Browse Topic: Electronic braking systems
Conventional control of Brake-by-Wire (BBW) systems, including electro-hydraulic brake(EHB) and electro-mechanical brake(EMB), relys on pressure sensors, the errors of which usually resulted inaccurate braking force tracking bringing a lot of safety hazards, e.g., wheel locking and slipping. To address challenges of accurate braking force control under the circumstance of the system nonliearities (such as friction) and uncertainties (such as stiffness characteristics) for a sensorless BBW system, this paper proposes a unified Layer-by-Layer Progressive (LLP) control framework to enable fast and precise brake control. The work has been conducted with three new contributions in the three cascaded stages within the control framework: in the coarse compensation stage, a load-adaptive LuGre friction model is proposed to handle modellable nonlinearities; in the fine compensation stage, an Adaptive Extended Disturbance Observer (AEDO) is developed to estimate and compensate for parameter
This study investigates an optimal control strategy for a battery electric vehicle (BEV) equipped with a high-speed motor and a continuously variable transmission (CVT). The proposed dual-motor powertrain model activates only one motor at a time, with Motor A routed through a CVT and Motor B through a fixed gear. To improve energy efficiency, two optimization methods are evaluated: a quasi-steady-state map-based approach and a dynamic programming (DP) method. The DP approach applies Bellman’s principle to derive the globally optimal CVT ratio and motor torque trajectory over the WLTC cycle. Simulation results demonstrate that the DP method significantly improves overall efficiency compared to traditional control logic. Furthermore, the study proposes using DP-derived maps to refine practical control strategies, offering a systematic alternative to conventional experimental calibration.
Increasing the mission capability of ground combat and tactical vehicles can lead to new concepts of operation that enhance safety and effectiveness of warfighters. High-temperature power electronics enabled by wide-bandgap semiconductors such as silicon carbide can provide the required power density to package new capabilities into space-constrained vehicles and provide features including silent mobility, boost acceleration, regenerative braking, adaptive cooling, and power for future protection systems and command and control (C2) on the move. An architecture using high voltage [1] would best satisfy the ever-increasing power demands to enable defense against unmanned aerial systems (UAS) and offensive directed energy (DE) systems for advanced survivability and lethality capabilities.
As the ICE vehicle changes into the EV, we can use regenerative brake. It can improve not only the energy consumption but also reduce the hydraulic brake usage. The less hydraulic brake usage mitigates the heat loading on the brake disc. From this reason, the lightweight brake can be used in the EV. However, when the lightweight brake is applied, the brake NVH can be increased. The optimization design of the lightweight brake should be done to prevent the brake NVH. In this paper, the optimal brake disc thickness and brake interfaces are determined by using of disc heat capacity analysis. The lightweight brake should be optimized by using of the brake squeal analysis. We can verify the results from both analysis and test. Finally, we can have the lightweight brake, which is competitive in terms of cost, weight and robust to the brake NVH.
Letter from the Guest Editors
Items per page:
50
1 – 50 of 1904