Browse Topic: Roll

Items (1,556)
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
Vehicles with a high center of gravity (CG) and moderate wheel track, like compact Sport Utility Vehicles (SUVs), have a relatively low Static Stability Factor (SSF) and thus are inherently less stable and more susceptible to rollover crashes. Moreover, to be more maneuverable in highly populated urban areas, a smaller Turning Circle Diameter (TCD) is necessary. Here, Variable Gear Ratio (VGR) steering systems have major benefits over traditional Constant Gear Ratio (CGR) systems in terms of enhancing both roll stability and agility. To adapt VGR steering systems to a particular vehicle dynamic, Full Vehicle (FV) and Driver-in-the-Loop (DIL) simulations are utilized. Using this method, exact calibration is possible according to realistic driving conditions so that the VGR steering C-factor curve is properly tuned for optimal handling in on-center, off-centre, and transitional areas of the Steering Wheel Angle (SWA). Primary performance measures—e.g., SWA gradients at different lateral
Rewale, PratikKopiec, JakubKumar, DevaRasal, ShraddheshHussain, InzamamNehal, S B
Vehicle dynamics is a vital area of automotive engineering that focuses on analyzing how a vehicle responds to driver inputs and external factors like road conditions and environmental influences. Achieving optimal performance, safety, and ride comfort requires a detailed understanding of longitudinal, lateral, and vertical dynamic behavior. The objective of this paper is to develop and validate the model of a concept Race car and evaluate its vehicle dynamics behavior using IPG CarMaker, a high-fidelity virtual testing environment widely used in industry. The model incorporates a range of vehicle parameters, including suspension parameters like spring and damper characteristics, mass distribution, tire properties and powertrain parameters. The performance evaluation is done as per standard guidelines, including Constant Radius turn test, Sine Steer test and other standard tests like Acceleration, Braking along with Ride and Comfort classification. The key parameters that are
Agrewale, Mohammad Rafiq B.Vaish, Ujjwal
This study presents an integrated vehicle dynamics framework combining a 12-degree-of-freedom full vehicle model with advanced control strategies to enhance both ride comfort and handling stability. Unlike simplified models, it incorporates linear and nonlinear tire characteristics to simulate real-world dynamic behavior with higher accuracy. An active roll control system using rear suspension actuators is developed to mitigate excessive body roll and yaw instability during cornering and maneuvers. A co-simulation environment is established by coupling MATLAB/Simulink-based control algorithms with high-fidelity multibody dynamics modeled in ADAMS Car, enabling precise, real-time interaction between control logic and vehicle response. The model is calibrated and validated against data from an instrumented test vehicle, ensuring practical relevance. Simulation results show significant reductions in roll angle, yaw rate deviation, and lateral acceleration, highlighting the effectiveness
Duraikannu, DineshDumpala, Gangi Reddi
Balance towards various Vehicle attributes often faces design contradictions, particularly in Noise, Vibration, and Harshness (NVH) optimization. Traditional approaches rely on trade-offs, but TRIZ (Theory of Inventive Problem Solving) offers a structured methodology to resolve contradictions innovatively. This paper presents TRIZ-based solutions for 2 key NVH challenges: (1) exhaust systems requiring noise reduction while maintaining low engine back-pressure, (2) engine mounts requiring both softness for vibration isolation and hardness for durability & vehicle stability, By applying TRIZ principles such as separation, mechanics change, etc. and using Thinking Tools such as thinking in time & scale, novel solutions are proposed to achieve superior performance without traditional compromises. These case studies demonstrate how TRIZ enhances automotive NVH refinements by enabling systematic innovations. This also explores benefits of Frugal Engineering for profitable launch of new
A, Milind Ambardekar
This study focuses on the multifunctional three-body high-speed unmanned boat model, and experimentally measures the roll attenuation characteristics under different draft conditions. It focuses on the influence of the initial roll angle on roll attenuation, and analyzes the change pattern of roll angle over time. Experimental results show that the model shows obvious self-oscillation period and amplitude attenuation. Based on the system identification theory and combined with improved genetic algorithms, a mathematical model used to simulate the roll attenuation motion of the boat model was constructed. The difference between experimental data and fitted values was further evaluated using identification software and verified with data at specific roll angles. In addition, the study also deeply analyzed the change trend of the roll moment coefficient with the initial roll angle. By comparing the experimental results of the three-mall boat and the catamaran, it was found that the three
Zhang, DiTong, WeiYu, QingzhuLiu, Bofei
With the development of intelligent networking technology and autonomous driving technology, how to efficiently and safely schedule intelligent networked autonomous vehicles at signalless intersections has become a research hotspot in traffic management. Based on this, this article first designs an objective function that considers both intersection traffic efficiency and intersection traffic safety, taking into account constraints such as safe distance, speed, acceleration, etc., and constructs a signal free intersection CAV traffic scheduling model. On this basis, a model solving algorithm based on rolling ant colony algorithm is proposed. Simulation experiments show that compared with typical signal control methods, this method can significantly improve intersection traffic efficiency and reduce the number of conflicts.
