Browse Topic: Mobility

Items (1,327)
ABSTRACT As part of an Internal Research and Design effort to take existing disparate technologies and integrate them into a single autonomous vehicle to advance the state-of-the-art in unmanned ground vehicle autonomy, SwRI has developed a data representation and routing algorithm to deal with the complexities of interconnecting urban roadways and the static and dynamic hazards in such an environment. The program was designed to utilize data from a Route Network Definition File (RNDF), which contains a priori roadway network data. Using its known location and a given destination, the vehicle determines the shortest route to completion. If, during traversal of that route, the vehicle detects an obstacle in its path using its on-board sensors, it will dynamically re-route its path whether that requires changing lanes on a multiple lane road or turning around completely and finding a different route if the path is completely blocked
Mentzer, ChristopherMcWilliams, GeorgeKozak, Kristopher
ABSTRACT The following paper describes the new SAPA automatic transmissions for the future military vehicles. The very high mobility requirements, the reclaim of weight, power & space and the actual relevance of the fuel consumption require a rethinking and a new vision of the automatic transmission concept and design. This is what SAPA has been working on for the last 12 years obtaining excellent technical and commercial results, a concept aimed at reducing the power losses of the conventional powershifting transmission eliminating the torque converter, reducing the spin losses -due to hydraulic pumps and friction discs-, and improving vehicle mobility on variable terrain situations as off-road
Telleria, Iñigo Garcia-Eizaga
Multi-sensor fusion (MSF) is believed to be a promising tool for vehicular localization in urban environments. Due to the differences in principles and performance of various onboard vehicle sensors, MSF inevitably suffers from heterogeneous sources and vulnerability to cyber-attacks. Therefore, an essential requirement of MSF is the capability of providing a consumer-grade solution that operates in real-time, is accurate, and immune to abnormal conditions with guaranteed performance and quality of service for location-based applications. In other words, an MSF algorithm depends heavily on data synchronization, cost, an accurate process model, a prior knowledge of covariance matrices, integrity assessments, and security against cyber-attacks. Multi-sensor Fusion-based Vehicle Localization addresses trending technologies in MSF-based vehicle localization and outlines some insights into the unsettled issues and their potential solutions. The discussions and outlook are presented as a
Guo, GeLiu, JiagengLiu, Guangheng
Urban areas around the world are facing an increasing number of issues, such as air pollution, parking shortages, traffic congestion and inadequate transit options, all of which necessitate innovative solutions. Lot of people are becoming interested in micromobility in urban areas as a replacement for quick excursions and round trips to get to or from transportation services (e.g., Offices, Institutions, Hospitals, Tourist spots, etc.). This research examines the critical role that micromobility plays, concentrating on the effectiveness of micromobility smart electric scooters in resolving urgent urban problems. Micromobility, which includes both human and electric-powered vehicles, presents a viable substitute for normal and short-distance urban commuting. This study presents a micromobility smart electric scooter that is portable and easy to operate, with the goal of transforming urban transportation. 3D model was designed using SOLIDWORKS and analyzed using ANSYS. For strength and
Tappa, RajuSingh Chowhan, Sri AanshuShaik, AmjadMaroju, AbhinavTalluri, Srinivasa Rao
Artificial Intelligence (AI) has emerged as a transformative force across various industries, revolutionizing processes and enhancing efficiency. In the automotive domain, AI's adaption has ushered in a new era of innovation and driving advancements across manufacturing, safety, and user experience. By leveraging AI technologies, the automotive industry is undergoing a significant transformation that is reshaping the way vehicles are manufactured, operated, and experienced. The benefits of AI-powered vehicles are not limited to their manufacturing, operation, and enhancing the user experience but also by integrating AI-powered vehicles with smart city infrastructure can unlock much more potential of the technology and can offer numerous advantages such as enhanced safety, efficiency, growth, and sustainability. Smart cities aim to create more livable, resilient, and inclusive communities by harnessing innovation through technologies like Internet of Things (IoT), devices, data
Shrimal, Harsh
This study provides a detailed energy consumption analysis of two popular micromobility vehicles—an e-scooter and an e-bike—under various conditions, including steady-state and dynamics scenarios. Employing a custom-built data acquisition system, the research tested these vehicles in throttle mode, additionally assessing the e-bike across three pedal-assist levels. The findings reveal that the e-bike operates significantly more efficiently than the e-scooter, with both vehicles demonstrating peak power outputs significantly exceeding their rated values. Furthermore, the study explores how cargo affects the e-bike’s energy use, along with the charging and discharging behaviors of both platforms. Notably, the e-scooter exhibited a considerable battery self-depletion rate, a characteristic not observed on the e-bike
