Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent EDGE Research Reports

Browse All 140

Latest Journal Issues

Browse All 16

Recent Books

Browse All 935

Recently Published

Browse All
Increasing awareness of the harmful effects on the environment of traditional Internal Combustion Engines (ICE) drives the industry toward cleaner powertrain technologies such as battery-driven Electric Vehicles (EV). Nonetheless, the high energy density of Li-Ion batteries can cause strong exothermic reactions under certain conditions that can lead to catastrophic results, called Thermal Runaway (TR). Hence, a strong effort is being made to understand this phenomenon and increase battery safety. Specifically, the vented gases and their ignition can cause the propagation of this phenomenon to adjacent batteries in a pack. In this work, Computational Fluid Dynamics (CFD) is employed to predict this venting process in an LG18650 cylindrical battery. The shape of the venting cap deformation obtained from experimental results was introduced in the computational model. The ejection of the generated gases was considered to analyze its dispersion in the surrounding volume through a ReynoldsGil, AntonioMicó, CarlosMarco-Gimeno, JavierCastro Espín, Mar
The extension of traction batteries from electric vehicles with supercapacitors is regularly discussed as a possibility to increase the lifetime of lithium-ion batteries as well as the performance of the vehicle drive. The objective of this work was to validate these assumptions by developing a simulation model. In addition, an economic analysis is performed to qualitatively classify the simulation results. Initially, a hybrid energy storage system consisting of battery and supercapacitor was developed. A semi-active hybrid energy storage topology was selected. Subsequently, the selection of use cases as well as the application-specific definition of load cycles took place. In addition, the control strategy was further developed so that a simulation on lifetime was made possible. The end-of-life of the battery cells was defined, according to the USABC guideline values. Based on the data of the respective use case, the control strategy parameter optimization was carried out according toMödl, RomanBraun, AndreasKallis, Lena
In the dynamic landscape of battery development, the quest for improved energy storage and efficiency has become paramount. The contemporary energy transition, coupled with growing demands for electric vehicles, renewable energy sources, and portable electronic devices, has underscored the critical role that batteries play in our modern world. To navigate this challenging terrain and harness the full potential of battery technology, a well-defined and comprehensive data strategy resp. knowledge management strategy are indispensable. Conversely, the imminent and rapid progression of artificial intelligence (AI) is poised to have a substantial impact on the forthcoming landscape of work and the methodologies organizations employ for the management of their knowledge management (KM) procedures. Conventional KM endeavors encompass a spectrum of activities such as the creation, transmission, retention, and evaluation of an enterprise’s knowledge over the entire knowledge lifecycle. HoweverBadi, IbtihalBraun, AndreasKallis, Lena
Thermal runaway is a critical safety concern in lithium-ion battery systems, emphasising the necessity to comprehend its behaviour in various modular setups. This research compares thermal runaway propagation in different modular configurations of lithium-ion batteries by analysing parameters such as cell spacing and applying phase change materials (PCMs) and Silica Aerogel. The study at the module level includes experimental validation and employs a comprehensive model considering heat transfer due to thermal runaway phenomena. It aims to identify the most effective modular configuration for mitigating thermal runaway risks and enhancing battery safety. The findings provide valuable insights into the design and operation of modular lithium-ion battery systems, guiding engineers and researchers in implementing best practices to improve safety and performance across various applicationsGarcia, AntonioMonsalve-Serrano, JavierDreif, AminGuaraco-Figueira, Carlos
In this article, we investigated the effects of material parameters on the clinching joint geometry using finite element model (FEM) simulation and machine learning-based metamodels. The FEM described in this study was first developed to reproduce the shape of clinching joints between two AA5052 aluminum alloy sheets. Neural network metamodels were then used to investigate the relation between material parameters and joint geometry as predicted by FEM. By interpreting the data-driven metamodels using explainable machine learning techniques, the effects of the hard-to-measure material parameters during the clinching are studied. It is demonstrated that the friction between the two metal sheets and the flow stress of the material at high (up to 100%) plastic strain are the most influential factors on the interlock and the neck thickness of the clinching joints. However, their dependence on the material parameters is found to be opposite. First, while the friction between the two metalNguyen, Duc VinhTran, Van-XuanLin, Pai-ChenNguyen, Minh ChienWu, Yan-Jiu
Aluminum and its alloys entered a main role in the engineering sectors because of their applicable characteristics for indispensable applications. To enhance requisite belongings for the components, the composition of variant metal/nonmetal with light metal alloys is essential in the manufacturing industries. To enhance the wear resistance with significant strength property of the aluminum alloy 2024, the reinforcement SiC and fly ash (FA) were added with the designation Al2024 + 10% SiC; Al2024 + 5% SiC + 5% FA; and Al2024 + 10% FA via stir-casting technique. The wear resistance property of the composites was tested in pin-on-disc with a dry-sliding wear test procedure. The experiment trials were designed in Box–Behnken design (BBD) by differing the wear test parameters like % of reinforcement, sliding distance (m), and load (N). The wear tests on casted samples were carried out at the constant velocity of 2 m/sec, such that the corresponding wear rate for the experiment trials wasSivakumar, N.Sireesha, S. C.Raja, S.Ravichandran, P.Sivanesh, A. R.Aravind Kumar, R.
Fang, ChenRazdan, rahulBeiker, SvenTaleb-Bendiab, Amine
Razdan, RahulKhalighi, YaserKhalkhali, MohsenAlonso da Silva, Fabio
Reinforcement learning (RL) is a computational approach to understanding and automating goal-directed learning and decision-making. The difference from other computational approaches is the emphasis on learning by an agent from direct interaction with its environment to achieve long-term goals [1]. In this work, the RL algorithm was implemented using Python. This then enables the RL algorithm to make decisions to optimize the output from the system and provide real-time adaptation to changes and their retention for future usage. A diesel engine is a complex system where a RL algorithm can address the NOx–soot emissions trade-off by controlling fuel injection quantity and timing. This study used RL to optimize the fuel injection timing to get a better NO–soot trade-off for a common rail diesel engine. The diesel engine utilizes a pilot–main and a pilot–main–post-fuel injection strategy. Change of fuel injection quantity was not attempted in this study as the main objective was toVaze, AbhijeetMehta, Pramod S.Krishnasamy, Anand
Beiker, SvenBock, ThomasTaiber, Joachim
Coyner, KelleyBittner, JasonLambermont, SergeDe Boer, Niels
Lehmann, JohannesMoorehead, StewartMuelaner, Jody E.
Abdul Hamid, Umar ZakirRoth, ChristianNickerson, JeffreyLyytinen, KalleKing, John Leslie
Beiker, SvenPorcel Magnusson, CristinaWaraniak, John
Beiker, SvenMuelaner, Jody E.Razdan, Rahul