Zhao, YingjieLiu, XiaomingMa, ZechaoWang, Yuanrong
Operating tractors on inclined & uneven terrains for prolonged operations presents safety and ergonomic challenges. Applications such as shuttle operations, loader use, or long-duration implement usage prove to be highly critical based on field observations across Mahindra tractor platforms and it requires skill & experience for maneuvering at ease across usage. We identified the need to offload these repeatable tasks from the operator to improve control & offer comfort. This paper explains the role of Advanced drive assistance features developed for Mahindra tractors suited for all prime mover types – ICE, Alternate Fuels including electric. These features include Hill Hold, Electronic parking brake, Cruise control & Creep mode. Each feature is designed to offload frequent manual tasks from the operator and ensure smoother, safer operation. Hill hold and electronic parking brake work in tandem to offer unparalleled safety by eliminating the fear of tractor roll back in uneven terrain
M, RojerSundaram, PavithraNatarajan, SaravananDevakumar, KiranMuniappan, Balakrishnan
This study investigates the dynamic characteristics of the steering handlebar, termed "lean-over characteristics," by combining unmanned bicycle experiments with frequency response analysis. The focus is on the frequency response function from external lateral force to roll angle and steering angle, with particular attention to the relationship between these outputs. Subjective evaluations conducted by test riders revealed noticeable differences in steering feel between the two bicycle configurations. These differences were quantitatively explained by the gain and phase characteristics of the FRF between roll angular angle and steering angle, especially at approximately 7 Hz. The origin of this dynamic behavior was identified as zeros in the transfer function of roll angle. At this frequency, the external moment input and the inertial response of the vehicle body cancel each other out, resulting in suppressed roll motion and an enhanced steering response. Numerical simulations
Sakai, HidekiNakagawa, YoshihiroTezuka, YoshitakaYamashita, HirokiMiyagishi, Shunichi
Specialized robots that can both fly and drive typically touch down on land before attempting to transform and drive away. But when the landing terrain is rough, these robots sometimes get stuck and are unable to continue operating. Now a team of Caltech engineers has developed a real-life Transformer that has the “brains” to morph in midair, allowing the dronelike robot to smoothly roll away and begin its ground operations without pause. The increased agility and robustness of such robots could be particularly useful for commercial delivery systems and robotic explorers.
