Browse Topic: Transportation Systems

Items (4,738)
The path toward carbon-neutral mobility represents one of the greatest cultural transformations in recent human history. Positioned between industrial heritage, emerging mobility technologies, and the energy supply sector are the users of 1.5 billion motor vehicles worldwide. Conflicting publications on raw material availability, energy efficiency, and the climate neutrality of propulsion systems have led to widespread uncertainty. This Illustrated Energy Primer provides a new foundation for orientation. It begins with a visual explanation of the basic concepts of energy and power, followed by illustrative comparisons of typical energy demands in vehicles and households. The focus then shifts to common types of energy generation systems. Using regional examples—from coal-fired power plants to wind farms, solar installations, and balcony solar panels—the guide provides clear and accessible performance benchmarks for energy production. Next, nine individual experience profiles highlight
Daberkow, Andreas
The wing-in-ground effect (WIG) vehicle represents a significant advancement in aerodynamics and vehicle design, leveraging the ground effect phenomenon to enhance lift and reduce drag when flying close to the surface. This unique capability allows WIG vehicles to achieve higher payloads, longer range, and greater fuel efficiency compared to traditional aircraft, making them an attractive option for modern military and global disaster response applications. Wing-in-Ground Effect Vehicles: From Modern Military and Commercial Development to Global Disaster Response discusses future disaster response, logistics, and military applications for WIG vehicles, including the ongoing development of aerospace and transportation technology. Relavant advancements in materials and propulsion systems holds promise for further enhancing WIG performance and operational range. Additionally, cost-effective and powerful flight computers with various types of mission-enabling sensor suites from the
Doo, Johnny
Based on the TOD (Transit-Oriented Development) concept, this paper addresses the “last mile” issue in urban public transportation. It proposes a multidimensional decision-making model for identifying micro-circulation bus route areas. By integrating indicators such as the TOD comprehensive index, short-distance demand intensity, and branch network density, relevant data is processed using FME linking ArcGIS. The model combines entropy-weighted TOPSIS and unsupervised consensus clustering analysis techniques, utilizing ArcGIS spatial analysis functions to accurately identify priority deployment areas for micro-circulation buses. Taking Jiangbei District in Chongqing as an example, the model divides the study area into four types of traffic zones: (1) Core high-density areas, which require an increase in micro-circulation bus routes due to extremely high short-distance travel demand; (2) Periphery active population areas, which require flexible shuttle services due to transit gaps and
Jiang, TaoJia, XiaoyanLi, Jie
Heavy-duty commercial vehicles (HDCVs) are the key mobile nodes in intelligent transportation systems (ITS). However, their complex operating conditions and the diversity of data sources (such as road conditions, driver behavior, traffic signals, and on-board sensors) present considerable difficulties for accurately estimating the state and perceiving the environment using a single modality of data. This requires effective multi-modal data fusion to enhance the control and decision-making capabilities of HDCVs. This paper addresses this need by proposing a customized multi-modal intelligent transportation data fusion framework for intelligent HDCVs. This paper presents a solution for establishing a multi-modal intelligent transportation data collection platform, including real-scene collection methods and simulation scene collection methods based on the SUMO-MATLAB joint simulation platform. Through three representative case studies, the application methods of multi-modal traffic data
Chen, ZhengxianWang, ShaoqiJiang, HuimingZhou, FojinWang, MingqiangLi, Jun
This study investigates the critical factors influencing the performance of hydro-pneumatic suspension systems (HPSS) in mining explosion-proof engineering vehicles operating in complex underground coal mine environments. To address challenges such as poor ride comfort and insufficient load-bearing capacity under harsh mining conditions, a two-stage pressure HPSS was analyzed through integrated numerical modeling and field validation. A mathematical model was established based on the structural principles of the suspension system, focusing on key parameters including cylinder bore (195–255 mm), piston area (170–210 mm), damping orifice diameter (7–8 mm), check valve flow area, and accumulator configurations (low-pressure: 1.2 MPa, high-pressure: 6 MPa). Experimental trials were conducted in active coal mines, simulating typical mining scenarios such as uneven road surfaces (120 mm obstacles), heavy-load gangue transportation, and confined-space operations in thin coal seams (<1.5 m
Song, YanLiang, Yufang
This study investigates urban traffic congestion optimisation strategies based on V2X technology. V2X technology (Vehicles and Internet of Everything) aims to alleviate urban traffic congestion, improve access efficiency, and reduce tailpipe emissions through real-time collection and fusion of traffic data to optimise traffic signal control and path planning. The efficacy of the optimisation strategies under different V2X penetration rates is evaluated by conducting multi-factor orthogonal experiments in different typical congestion scenarios. The experimental results show that the V2X-based signal optimisation, path induction, and event response combination strategies exhibit significant optimisation effects in all three scenarios: node bottleneck, corridor congestion, and event induction. Under the condition of 100% penetration, the combined strategy reduces delay by 41.9% in the node bottleneck scenario, improves accessibility by 28.1% in the corridor congestion scenario, and
Xi, ChaohuLi, JiashengQu, FengzhenLiu, HongjunLiu, XiaoruiWang, Chunpeng
The analysis of the current subsidy scheme for China Europe Express shows that its effectiveness is limited to lines starting from inland cities and lines with unsaturated demand. A bi-level subsidy optimization model was constructed and Tabu Search algorithm was applied to solve the optimization subsidy plan. The evaluation results of the optimization subsidy scheme indicate that it can more effectively increase the market share of CRE, regulate the balance of freight supply and demand to a certain extent, reduce capacity vacancies, and alleviate line congestion.