Pamminger, MichaelDuvall, AndrewWallner, Thomas
US transportation infrastructure is dominated by the automobile form factor. Alternative modalities of movement, such as bikes, golf carts, and other micromobility options, have existed but are decidedly at a lower tier of importance. Even pedestrian access ways are not overly emphasized in the US transportation system. This lack of prioritization matches the reality that the vast majority of people and commerce moves through the motor vehicle infrastructure, with micromobility sitting in the periphery. Additionally, given the current lack of commercial applications, there are limited direct fee-based funding mechanisms connected to micromobility form factors. Micromobility and the Next Infrastructure Wave discusses how recent technological innovations in electrification, e-commerce, and autonomy are enabling a new class of micromobility devices which offer palpable value to consumers and enable significant commercial applications. Unlike the past, these micromobility devices now have
Razdan, Rahul
The need to reduce vehicle-related emissions in the great cities has led to a progressive electrification of urban mobility. For this reason, during the last decades, the powertrain adopted for urban buses has been gradually converted from conventional Internal Combustion Engine (ICE), diesel, or Compressed Natural Gas (CNG), to hybrid or pure electric. However, the complete electrification of Heavy-Duty Vehicles (HDVs) in the next years looks to be still challenging therefore, a more viable solution to decarbonize urban transport is the hybrid powertrain. In this context, the paper aims to assess, through numerical simulations, the benefits of a series hybrid-electric powertrain designed for an urban bus, in terms of energy consumption, and pollutants emissions. Particularly a Diesel engine, fueled with pure hydrogen, is considered as a range extender. The work is specifically focused on the design of the Energy Management Strategy (EMS) of the series-hybrid powertrain, by comparing
Nacci, GianlucaCervone, DavideFrasci, EmmanueleLAKSHMANAN, Vinith KumarSciarretta, AntonioArsie, Ivan
Mobility in the Arctic often determines a military unit’s ability to accomplish mission objectives. This article provides fundamental characteristics and models that can be used to adapt military operations for Arctic and cold region terrain. It explains the need for mobility research in the Arctic, details the Arctic regional terrain types, common yet unique terrain surfaces of the Arctic, and the impact of seasonality on mobility. There is still much research to be done to advance mobility in the Arctic. The terrestrial science and basic modeling framework here provide the foundation to develop military operations, doctrine, and equipment solutions for the Arctic
Shoop, SallyParker, MichaelOlivier, JasonGaribay, Edward A.
Within the scope of NATO AVT-341, a comprehensive framework to validate the fidelity of exteroceptive sensor models, used in the pipeline for simulating diverse military autonomy maneuvers, was developed. An experiment was designed, conducted, and metrics analyzed. This technical paper describes the sensor model validation framework and the results obtained from the conducted experiment
Morales, AndresMisko, SamBowen, NicLamm, RyanBradley, ScottParamsothy, Jayakumar
A new groundbreaking “smart glove” is capable of tracking the hand and finger movements of stroke victims during rehabilitation exercises. The glove incorporates a sophisticated network of highly sensitive sensor yarns and pressure sensors that are woven into a comfortable stretchy fabric, enabling it to track, capture, and wirelessly transmit even the smallest hand and finger movements
The deployment of autonomous urban buses brings with it the hope of addressing concerns associated with safety and aging drivers. However, issues related autonomous vehicle (AV) positioning and interactions with road users pose challenges to realizing these benefits. This report covers unsettled issues and potential solutions related to the operation of autonomous urban buses, including the crucial need for all-weather localization capabilities to ensure reliable navigation in diverse environmental conditions. Additionally, minimizing the gap between AVs and platforms during designated parking requires precise localization. Next-gen Urban Buses: Autonomy and Connectivity addresses the challenge of predicting the intentions of pedestrians, vehicles, and obstacles for appropriate responses, the detection of traffic police gestures to ensure compliance with traffic signals, and the optimization of traffic performance through urban platooning—including the need for advanced communication
Hsu, Tsung-Ming
With the influx of artificial intelligence (AI) models aiding the development of autonomous driving (AD), it has become increasingly important to analyze and categorize aspects of their operation. In conjunction with the high predictive power innate to AI solutions, due to the safety requirements inherent to automotive systems and the demands for transparency imposed by legislature, there is a natural demand for explainable and predictable models. In this work, we explore the various strategies that reveal the inner workings of these models at various component levels, focusing on those adapted at the modeling stage. Specifically, we highlight and review the use of explainability in state-of-the-art AI-based scenario understanding and motion prediction methods, which represent an integral part of any AD system. We break the discussion down across three key axes that are inherent to any AI solution: the data, the model architecture, and the loss optimization. For each of the axes, we