This article reviews the key physical parameters that need to be estimated and identified during vehicle operation, focusing on two key areas: vehicle state estimation and road condition identification. In the vehicle state estimation section, parameters such as longitudinal vehicle speed, sideslip angle, and roll angle are discussed, which are critical for accurately monitoring road conditions and implementing advanced vehicle control systems. On the other hand, the road condition identification section focuses on methods for estimating the tire–road friction coefficient (TRFC), road roughness, and road gradient. The article first reviews a variety of methods for estimating TRFC, ranging from direct sensor measurements to complex models based on vehicle dynamics. Regarding road roughness estimation, the article analyzes traditional methods and emerging data-driven approaches, focusing on their impact on vehicle performance and passenger comfort. In the section on road gradient
Chen, ZixuanDuan, YupengWu, JinglaiZhang, Yunqing
In traditional four-wheeled automobiles, the imbalance between the roll moment, which is the product of the centrifugal force during a turn acting on the center of gravity and the height of the center of gravity, and roll stiffness, which is the product of the left-right difference in tire vertical load and the tread width and commonly used among automotive suspension engineers, of the front and rear sections necessitates body torsional rigidity. However, there is a lack of specific cases and guidelines for constructing the body structure of three-wheeled PMVs (Personal Mobility Vehicles) with a tilting mechanism from the perspective of vehicle dynamics characteristics. In this paper, the basic considerations related to the dynamics of such three-wheeled PMVs are investigated. We use the term “torsional rigidity” to refer to the stiffness as the torsional deformation of the body itself, and the term “roll stiffness” to refer to the moment that counteracts the roll moment during a turn
Haraguchi, TetsunoriKaneko, Tetsuya
Automotive signal processing is dealt with in several contributions that propose various techniques to make the most out of the available data, typically for enhancing safety, comfort, or performance. Specifically, the accurate estimation of tire–road interaction forces is of high interest in the automotive world. A few years ago the T.R.I.C.K. tool was developed, featuring a vehicle model processing experimental data, collected through various vehicle sensors, to compute several relevant virtual telemetry channels, including interaction forces and slip indices. Following years of further development in collaboration with motorsport companies, this article presents T.R.I.C.K. 2.0, a thoroughly renewed version of the tool. Besides a number of important improvements of the original tool, including, e.g., the effect of the limited slip differential, T.R.I.C.K. 2.0 features the ability to exploit advanced sensors typically used in motorsport, including laser sensors, potentiometers, and
Napolitano Dell’Annunziata, GuidoFarroni, FlavioTimpone, FrancescoLenzo, Basilio
Novel experimental and analytical methods were developed with the objective of improving the reliability and repeatability of coast-down test results. The methods were applied to coast-down tests of a SUV and a tractor-trailer combination, for which aerodynamic wind-tunnel data were available for comparison. The rationale was to minimize the number of unknowns in the equation of motion by measuring rolling and mechanical resistances and wheel-axle moments of inertia, which was achieved using novel experimental techniques and conventional rotating-drum tests. This led to new modelling functions for the rolling and mechanical resistances in the equation of motion, which was solved by regression analysis. The resulting aerodynamic drag coefficient was closer to its wind-tunnel counterpart, and the predicted low-speed road load was closer to direct measurements, than the results obtained using conventional methods. It is anticipated that applying the novel techniques to characterize the
Tanguay, Bernardde Souza, Fenella
This study introduces an innovative torque vectoring control strategy designed to enhance ride comfort in autonomous electric vehicles. The approach seamlessly integrates steering and rear axle force control within a model predictive control (MPC) framework, enabling real-time optimization of comfort and handling performance. The proposed control method is applied to a two-rear-motor vehicle model, where the MPC algorithm adjusts steering angles and tire forces to minimize discomfort caused by yaw rate and lateral acceleration. Simulation results from a lane-change scenario demonstrate significant improvements in comfort metrics compared to conventional torque vectoring control strategies. The findings highlight the ability of the proposed method to significantly enhance ride comfort without compromising vehicle dynamics. This integrated and adaptive control strategy offers a promising solution for improving passenger satisfaction in autonomous electric vehicles, with potential
