Browse Topic: Transportation Systems

Items (4,811)
With the implementation of the "road-shift-to-rail" policy and the intensification of competition in the freight transport market, establishing a scientific and effective dynamic pricing mechanism has become a crucial factor in enhancing the competitiveness of railway freight. To address this, this paper constructs a multi-objective dynamic pricing model that comprehensively considers the interests of railway transport enterprises, shippers, and societal externalities. A new multi-objective genetic algorithm (NSGA-II) is designed to solve the model, and an empirical analysis is conducted based on real-world data from "road-shift-to-rail" projects. The research results indicate that the proposed method aligns closely with the current pricing practices of railway transport enterprises. For goods with low time sensitivity, greater freight rate discounts should be offered to shippers, whereas for high time-sensitive goods, the time gap between rail and road transport should be minimized.
Zhang, HengyuanFeng, ZhichaoWu, Xu
The International Roughness Index (IRI) is a key indicator for evaluating the performance of road surfaces. However, traditional measurement methods only focus on the evaluation data of a single longitudinal section and do not consider the lateral difference between the actual contact area between the tire and the road surface, which may lead to inaccurate evaluation results. In recent years, with the advancement of 3D laser scanning and digital photogrammetry technology, full-section data acquisition has brought new possibilities for roughness evaluation. However, how to find a balance between data fineness and computing efficiency has become a core problem that needs to be solved. Based on the principle of interaction between vehicles and road surfaces, this paper proposes to include only the pavement height data within the tire width range into IRI analysis, and establishes an evaluation framework based on standard tire-ground contact width. This method not only retains the key
An, HuazhenWang, RuiHan, XiaokunLuo, Yingchao
A smart highway tunnels lighting system based on the technology of cloud platform and Internet of Things(IoTs) has been designed to address the common problems of high energy consumption and low level of intelligence in China's highway tunnel lighting system. The highway tunnel lighting system consists of four layers of architecture: platform management layer, local management layer, middle layer and terminal layer. The system collects real-time brightness, lamp brightness, traffic volume and other data outside the tunnel through various sensors deployed on site, and then uploads the collected data to the main controller through LoRa IoTs. The main controller combines the brightness calculation method of the lighting design rules to control the brightness of the tunnel lighting in real time, achieving real-time adjustment of the brightness of the tunnel LED lights and the brightness outside the tunnel, and realizing a safe and energy-saving lighting effect of "lights on when the car
Wang, JuntaoLiu, JingyangLiu, YongFeng, Xunwei
With the rapid expansion of China’s intercity rail transit network, station connection systems play a crucial role in enhancing rail transit efficiency. The efficiency of their supply-demand matching has become a significant factor influencing regional transportation integration. This paper focuses on the Guangzhou-Dongguan-Shenzhen Intercity Railway as the research subject. It constructs a connection performance evaluation model that integrates multisource data from both supply and demand perspectives, revealing spatial differentiation patterns of station connection pressure and facility needs, and classifies the stations accordingly. Based on these findings, the paper proposes optimization strategies to inform intercity transportation planning and the development of intelligent transportation systems. Intercity railway, connection performance, data envelopment analysis, Guangdong-Hong Kong-Macao Greater Bay Area, evaluation model
Hu, QiyueGao, Yifei
Cross-line operation is a key direction for the integrated development of multi-level rail transit systems in urban agglomerations. Optimizing train operation under cross-line conditions is essential for improving the overall efficiency and service quality of rail networks. This paper addresses the joint problem of suburban railway cross-line operation and express–local train coordination. This paper develops a train scheduling optimization framework that jointly selects service patterns and departure schedules, with the objective of reducing overall costs, including passenger travel time and operating expenses. To solve the model efficiently, an extended Adaptive Large Neighborhood Search (ALNS) algorithm is developed. The proposed approach provides a practical framework for timetable planning in complex cross-line rail systems and contributes to enhancing integrated transit operations.