Okanovic, IlmaStolz, MichaelHillbrand, Bernhard
Hexagon Agility announced a collaboration with Norwegian EV transmission supplier Brudeli Green Mobility at the 2024 ACT Expo in Las Vegas. The partnership's goal is the integration of Hexagon Agility's CNG/RNG (compressed/renewable natural gas) systems with Brudeli's plug-in PowerHybrid system. This technology will reportedly offer fleets the capability to maintain diesel ICE duty cycles while providing fuel cost savings and help OEMs achieve global decarbonization goals. “The Brudeli PowerHybrid enables fleet owners to retain the power, performance and fuel cost savings offered by natural gas engines, while simultaneously harnessing the efficiencies of electric,” said Eric Bippus, EVP sales & systems development, Hexagon Agility. “We believe hybrids could play a role in commercial trucking in the future, and we are excited to take an active role bringing that to the market
Wolfe, Matt
Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team, led by Professor Shoji Takeuchi of the University of Tokyo, included special perforations in a robot face, which helped a layer of skin take hold. Their research could be useful in the cosmetics industry and to help train plastic surgeons
To identify the influences of various built environment factors on ridership at urban rail transit stations, a case study was conducted on the Changsha Metro. First, spatial and temporal distributions of the station-level AM peak and PM peak boarding ridership are analyzed. The Moran’s I test indicates that both of them show significant spatial correlations. Then, the pedestrian catchment area of each metro station is delineated using the Thiessen polygon method with an 800-m radius. The built environment factors within each pedestrian catchment area, involving population and employment, land use, accessibility, and station attributes, are collected. Finally, the mixed geographically weighted regression models are constructed to quantitatively identify the effects of these built environment factors on the AM and PM peak ridership, respectively. The estimation results indicate that population density and employment density have significant but opposite influences on the AM and PM peak
Su, MeilingLiu, LingChen, XiyangLong, RongxianLiu, Chenhui
Understanding driving scenes and communicating automated vehicle decisions are key requirements for trustworthy automated driving. In this article, we introduce the qualitative explainable graph (QXG), which is a unified symbolic and qualitative representation for scene understanding in urban mobility. The QXG enables interpreting an automated vehicle’s environment using sensor data and machine learning models. It utilizes spatiotemporal graphs and qualitative constraints to extract scene semantics from raw sensor inputs, such as LiDAR and camera data, offering an interpretable scene model. A QXG can be incrementally constructed in real-time, making it a versatile tool for in-vehicle explanations across various sensor types. Our research showcases the potential of QXG, particularly in the context of automated driving, where it can rationalize decisions by linking the graph with observed actions. These explanations can serve diverse purposes, from informing passengers and alerting
Belmecheri, NassimGotlieb, ArnaudLazaar, NadjibSpieker, Helge
Linear actuators, in particular, electromechanical linear actuators, have become integral components of modern medical devices because of their high precision, accuracy, and ability to deliver repeatable motion control. Patient comfort, positioning and mobility, robotic surgery, imaging equipment, infusion, and pumping are just a few of the applications where the use of linear actuators has revolutionized the way medical devices are designed, improving patient outcomes and enhancing the overall quality of care
In 2023, NASA announced the creation of a Consortium for Space Mobility and ISAM Capabilities (COSMIC) — a new organization devoted to advancing technologies for in-space servicing, assembly, and manufacturing (ISAM). COSMIC will foster a collaborative ecosystem that harnesses the nation’s collective brainpower, resources, and technologies to accelerate the wider adoption of ISAM and usher in a new era of advanced space operations
What are the differences between the traditional automotive companies and “new mobility” players—and even more importantly, who will win? Those are the questions that this report discusses, taking a particular focus on engineering aspects in the automotive/mobility sector and addressing issues regarding innovation, business, market, and regulation Two Approaches to Mobility Engineering was developed with input from nearly 20 industry experts from new and established companies to gain an overview of the intricacies of newcomers and incumbents, to see where the industry stands, and to provide an outlook on where the sector is headed. It provides recommendations as to what respective players should do to master their future and stay at the forefront of mobility innovation. Click here to access the full SAE EDGETM Research Report portfolio
