Browse Topic: Slip
The sideslip angle and tire-road peak adhesion coefficient (TRPAC) are crucial parameters for intelligent active safety systems in automobiles. The accuracy and real-time estimation of these parameters significantly affect control effectiveness. And there is a strong coupling between the two parameters, which brings great challenges to the joint estimation. This paper proposes a nonlinear dynamic estimator that pre-estimates tire lateral force to achieve synchronous estimation of sideslip angle and TRPAC. Additionally, to cope with sudden changes in road adhesion condition, a TRPAC preliminary estimation optimization algorithm is introduced. Moreover, an adaptive gain adjustment algorithm for the sideslip angle estimator is implemented to address large lateral excitation conditions. Simulation results on various road surfaces and under various lateral excitation conditions demonstrate that the proposed joint estimator enables accurate and rapid estimation of sideslip angle and TRPAC.
The pursuit of maintaining a zero-sideslip angle has long driven the development of four-wheel-steering (4WS) technology, enhancing vehicle directional performance, as supported by extensive studies. However, strict adherence to this principle often leads to excessive understeer characteristics before tire saturation limits are reached, resulting in counter-intuitive and uncomfortable steering maneuvers during turns with variable speeds. This research delves into the phenomenon encountered when a 4WS-equipped vehicle enters a curved path while simultaneously decelerating, necessitating a reduction in steering input to adapt to the increasing road curvature. To address this challenge, this paper presents a novel method for dynamically regulating the steady-state yaw rate of 4WS vehicles. This regulation aims to decrease the vehicle's sideslip angle and provide controlled understeer within predetermined limits. As a result, the vehicle can maintain a zero-sideslip angle during turns with
This SAE Recommended Practice is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 friction test is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluid combinations. The specific purpose of this document is to define a µPVT test for the evaluation of the variation of wet friction system low speed slip characteristics as a function of speed, temperature, and pressure. This procedure is intended as a suggested method for both suppliers and end users. The only variables selected by the supplier or user of the friction system are: Friction material Fluid Reaction plates Oil flow (optional) These four variables must be clearly identified when reporting the results of this test. If any of the test parameters or system hardware as described in this document are changed
Vehicle chassis design can take great advantage from a virtual design approach, as it helps tackle the complexity of modern machines, bringing benefits in performance, development cost, and lead-time. For specific applications such as construction or defense vehicles, the simulation design chain may lack significant input model bricks due to the physical limitations of existing test equipment which limit their ability to characterize the large components and extreme loading conditions (high loads, large torques, extreme slip angles. etc.). Michelin SIMIX proposes / develops an innovative solution to fill the gap by combining physical real world measured data with virtual measurements, allowing the creation of digital models relevant to the full usage perimeter.
This study examines the impact of slip in aero-thermal conditions of supercooled large droplets (SLD) produced in an Icing Wind Tunnel (IWT) on the ice accretion characteristics. The study identifies potential biases in the SLD model development based on IWT data and numerical predictions that assume the SLD to be in aerothermal equilibrium with the IWT airflow. To obtain realistic temperature and velocity data for each droplet size class in the test section of the Braunschweig Icing Wind Tunnel (BIWT), a Lagrangian droplet tracking solver was used within a Monte Carlo framework. Results showed that SLDs experience considerable slips in velocity and temperature due to their higher inertia and short residence time in the Braunschweig IWT. Large droplets were found to be warmer and slower than the flow in the test section, with larger droplets experiencing larger aerothermal slips. To examine the impact of these slips, numerical ice accretion simulations were performed on a NACA 0012
Upcoming, stricter diesel exhaust emissions standards will likely require aftertreatment architectures with multiple diesel exhaust fluid (DEF) introduction locations. Managing NH3 slip with technologies such as an ammonia slip catalyst (ASC) will continue to be critical in these future aftertreatment systems. In this study, we evaluate the impact of SO2 exposure on a state-of-the-art commercially available ASC. SO2 is co-fed at 0.5 or 3 ppmv to either approximate or accelerate a real-world exhaust SO2 impact. ASC performance during sulfur co-feeding is measured under a wide variety of simulated real-world conditions. Results indicate that the loss of NO conversion during SCR is dependent on the cumulative SO2 exposure, regardless of the inlet SO2 concentration. Meanwhile, N2O formation under SCR conditions is nonlinearly affected by SO2 exposure, with formation increasing during 0.5 ppmv SO2 exposure but decreasing in the presence of 3 ppmv SO2. TPO experiments reveal the formation of
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory. And the MOEA/D algorithm was used to
Within a four-week stretch - from roughly mid-February to mid-March - a steady stream of autonomous-trucking news hit. A quick summary: As several startups in the autonomous-truck development space struggle financially, established OEMs keep trucking with acquisitions and partnerships to bolster their automated-driving capabilities. On March 3, the cofounder and CEO of Embark Trucks, which was founded in 2016, sent an email to all its employees announcing the company's likely imminent closure. “The last nine months have been tough for the autonomous trucking industry, and for Embark - the capital markets have turned their backs on pre-revenue companies, just as slipping manufacturer timelines have delayed the prospect of scaled commercial deployment,” Alex Rodrigues wrote.
Items per page:
50
1 – 50 of 755