Zhu, JingyiGuo, XinPan, Jianju
Corrosion of prestressed tendons endangers the safety of bridges, but until now, there has been no effective method to solve the problem of detecting corrosion damage in prestressed tendons of concrete beams. To address this, a magnetic flux leakage detection experimental apparatus for corrosion damage in prestressed tendons based on the principle of magnetic flux leakage inspection has been developed. Using this apparatus, magnetic flux leakage tests were conducted on prestressed tendons after electrochemical corrosion, and the results were compared with simulation analysis to conduct a comparative study. In the experiments, the influence of corrosion severity, corrosion width, and the effect of stirrups on the characteristics of the magnetic flux leakage signals were studied. Magnetic signal feature values were extracted, and a quantification neural network model for corrosion damage was established, which is used to quantify the degree of corrosion damage in prestressed tendons. The
Wang, PengGao, MinDong, LeiZhu, Junliang
In order to reduce traffic accidents and losses in long downhill sections of expressways, giving drivers reasonable prevention and control means of information induction can improve the safety of long downhill sections. The location of the accompanying information service of the driver's vehicle terminal and the rationality of the intervention information are worth studying. This study takes a high-speed long downhill road as an example, divides the risk level of the long downhill road based on the road safety risk index model, and verifies it with the help of driving behavior data. Secondly, three coverage schemes of sensing devices are designed according to the results of risk classification, and the HMI interface of accompanying information service is designed according to the different coverage degrees of sensing devices. Finally, a driving simulation experiment was carried out based on the driving simulator, and the speed control level, psychological comfort level, operational
Wang, YuejiaWeng, WenzhongLuan, SenDai, Yibo
Implementing knowledge modelling tools of concrete structure strengthening solutions for existing buildings addresses the urgent needs of urban renewal efforts. This paper thoroughly investigates the application of Natural Language Processing (NLP), and knowledge graphs for organizing and managing complex information related to building strengthening strategies. By developing an ontology model for solutions and supplementing it with methods for generating word vectors and annotating data, this study constructed a comprehensive framework for the management of strengthening solution knowledge. A case study on the partial structural strengthening validated the applicability of the proposed model in facilitating recommendations for similar cases and supporting solution design. This research under-scores the transformative impact of digital technologies and knowledge modelling on the efficiency and quality of urban renewal projects, contributing to the advancement of smart cities. The
Zhang, ZhuohaoLuo, HanbinWu, HaozhengChen, Weiya
In response to the inefficiency, slow speed, and reliance on specialized software in traditional methods for evaluating seismic stability of loess highway slopes, a simplified rapid assessment method is proposed. Based on post-earthquake landslide investigations, geotechnical surveys, and vibration table model tests, and integrates the latest research on seismic damage mechanisms of loess slopes, the potential sliding surface of seismic damage loess slope is divided into three segments: tensile fracture, shear, and anti-sliding zones, the potential sliding mass is partitioned into three blocks, and calculate the sliding force and anti-slip force of each potential sliding block from top to bottom, when the sliding force the upper sliding body is greater than its anti-sliding force, the excess sliding force is transmitted to the lower potential sliding body, and the stability of the slope is determined based on the ratio of the anti-sliding force and the sliding force of the lowest
Pu, XiaowuZhang, LizhiPu, ShuyaChe, Gaofeng
Based on field investigations of loess slopes along highways in the Lüliang region, a numerical infiltration model of highway loess slopes was established using the ABAQUS finite element software. The study examined the time to plastic zone coalescence and variations in infiltration range under two intense rainfall scenarios for slopes of different heights. Furthermore, a landslide numerical model of the loess slope was constructed using the FEM-SPH method, and a predictive formula for landslide runout distance of highway loess slopes was derived through data fitting.The results indicate that under the same slope height, increased rainfall intensity leads to a certain degree of reduction in landslide runout distance. Conversely, under the same rainfall condition, greater slope height significantly increases the runout distance. This study provides a theoretical foundation and methodological support for stability evaluation and runout distance prediction of loess slopes under intense
Liu, ManfengLi, Hong
As China’s socio-economic progress accelerates, residents’ mobility preferences are growing more varied. Owing to their eco-friendliness, high capacity, fixed routes and low prices, pure-electric buses have become a key component of urban transit. Yet day-to-day service is hindered by low fleet availability, limited daily kilometres and poor service quality, all of which erode operation efficiency. Taking Wuhu’s public transport network as a case study, this paper builds a performance-assessment framework for electric bus routes. Using stop-level topology, vehicle specifications and spatiotemporal passenger-flow data from eight representative routes, the study applies the Analytic Hierarchy Process (AHP). A three-tier hierarchy—goal, criteria and alternatives—is constructed; index weights and pairwise comparison matrices are then computed to rank overall route effectiveness. The findings accurately pinpoint operational bottlenecks and furnish quantitative guidance for adaptive network
Hu, TingtingLiang, ZijunLi, XiaoyanZhang, XinyiWang, MengruHu, YufengJiang, Kang
Under the background of advancing the integration of urban and rural road passenger transport and the bus-oriented transformation of scheduled passenger transport, the traditional road passenger transport market has been severely impacted. There is an urgent need to promote the healthy development of chartered passenger transport to meet the public’s demand for high-quality travel. Based on the supply-demand balance theory, a prediction model for chartered passenger transport capacity scale was constructed, and the capacity scale of chartered passenger transport in a typical city was predicted as an example. Finally, countermeasures and suggestions for chartered passenger transport capacity allocation were proposed from five aspects: planning formulation, risk warning, mechanism clarification, performance evaluation, and responsibility implementation.