Beiker, Sven
In the frame of growing concerns over climate change and health, renewable fuels can make an important contribution to decarbonizing the transport sector. The current work presents the results of an investigation into the impact of renewable fuels on the combustion and emissions of a turbocharged compression-ignition internal combustion engine. An experimental study was undertaken and the engine settings were not modified to account for the fuel's chemical and physical properties, to analyze the performance of the fuel as a potential drop-in alternative fuel. Three fuels were tested: mineral diesel, a blend of it with waste cooking oil biodiesel and a hydrogenated diesel. The analysis of the emissions at engine exhaust highlights that hydrogenated fuel is cleaner, reducing CO, total hydrocarbon emissions, particulate matter and NOx
Chiavola, OrnellaMatijošius, JonasPalmieri, FulvioRecco, Erasmo
Urban Air Mobility (UAM) envisions heterogenous airborne entities like crewed and uncrewed passenger and cargo vehicles within, and between urban and rural environment. To achieve this, a paradigm shift to a cooperative operating environment similar to Extensible Traffic Management (xTM) is needed. This requires the blending of traditional Air Traffic Services (ATS) with the new generation UAM vehicles having their unique flight dynamics and handling characteristics. A hybrid environment needs to be established with enhanced shared situational awareness for all stakeholders, enabling equitable airspace access, minimizing risk, optimized airspace use, and providing flexible and adaptable airspace rules. This paper introduces a novel concept of distributed airspace management which would be apt for all kinds of operational scenarios perceived for UAM. The proposal is centered around the efficiency and safety in air space management being achieved by self-discipline. It utilizes
KG, SreenivasanSuseelan, SunilRajHuncha, Pradeep
Continuous improvements and innovations towards sustainability in the aviation industry has brought interest in electrified aviation. Electric aircrafts have short missions in which the temporal variability of thermal loads is high. Lithium-ion (Li-ion) batteries have emerged as prominent power source candidate for electric aircrafts and Urban Air Mobility (UAM). UAMs and Electric aircrafts have large battery packs with battery capacity ranging in hundreds or thousands of kWh. If the battery is exposed to temperatures outside the optimum range, the life and the performance of the battery reduces drastically. Hence, it is crucial to have a Thermal Management System (TMS) which would reduce the heat load on battery in addition to the cabin thermal loads. Thermal management can be done through active or passive cooling. Adding a passive cooling system like Phase Change Material (PCM) to the TMS reduces the design maximum thermal loads. However, the added weight of the PCM module may at
Nyamagoudar, VinayakP R, NamrathaBalasubrahmanyam, MadireddyVanka, SridharGattu, RaghavendraAbuheiba, AhmedJha, Rajesh Kumar
Recent advancements of electric vertical take-off and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry, and many novel applications have been identified and are in development. One promising application for these innovative systems is in firefighting, with eVTOL aircraft complementing current firefighting capabilities to help save lives and reduce fire-induced damages. With increased global occurrences and scales of wildfires—not to mention the issues firefighters face during urban and rural firefighting operations daily—eVTOL technology could offer timely, on-demand, and potentially cost-effective aerial mobility capabilities to counter these challenges. Early detection and suppression of wildfires could prevent many fires from becoming large-scale disasters. eVTOL aircraft may not have the capacity of larger aerial assets for firefighting, but targeted suppression, potentially in swarm operations, could be valuable. Most
Doo, JohnnyMcQueen, BobZhang, Yangjun
Walking around the SAE WCX conference in Detroit this April and reading through the topic listings for the hundreds of sessions and thousands of presentations, I remembered why I enjoyed this conference so much. I used to attend as a reporter for other outlets, but I haven't been back to WCX since before the pandemic. It was different to walk the halls as editor of this magazine. What happens at WCX - and at dozens of mobility and transportation conferences around the world - is fascinating. I would bet big money that our readers agree. Still, sometimes it's difficult to translate the deeply technical work that makes up our days into something that piques the interest of those who don't spend inordinate amounts of time thinking about the “future of mobility
Blanco, Sebastian
This study delves into the dynamic properties of hybrid composite materials, specifically focusing on the natural frequency and modal damping characteristics of Coir Fiber-Rubber Particles Reinforced Polymer Composites (CRP). Comprehensive experimental investigations were conducted utilizing an FFT analyzer. Initial experiments involved the preparation of specimens with varying rubber content, ranging from 2% to 5%. Coir, known for its cellulose-rich composition, was selected due to its innate damping properties, making it highly effective in mitigating vibrations. The primary motivation behind this research is to provide cost-effective solutions for reducing vibrations in mobility vehicles, addressing challenges associated with passenger comfort, durability, and overall performance. The study yielded promising results, with CRP exhibiting substantial reductions in vibrations. The findings of this research are expected to serve as valuable inputs for the design and engineering of
