of components, such as the lead screw, compromising braking stability. This paper focuses on pure electric light trucks and proposes a tandem composite braking method. This approach uses an eddy current retarder (ECR) or motor to provide basic braking torque, while the EMB supplies the dynamic portion of the braking torque, thereby alleviating the braking pressure on the EMB. First, a driver model, tire model, motor model, and braking models are developed based on the vehicle's longitudinal dynamics. In addition, the impact of various factors, such as rainfall intensity, road slope, ramp length and vehicle speed, on
Liu, WangZhang, YuXiao, HongbiaoShen, Leiming
Brake-by-wire systems have received more and more attention in the recent years, but a close look on the available systems shows, that they have not reached full by-wire level yet. Most systems are still using hydraulic connections between main cylinder and the brake calipers on at least one axle to ensure functional safety. Mostly, this is the front axle, since the front brakes have to convert more kinetic energy during braking manoeuvers. Electromechanical actuators are currently used for rear brakes in hybrid brake-by-wire applications solely, since a loss of the front brake calipers can lead to severe conditions and control loss of the vehicle during braking. Further, the higher mass of battery electric vehicles (BEVs) leads to much higher braking forces on both axles and to increased sizes of the electromechanical calipers. This article presents a concept for a brake-by-wire system for battery electric vehicles, which features electromechanical brake actuators on all corners and a
Heydrich, MariusLenz, MatthiasIvanov, ValentinStoev, JulianLecoutere, Johan
Vehicle sideslip is a valuable measurement for ground vehicles in both passenger vehicle and racing contexts. At relevant speeds, the total vehicle sideslip, beta, can help drivers and engineers know how close to the limits of yaw stability a vehicle is during the driving maneuver. For production vehicles or racing contexts, this measurement can trigger Electronic Stability Control (ESC). For racing contexts, the method can be used for driver training to compare driver techniques and vehicle cornering performance. In a fleet context with Connected and Autonomous Vehicles (CAVS) any vehicle telemetry reporting large vehicle sideslip can indicate an emergency scenario. Traditionally, sideslip estimation methods involve expensive and complex sensors, often including precise inertial measurement units (IMUs) and dead reckoning, plus complicated sensor fusion techniques. Standard GPS measurements can provide Course Over Ground (COG) with quite high accuracy and, surprisingly, the most
Hannah, AndrewCompere, Marc
Items per page:
1 – 50 of 1896