Zhao, BolinLou, BaichuanHe, XianqiXue, WanyingLv, Chen
In this paper, the equivalent elliptic gauge pendulum model of liquid sloshing in tank is established, the pendulum dynamic equation of tank in non-inertial frame of reference is derived, and the dynamics model of tank transporter is constructed by force analysis of the whole vehicle. A liquid tank car model was built in TruckSim to study its dynamic response characteristics. Aiming at the problem that the coupling effect between liquid sloshiness in tank and tank car can easily affect the rolling stability of vehicle, the roll dynamics model of tank heavy vehicle is established based on the parameterized equivalent elliptic gauge single pendulum model, and the influence of different lateral acceleration and suspension system on the roll stability is studied. The results show that the coupling effect between the motion state of the tank car and the liquid slosh lengthens the oscillation period of the liquid slosh in the tank, and the amplitude of the load transfer rate of the tank car
Yukang, Guo
In order to manage the serious global environmental problems, the automobile industry is rapidly shifting to electric vehicles (EVs) which have a heavier weight and a more rearward weight distribution. To secure the handling and stability of such vehicles, understanding of the fundamental principles of vehicle dynamics is inevitable for designing their performance. Although vehicle dynamics primarily concerns planar motion, the accompanying roll motion also influences this planar motion as well as the driver's subjective evaluation. This roll motion has long been discussed through various parameter studies, and so on. However, there is very few research that treats vehicle sprung mass behavior as “vibration modes”, and this perspective has long been an unexplored area of vehicle dynamics. In this report, we propose a method to analytically extract the vibration modes of the sprung mass by applying modal analysis techniques to the governing equations of vehicle handling and stability
Kusaka, KaoruYuhara, Takahiro
Since most of the existing studies focus on the identification of the yaw stable region, but ignore the identification of the roll stable region, this article presents a software tool YRSRA for calculating both the yaw and roll stable region for ground vehicle system with 5G-V2X. And the frequency of rollover instability of commercial vehicles such as trucks and buses is not low, and the cost of rollover accidents is often greater than the cost of yaw instability accidents. Therefore, it is necessary to identify the stability region of yaw and roll at the same time. Firstly, the iterative model of yaw rate and slip angle is constructed through deducing the two-degree-of-freedom vehicle dynamics. Secondly, the load transfer ratio (LTR) is coded with given yaw rate and slip angle. Thirdly, several Illustrative examples are depicted, such as variation of steer angle, road adhesion coefficient and vehicle speed. The software features an easy to generate yaw and roll stability region by on
Tu, LihongZeng, DequanZhang, ZhoupingHe, QixiaoZhao, ShuqiSun, JingWang, AichunYu, QinMing, JinghongWang, XiaoliangHu, Yiming
This paper is a continuation of a previous effort to evaluate the post-impact motion of vehicles with high rotational velocity within various vehicle dynamic simulation softwares. To complete this goal, this paper utilizes a design of experiments (DOE) method. The previous papers analyzed four vehicle dynamic simulation software programs; HVE (SIMON and EDSMAC4), PC-Crash and VCRware, and applied the DOE to determine the most sensitive factors present in each simulation software. This paper will include Virtual Crash into this methodology to better understand the significant variables present within this simulation model. This paper will follow a similar DOE to that which was conducted in the previous paper. A total of 32 trials were conducted which analyzed ten factors. Aerodynamics, a factor included in the previous DOE, was not included within this DOE because it does not exist within Virtual Crash. The same three response variables from the previous DOE were measured to determine
Roberts, JuliusCivitanova, NicholasStegemann, JacobBuzdygon, DavidThobe, Keith
It might look like a roll of chicken wire, but this tiny cylinder of carbon atoms — too small to see with the naked eye — could one day be used for making electronic devices ranging from night vision goggles and motion detectors to more efficient solar cells, thanks to techniques developed by researchers at Duke University.