Mache, AshokKulkarni, AparnaShah, SwapnilGujar, AdeshHujare, Pravin
In alignment with the U.S. Army's Climate Strategy and the broader trend in automotive technology, there is a strategic shift towards electrification and hybridization of the vehicle fleet. While a major goal of this effort is to mitigate the carbon footprint of the U.S. Army's vehicle operations, this transition also presents an opportunity to harness advancements in automotive electrification. Among the key vehicles in focus are tactical wheeled vehicles, which provide military forces with versatile and rugged transportation solutions for various combat scenarios, ensuring mobility, protection, and adaptability on the battlefield. This study investigates the potential of electrified tactical wheeled vehicles by conducting a survey involving a diverse group of vehicle operators across various ranks within the U.S. Army. The aim is to identify novel applications achievable through electrification or hybridization, encompassing functions such as establishing command posts, prolonged
Konopa, BridgetMiller, MarkRevnew, LukeMuraco, JohnMayfield, LoganRutledge, MaxwellCrocker, MatthewMittal, Vikram
This document includes recommendations of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet e Military high-performance fighter and attack f Helicopter g Electric Vertical Takeoff and Landing (EVTOL) and Urban Air Mobility (UAM
A-20B Exterior Lighting Committee
The world is on a “take-make-waste,” linear-growth economic trajectory where products are bought, used, and then discarded in direct progression with little to no consideration for recycling or reuse. This unsustainable path now requires an urgent call to action for all sectors in the global society: circularity is a must to restore the health of the planet and people. However, carbon-rich textile waste could potentially become a next-generation feedstock, and the mobility sector has the capacity to mobilize ecologically minded designs, supply chains, financing mechanisms, consumer education, cross-sector activation, and more to capitalize on this “new source of carbon.” Activating textile circularity will be one of the biggest business opportunities to drive top- and bottom-line growth for the mobility industry. Textile Circularity and the Sustainability Model of New Mobility provides context and insights on why textiles—a term that not only includes plant-based and animal-based
Lee-Jeffs, AnnSafi, Joanna
Recently, a Korean company donated a wearable robot, designed to aid patients with limited mobility during their rehabilitation, to a hospital. The patients wear this robot to receive assistance for muscle and joint exercises while performing actions such as walking or sitting. Wearable devices including smartwatches or eyewear that people wear and attach to their skin have the potential to enhance our quality of life, offering a glimmer of hope to some people much like this robotic innovation
The adoption of metallic additive manufacturing (AM) for heat exchangers offers significant thermal management benefits that range from optimized heat energy transfer to supporting integrated designs that can reduce weight, size, and component numbers. The benefits offered by utilizing AM for heat exchangers transcend industries and have relevance within the aerospace and automotive industries, where new mobility requirements result in the need for efficient energy systems, increasingly efficient component design, and higher temperatures. Additive Manufacturing of Thermal Management Components in Mobility Applications examines the critical unsettled issues, such as lack of understanding regarding metal AM material performance in high-temperature applications and the absence of significant standardization that goes beyond the material grades, printing process parameters, and characterization processes for performance reliability. The report also delves into design, regulation, and
Phillips, Paul
For decades, there has been a tug-of-war between many suppliers and their vehicle-manufacturer customers with respect to future planning volumes. The stakes are significant. Using volumes that are too high drives an extreme capital commitment and risk suppliers to stranded capital and missed opportunities to employ resources elsewhere. Using volumes that are too low means the OEM may miss potential sales and the supplier would be stressed with extreme overtime to keep up. It is a never-ending balance. OEMs often use internally built ‘Capacity Planning Volumes’ (CPVs) to ensure they capacitize to both their annual and peak volume expectations. These volumes are used as the divisor to understand per-part costs and how tooling, machines, infrastructure and other capitalized items are amortized over the life of the program. Suppliers often utilize third-party views such as the S&P Global Mobility Light Vehicle Production Forecasts to gain an impartial perspective of market dynamics, as
Items per page:
1 – 50 of 1327