Browse Topic: Electronic braking systems
Komatsu introduced its first battery-electric load-haul-dump (LHD) machine, the WX04B, at the MINExpo tradeshow in September. The WX04B is designed specifically for narrow vein mines in underground hard rock mining operations. Komatsu is pairing the electric LHD with its new OEM-agnostic 150-kW battery charger that was also revealed in Las Vegas. The 4-tonne WX04B LHD features what Komatsu claims is best-in-class energy density, offering up to four hours of runtime on a single charge. The Li-ion NMC (nickel-manganese-cobalt) battery from Proterra has a capacity of 165 kWh and nominal voltage of 660 V. Fewer charge cycles are needed compared to competitors, the company claims, which helps to maximize operational efficiency and minimize downtime. Proterra and Komatsu began their collaboration on the LHD's H Series battery system in 2021, long before Komatsu's acquisition of American Battery Solutions (ABS) in December 2023
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways
ABSTRACT In this paper, a conceptually new research direction of the tire slippage analysis is provided as a new technological paradigm for agile tire slippage control. Specifically, the friction coefficient-slippage dynamics is analyzed and its characteristic parameters are introduced. Next, the nonlinear relation between the wheel torque and the tire instantaneous rolling radius incorporating the longitudinal elasticity factor is analyzed. The relation is shown to be related to the tire slippage. Further, its importance is clarified by deriving its dynamics and specifically, the instruction is given how it can be utilized to control slippage. Finally, the indices are introduced to assess the mobility and agility of the wheel in order to achieve optimal response to severe terrain conditions. The indices comprise of the introduced friction coefficient-slippage characteristic parameters. Citation: M. Ghasemi, V. Vantsevich, D. Gorsich, J. Goryca, A. Singh, L. Moradi, “Physics Based
ABSTRACT Teleoperated ground vehicles are an integral part of the U.S. Army and Marine Corps long range vision and a key transition technology for fully autonomous vehicles. However, the combination of marginally-stable vehicle dynamics and limited perception are a key challenge facing teleoperation of such platforms at higher speeds. New technologies for enhancing operator perception and automatically detecting and mitigating rollover risk are needed to realize sufficient safety and performance in these applications. This paper presents three rollover mitigation concepts for high speed teleoperation of heavy tactical vehicles, including model-predictive warning, negative obstacle avoidance, and reactive brake controls. A modeling and simulation approach was used to evaluate these concepts within the Autonomous Navigation Virtual Environment Laboratory (ANVEL). Vehicle models for both the M1078 cargo truck and RG-31 MRAP were used throughout concept evaluation over terrain ranging from
ABSTRACT When building simulation models of military vehicles for mobility analysis over deformable terrain, the powertrain details are often ignored. This is of interest for electric and hybrid-electric vehicles where the maximum torque is produced at low speeds. It is easy to end up with the drive wheels spinning and reducing traction and eventually the vehicle digging itself down in the soil. This paper reveals improvements to mobility results using Traction Control Systems for both wheeled and tracked vehicles. Simulations are performed on hard ground and two types of deformable soil, Lethe sand and snow. For each soft soil, simulations have been performed with a simple terramechanics model (ST) based on Bekker-Wong models and complex terramechanics (CT) using the EDEM discrete element soil model which Pratt & Miller Engineering (PME) has been instrumental in developing. To model the traction control system a PD controller is used that tries to limit the slip velocity at low speed
ABSTRACT Future wheeled and tracked military vehicles will be equipped with multiple active chassis control systems, as systems currently in widespread use on passenger and commercial vehicles such as brake-based electronic stability control are implemented on military vehicles. It is essential that these systems work in an integrated fashion to avoid negative interactions between systems. The approach currently used to achieve integrated control in the passenger and commercial vehicle segments requires extensive tuning and development of the individual systems through cooperative efforts of the vehicle and active chassis system manufacturers, an approach that would generally not be feasible in the military vehicle segment. This paper presents a simple approach for achieving integrated control of multiple active chassis systems that is tailored to the unique commercial and developmental challenges faced by military vehicles
ABSTRACT This paper provides detail of the system architecture and systems engineering process utilized by AM General to develop a new stability control system that satisfies all military and federal safety requirements for wheeled, light tactical vehicles
ABSTRACT A new integrated testing system for the validation of stochastic vehicle-snow interaction models is presented in this paper. The testing system consists of an instrumented test vehicle, vehicle-mounted laser profilometer and a snow micropenetrometer. The test vehicle is equipped on each tire with a set of 6-axis wheel transducers, and a GPS-based data logger tracks vehicle motion. Data is also simultaneously acquired from the sensors from the test vehicle’s Electronic Stability Program. The test vehicle provides measurements that include three forces and moments at each wheel center, vehicle body slip angle, speed, acceleration, yaw rate, roll, and pitch. The profilometer has a 3-D scanning laser and an Inertial Measurement Unit to compensate for vehicle motion. Depth of snow cover, profile of snow surface and wheel sinkage can be obtained from the profilometer. The snow micropenetrometer measures the strength of the snow cover before and after vehicle traversal. Preliminary
ABSTRACT The Army has identified an operational need for a Robotic Convoy capability for its tactical vehicle fleets. The Department of Defense (DoD), with a fleet of over several hundred thousand tactical vehicles, must identify an approach with supporting technology and supply base to procure and support a Robotic Convoy solution at the lowest possible cost. While cost is a key driver, the selected system approach must be proven and robust to ensure the safety of our soldiers and the supply chain. An effective approach is to integrate and adapt the advanced automotive technologies, components and suppliers currently delivering advanced safety technologies into the automotive market. These advanced automotive technologies merged with DoD robotics enhancements in tactical behaviors, autonomous driving, command & control and unmanned systems collaboration will advance the operational utility of robotic convoy application in manned and unmanned modes. Figure 1 Military Application The
ABSTRACT This paper discusses the semi-active suspension system developed by A.M. General to provide mobility and maneuverability for tactical, wheeled vehicles
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1 ARP4754 2 ARP4761 3 RTCA DO-178 4 RTCA DO-254 5 RTCA DO-160 6 ARP490 7 ARP1383 8 ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance. For definitions of
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems
Items per page:
50
1 – 50 of 1862