Browse Topic: Transportation Systems
The transportation industry is transforming with the integration of advanced data technologies, edge devices, and artificial intelligence (AI). Intelligent transportation systems (ITS) are pivotal in optimizing traffic flow and safety. Central to this are transportation management centers, which manage transportation systems, traffic flow, and incident responses. Leveraging Advanced Data Technologies for Smart Traffic Management explores emerging trends in transportation data, focusing on data collection, aggregation, and sharing. Effective data management, AI application, and secure data sharing are crucial for optimizing operations. Integrating edge devices with existing systems presents challenges impacting security, cost, and efficiency. Ultimately, AI in transportation offers significant opportunities to predict and manage traffic conditions. AI-driven tools analyze historical data and current conditions to forecast future events. The importance of multidisciplinary approaches and
Regarding the development of automated driving, manufacturers, technology startups, and systems developers have taken some different approaches. Some are on the path toward stand-alone vehicles, mostly relying on onboard sensors and intelligence. On the other hand, the connected, cooperative, and automated mobility (CCAM) approach relies on additional communication and information exchange to ensure safe and secure operation. CCAM holds great potential to improve traffic management, road safety, equity, and convenience. In both approaches, there are increasingly large amounts of data generated and used functions in perception, situational awareness, path prediction, and decision-making. The use of artificial intelligence is instrumental in processing such data; and in that context, “edge AI” is a more recent type of implementation. Edge Artificial Intelligence in Cooperative, Connected, and Automated Mobility explores perspectives on edge AI for CCAM, explores primary applications, and
Letter from the Guest Editors
Road noise caused by road excitation is a critical factor for vehicle NVH (Noise, Vibration, and Harshness) performance. However, assessing the individual contribution of components, particularly bushings, to NVH performance is generally challenging, as automobiles are composed of numerous interconnected parts. This study describes the application of Component Transfer Path Analysis (CTPA) on a full vehicle to provide insights into improving NVH performance. With the aid of Virtual Point Transformation (VPT), blocked forces are determined at the wheel hubs; afterward, a TPA is carried out. As blocked forces at the wheel hub are independent of the vehicle dynamics, these forces can be used in simulations of modified vehicle components. These results allow for the estimation of vehicle road noise. To simulate changes in vehicle components, including wheel/tire and rubber bushings, Frequency-Based Substructuring (FBS) is used to modify the vehicle setup in a simulation model. In this
Cilia, small, slender, hair-like structures present on the surface of all mammalian cells, play a major role in locomotion and are involved in mechanoreception. Ciliary motion in the upper airway is the primary mechanism by which the body transports foreign particulates out of the respiratory system to maintain proper respiratory function.
Items per page:
50
1 – 50 of 4490