A serious problem of public healthcare around the world is the number of road vehicle accidents, every year almost 1,3 million people die and approximately 20 to 50 million people suffer a non-fatal accident because of a road vehicle accident [1]. As a result of that, in 2021 the World Health Organization stated the “The Second Decade of Action for Road Safety”, which the goal is to prevent at least 50% of deaths and injuries due traffic by 2030. To achieve this goal, the automobile companies have invested in technology and products that can enhance vehicle safety. Despite exist some control systems able to reduce roll, and consequently the roll over, such as active suspension, semi-active suspension, and stability control systems, none of them have as main purpose reduce the number of rollovers. The following study aims to examine the effects of an active anti roll bar, to improve the vehicle dynamics during corners and reduce the risk of a rollover by reducing the roll of the sprung
Gomes, Pedro CarvalhoTeixeira, Evandro Leonardo SilvaMorais, Marcus Vinicius GirãoFortaleza, Eugenio Liborio FeitoraSantos Gioria, Gustavo
This paper proposes a path-tracking and direct yaw moment integrated control strategy based on linear matrix inequality (LMI) and terminal sliding mode for autonomous distributed drive electric vehicles (A-DDEVs) equipped with a steer-by-wire (SBW) system. This strategy effectively attenuates the effects of external disturbances and parameter uncertainties on path tracking, thereby enhancing vehicle safety. The control-oriented vehicle model accounts for roll effects, with the system state matrix incorporating mismatched norm bounded uncertainties. Firstly, for overall vehicle motion control, an LMI-based integral sliding mode controller (ISMC) is designed to generate desired front wheel steering angle and additional yaw moment. This aims to converge path-tracking errors and ensure vehicle stability. A sufficient condition for the existence of a sliding surface ensuring asymptotic stability of the sliding mode dynamics is provided, along with a demonstration of the attainability of the
Li, DanyangZhao, YouqunLin, FenZhang, ChenxiYu, Song
This research addresses the pivotal role of active anti-roll bars in mitigating vehicle body roll during cornering, thereby enhancing overall stability, maneuverability, and comfort. The proposed approach integrates two distinct control methodologies—a straightforward error proportional controller and a reinforcement learning (RL)-based controller. Each front and rear active anti-roll bar applies a roll-reducing torque computed by the proportional controller during cornering. However, this torque alone proves insufficient in effectively damping roll oscillations induced by road irregularities. The RL-based controller leverages observations encompassing inertial measurement unit data (roll rate, pitch rate, and vertical acceleration), and wheel vertical displacements and employs the roll as a reward signal. This controller calculates two additional corrective torques. These torques are seamlessly incorporated by both front and rear anti-roll bars alongside the proportional controller
Marotta, RaffaeleStrano, SalvatoreTerzo, MarioTordela , Ciro
Hydro-pneumatic suspension is widely used because of its desirable nonlinear stiffness and damping characteristics. However, the presence of parameter uncertainties and high nonlinearities in the system, lead to unsatisfactory control performance of the traditional controller in practical applications. In response to this challenge, this paper proposes a novel stability control method for active hydro-pneumatic suspension (AHPS). Firstly, a nonlinear mathematical model of the hydro-pneumatic suspension, considering the seal friction, is established based on the hydraulic principle and the knowledge of Fluid dynamics. On the basis of the established hydro-pneumatic suspension nonlinear model, a vehicle dynamics model is established. Secondly, an active disturbance rejection sliding mode controller (ADRSMC) is designed for the vertical, roll, and pitch motions of the sprung mass. The lumped disturbance caused by the model nonlinearities and uncertainties is estimated by the extended
Niu, ChangshengLiu, XiaoangJia, XingGong, BoXu, Bo
This paper studies design parameters, selection of materials and structural analysis for an All-Terrain Vehicle (ATV) BAJA roll cage at the event site in any possible situation. SolidWorks 2022 was used for creating the prototype of the roll cage and then both static structural as well as dynamic crash analysis for the roll cage was done using Altair HyperWorks 2023 for various collisions like front, rear, side, rollover, torsional, front bump, rear bump, front roll over, side roll over and rear roll over. In addition to their corresponding deformation, Von Mises stresses were observed and a safety factor was calculated for these load cases which was found to be in the range of 1.5 to 3. Without reducing the roll cage’s strength, the roll cage designed for a four-wheel drive configuration is developed with driver comfort and safety in mind. Finding the optimal safety factor is the core objective of the analysis, as it ensures in any situation, the ATV’s roll cage will stay secure.