Zhao, HaibinZhao, XiangyuXing, LiWei, LinghongPeng, XiaoLiao, Kai
Intelligent capacity optimization of highways could realize intelligent enhancement of traffic capacity by optimizing traffic management, improving traffic efficiency and enhancing system synergy without significantly increasing physical lanes. However, there was a lack of a unified and perfect index system to scientifically evaluate the effectiveness of such projects. This paper analyzed the basic theory, evaluation indicator structure and system, and puts forward seven key evaluation dimensions, which including traffic efficiency enhancement, traffic safety improvement, economic and cost-benefit, environmental impacts, technology application and innovation, system reliability and resilience, and service experience. This paper screened the specific evaluation indexes of the seven dimensions and proposes the hierarchical structure of the index system and the weight determination method. This paper constructed a comprehensive, multi-dimensional evaluation index system for highway smart
Che, XiaolinLi, WeichenZhu, LiliLi, XinWang, Lin
Vehicle trajectories encapsulate critical spatial-temporal information essential for traffic state estimation, congestion analysis, and operational parameter optimization. In a Vehicle-to-Infrastructure (V2I) environment, connected automated vehicles (CAVs) not only continuously transmit their own real-time trajectory data but also utilize onboard sensors to perceive and estimate the motion states of surrounding regular vehicles (RVs) within a defined communication range. These multi-source data streams, when integrated with fixed infrastructure-based detectors such as speed cameras at intersections, create a robust foundation for reconstructing full-sample vehicle trajectories, thereby addressing data sparsity issues caused by incomplete CAV penetration. Building upon classical car-following (CF) theory, this study introduces a novel trajectory reconstruction framework that fuses CAV-generated trajectories and infrastructure-based speed detection data. The proposed method specifically
Bai, WeiFu, ChengxinYao, Zhihong
In order to achieve the widespread application of autonomous driving technology in basic freeway segments, especially in the automated decision-making of following and lane changing behaviors, Connected Autonomous Vehicles (CAVs) must be able to reliably complete driving tasks in complex traffic environments. Our study introduces a novel behavior decision-making architecture for connected autonomous vehicles, which employs the Dueling Double Deep Q-Network (D3QN) algorithm as its core methodology. The model optimizes the decision-making ability in complex traffic scenarios by separating action selection and value assessment and implementing them by different neural networks. The multi-dimensional reward function, which comprehensively considers safety, comfort and efficiency, is introduced into the reinforcement learning training of the model. The simulation scenario of the basic freeway segment is established and the model is trained in the mixed traffic flow environment, compared
Hou, ZhiyunYang, Xiaoguang
To address the escalating traffic demands and tackle the complex mechanical challenges inherent in in-situ tunnel expansion, this study, grounded in the Huangtuling Tunnel project in Zhejiang Province, China, focuses on the stability evolution of surrounding rock and the mechanical characteristics of structures during the in-situ expansion of existing tunnels under weak surrounding rock conditions. By systematically comparing core post-excavation features—such as surrounding rock displacement fields, ground pressure distribution pat-terns, and mechanical responses of support structures—between newly constructed tunnels and in-situ expanded tunnels, the research reveals key mechanical principles governing the construction of large-section tunnels in weak rock formations. Specifically, the findings are as follows: (1) Both newly constructed and in-situ expanded large-section tunnels exhibit significant spatial heterogeneity in surrounding rock deformation. The vault-spandrel zones serve
Zheng, XiaoqingKang, XiaoyueXu, KaiChen, TaoHuo, XinwangChen, Chuan
Items per page:
1 – 50 of 4811