L, Ravi KumarSanjay P, ChiranjeevT J, Pravin ChanderMoses J, JebishD, ParthesunG, Sureshmani
To enhance vehicle dynamic stability during driving, we developed a three-dimensional phase space model that incorporates the sideslip angle of center of mass, yaw rate, and lateral load transfer rate. This model enabled real-time evaluation and active control of vehicle stability. First, longitudinal and lateral controllers were implemented to ensure precise vehicle trajectory. Second, a hierarchical control strategy was designed to actively manage the desired sideslip angle, yaw rate, and roll angle based on the vehicle’s destabilizing conditions, thereby maintaining the vehicle within a stable state space. We simulated and tested the stability analysis methods and integrated control strategies for both cars and trucks under DLC (double lane change) and CDC (circular driving condition) scenarios using joint simulations with CarSim/TruckSim and Simulink. The proposed integrated stability control strategy, which combined MPC-based trajectory tracking with direct yaw moment control and
Lai, FeiXiao, HaoHuang, Chaoqun
Three dynamic models of a passenger car including the one-dimensional dynamic model, two-dimensional dynamic model, and three-dimensional dynamic model are built to evaluate the ride quality of the passenger car as well as the isolating performance of the SNS (structure of negative stiffness). The decrease of the root-mean-square (RMS) accelerations in the seat and car’s body shaking is the research goal. The investigation results indicate that under all working conditions including the various excitations of the road surface and various velocities of the passenger car, the seat’s acceleration with SNS is strongly ameliorated in comparison without SNS in all three models of the passenger car. Particularly, the RMS seat acceleration with SNS in one-, two-, and three-dimensional models is strongly reduced in comparison without SNS by 76.87%, 66.15%, and 70.59%, respectively. Thus, the seat’s SNS has a good effect in isolating the vertical vibration of the passenger car’s seat. However
Zhang, LeiLi, TaoYang, Guixing
Jet Propulsion Laboratory Pasadena, CA
To investigate the rollover phenomena experienced by all-terrain vehicles (ATVs) during their motion caused by input from the road surface, a combined simulation using CarSim and Simulink has been employed to validate an active anti-rollover control strategy based on differential braking for ATVs, followed by vehicle testing. In the research process, a nonlinear three-degrees-of-freedom vehicle model has been developed. By utilizing a zero-moment point index as a rollover warning indicator, this approach could accurately detect the rollover status of the vehicle, particularly in scenarios involving low road adhesion on unpaved surfaces, which are characteristic of ATV operation. The differential braking, generating a roll moment by adjusting the amount of lateral force each braked tire can generate, was proved as an effective method to enhance rolling stability. Simulation and on-road testing results indicated that this control strategy effectively monitored the state of the ATV and
Hong, HanchiWang, Kuand’Apolito, LuigiQuan, KangningYao, Xu
The analysis presented in this document demonstrates the mathematical model approach for determining the rotation of a door about the hinge axis. Additional results from the model are the torque due to gravity about the axis, opening force, and the door hold open check link force. Vector mechanics, equations of a plane, and parametric equations were utilized to develop this model, which only requires coordinate points as inputs. This model allows for various hinge axis angles and door rotation angles to quickly be analyzed. Vehicle pitch and roll angles may also be input along with door mass to determine the torque about the hinge axis. The vector calculations to determine the moment arm of the door check link and its resulting force are demonstrated for both a standard check link design and an alternate check link design that has the link connected to a slider translated along a shaft. This math model may be implemented using commonly available programs such as Microsoft Excel VBA or
Storck, Phillip
Building upon prior research, this paper compares computer simulations to a previously conducted rollover crash test of a tractor-semitrailer. The effects of torsional stiffness were elucidated during the correlation of simulations to the rollover test. A commercially available vehicle dynamics and reconstruction software was used for the simulation. Unique aspects of the rollover crash test were modeled in the simulation. A tractor-semitrailer quarter-turn rollover crash test conducted by IMMI was reconstructed using impact and vehicle dynamics models within the simulation software HVE (Human, Vehicle & Environment). The SIMON (SImulation MOdel Non-linear) module and the DyMESH (Dynamic MEchanical SHell) module within HVE were used. During the IMMI test, onboard instrumentation recorded acceleration and roll rate data in six degrees of freedom to characterize both tractor and semitrailer dynamics before and during the rollover event. The roll angle and roll rate behavior of the HVE
Honeycutt, DanielRogers, GaryYang, ShuChinni, James
Water removal from Proton Exchange Membrane (PEM) Fuel Cell (FC) mainly involves two phenomena: some of the emerging droplets will roll on the Gas Diffusion Layer (GDL), others may impact channel walls and start sliding along the airflow direction. This different behaviour is linked to the hydrophobic/hydrophilic nature of the surface the water is moving on. In this paper, the walls of the channel of a FC were characterized by applying optical techniques. The deposition of droplets on the channel wall led to an evaluation of the proper range for Contact Angle Hysteresis (CAH = 55° - 45°), and due to the high wettability of the surface, droplets dimension was defined with a dimensionless parameter B/H. Under high crossflow condition (15 m/s) a sliding behaviour was observed. The channel features determined through image processing were used as boundary conditions for a 2D CFD two phase simulation employing the Volume of Fluid (VOF) model to keep track of the fluids interface. A droplet
Antetomaso, ChristianMerola, Simona SilviaIrimescu, AdrianVaglieco, Bianca MariaJannelli, Elio
This paper validates the single-track vehicle driver model available in PC-Crash simulation software. The model is tested, and its limitations are described. The introduction of this model eliminated prior limitations that PC-Crash had for simulating motorcycle motion. Within PC-Crash, a user-defined path can be established for a motorcycle, and the software will generate motion consistent with the user-defined path (within the limits of friction and stability) and calculate the motorcycle lean (roll) generated by following that path at the prescribed speed, braking, or acceleration levels. In this study, the model was first examined for a simple scenario in which a motorcycle traversed a pre-defined curve at several speeds. This resulted in the conclusion that the single-track driver model in PC-Crash yielded motorcycle lean angles consistent with the standard, simple lean angle formula widely available in the literature. The PC-Crash calculations did not account for the width of the
Palmer, JacobRose, Nathan A.Smith, ConnorWalter, KevinHashemian, Alireza
The Baja SAE Completion is an extreme off roading event that requires an effective suspension design to survive the many obstacles that make up the racecourses. Without an effective suspension the many participating teams will experience poor performance or even failure within their suspension. This research focuses on the development and optimization of a double wishbone suspension in both the front and rear. Additionally, the design and optimization of a sway bar attached to the rear suspension will be gone through. Both the front and rear suspension will be optimized through three simulations heave, roll, and steering through the use of Optimum Kinematics. The process for placing the coilovers to ensure they will move perpendicular to control arms throughout their travel and ensuring the coilovers length in fully compression and extension are not exceeded will be developed through the use of SolidWorks and Optimum Kinematics. An effective mounting location for the axles checking
Altmann, CraigWilliams, Keanu
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track. Analysis of suspension
De Carlo, MatteoDragone, PaoloTempone, Giuseppe PioCarello, Massimiliana
This work aims to present the application of mode coupling to a Formula Student racing vehicle and propose a solution. The major modes of a vehicle are heave, pitch, roll, and warp. All these modes are highly coupled – which means changing suspension rates or geometry will affect all of them – while alleviating some and making others worse characteristics. Decoupling these modes, or at least some of them, would provide more control over suspension setup and more refined race car dynamics for a given layout of the racetrack. This could improve mechanical grip and yield significant performance improvements in closed-circuit racing. If exploited well, this approach could also assist in the operation of the vehicle at an optimal kinematic state of the suspension systems, to gain the best wheel orientations and maximize grip from the tires under the high lateral accelerations and varied excitations seen on a typical road course. Previous strategies used by other researchers to achieve
Panchal, TanmayBastiaan, Jennifer
NVH refinement of commercial vehicles is the key attribute for customer acceptance. Engine and road irregularities are the two major factors responsible for the same. During powertrain isolators’ design alone, the mass and inertia of the powertrain are usually considered, but in practical scenarios, a directly coupled subsystem also disturbs the boundary conditions for design. Due to the upgradation in emission norms, the exhaust aftertreatment system of modern automotive vehicles becomes heavier and more complex. This system is further coupled to the powertrain through a flexible joint or fixed joint, which results in the disturbance of the performance of the isolators. Therefore, to address this, the isolators design study is done by considering a multi-body dynamics model of vehicles with 16 DOF and 22 DOF problems, which is capable to simulate static and dynamic real-life events of vehicles. Design indicators are thoroughly analyzed and validated through the rigid body modes and
Sarna, Amit KumarSingh, JitenderKumar, NavinSharma, Vikas
In automotive world role of suspension system is to absorb vibrations from the road, and to provide stability while vehicle is going over bumps or uneven roads, cornering, acceleration and braking etc. For body on frame SUVs which are typically characterized by high center of gravity, it is quite critical to find best balance in ensuring stability of the vehicle and having comfortable ride performance. Rigid axle rear suspension is quite a typical choice in such vehicles, wherein lower and upper control links are two important components subjected to lateral, longitudinal, and vertical loads. These links allow the vehicle to move smoothly throughout the entire range of suspension travel. Kinematics and compliance optimization of these links is a major factor in definition of ride-handling performance of the vehicle. The present study describes key challenges and methodology to define position as well as orientation of control links, where-in multiple inter-related handling and comfort
Hussain, InzamamJani, HarshilRasal, ShraddheshAsthana, ShivamAhire, ManojJadhav, PrashantLenka, VisweswaraVellandi, Vikraman
Potholes are a major cause of discomfort for riders and vehicle damage. The passive suspension systems which are used in the passenger vehicles are primarily reaction based. These can’t adapt to the changing road conditions which means the best ride quality and handling characteristics cannot be ensured for different driving situations. Passive suspension system also needs more maintenance due to its inability to reduce the impact of the road irregularities. In recent years, semi-active suspension systems have been developed to improve ride comfort and vehicle safety. This paper covers the integration of a semi-active suspension system with a road preview mechanism with a TATA car model to investigate its impact on ride comfort, handling characteristics and component loads in digital domain. A quarter car vehicle model is used to compare different active damping control strategies. The best strategy is selected and integrated in a full vehicle MBS model to gain deeper insight on ride
Mishra, SatyakamPrasad, TejMaruenda Sanz, Javier
Heavy Commercial Road Vehicles (HCRVs) may be more susceptible to rollover incidents due to their higher centre of gravity position than passenger vehicles, and rollover is one of the significant causes of HCRV accidents. Therefore, variation in vehicle roll behaviour becomes crucial to the safety of an HCRV. Toe misalignment is a commonly observed phenomenon in HCRVs, and studying its impact on roll behaviour is important. In this study, the impact of the symmetric toe and thrust misalignment on the roll behaviour of an HCRV is analysed using IPG TruckMaker®, a vehicle dynamics simulation software. A ramp steer manoeuvre was used for the simulations, and the toe misalignment on a wheel was chosen from the range [-0.21°, 0.21°]. Variation in roll behaviour was quantified using the steering wheel angle at which one-wheel lift-off (OWL) occurred (SWAL). Additionally, an analytical model was formulated to predict OWL and the model predictions were compared with the results from IPG
Chandran, AmarchandGrandhe, RoshanMukhopadhyay, ArkoSharma, MitanshuShankar Ram, C S
Items per page:
1 – 50 of 1556