Mai, YuanyuanTian, Chunlin
This article presents a new generation of electric motors developed for light mobility and industrial applications. The motor range is based on synchronous reluctance technology using non-rare-earth permanent magnets. Three continuous power levels have been developed: 2, 4 and 6 kW. The challenges related to that motor range is their high continuous performances (cooled by natural convection) under nominal 48V, and reparability easiness without adding complexity. These motors stand out thanks to their competitive manufacturing cost and peak efficiency above 94%, which is a remarkable performance for this power and torque class. A prototype of a 6 kW continuous power has been produced and benchmarked. The experimental test showed a high level of correlation with the simulation calculation.
CISSE, Koua MalickMilosavljevic, MisaMallard, VincentValin, ThomasDe Paola, Gaetano
This study delves into the dynamics of three-wheeled Personal Mobility Vehicles (PMVs) equipped with an active tilting mechanism. In three-wheeled vehicles with a single front wheel, the risk of tipping over during sudden braking and sharp turning is often highlighted. To address this issue, the authors have focused their research on three-wheeled PMVs with two front wheels and one rear wheel, equipped with an active tilting mechanism. Previous studies using dynamic simulation tools have demonstrated that such PMVs possess higher obstacle avoidance capabilities compared to motorcycles and even passenger cars. However, these simulations were based on the assumption of avoidance maneuvers without braking, and no studies have yet examined the behavior of three-wheeled PMVs with an active tilting mechanism under the more complex conditions of braking during turning. Therefore, prior to conducting dynamic simulations under braking and turning conditions, this study aims to clarify the
Haraguchi, TetsunoriKaneko, Tetsuya
In the next years, the global hydrogen vehicle market is expected to grow at a very high rate. Consequently, it is necessary for scholars and professionals to study and test specific components in order to rise motor efficiency leveraging the new features of connectivity available in smart roads. In particular, our research is focused on the developement of an engine control module driven by evaluation of usage characteristics (e.g., driving style) and "connected-to-x" scenarios using the standard engine control approach. Moreover, the module proposed enables the implementation of "fast running" models to improve the response of vehicles and make the best possible use of H2-powered engine characteristics. That said, in this paper is proposed a new approach to implement the control module, using Support Vector Machine (SVM) as the machine learning algorithm to detect driving style, and consequently modify the parameters of the engine. We choose SVM because i) it is less prone to
Mastroianni, MicheleMerola, SimonaIrimescu, AdrianDe Santis, MarcoEsposito, ChristianAversano, Lerina
The reduction of the CO2 footprint of transport vehicles is a major challenge to minimize the harmful impact of technology on the environment. Beside passenger cars and light and heavy-duty vehicles, this affects also the two-wheeler category and the non-road mobile machinery (NRMM). One promising path for the de-carbonization is the transition from fossil-fuel powered ICE powertrains to electric powertrains. Several examples of electrified powertrains showcase possibilities for small hand-held power-tools or small mopeds and scooters. As the powertrain categories two-wheeler and NRMM are very diversified and consist of various sub-categories and sub-classes with many different applications, the feasibility of electrification for the whole category cannot be judged by few examples. In this publication, a methodology for assessing the electrification potential of hand-held power tools and two-wheelers is shown. The method uses 4 different factors, which determine the feasibility for
Schmidt, StephanSchacht, Hans-JuergenWeller, KonstantinAbsenger, Johann Friedrich
Single motorcycle accidents are common in Nagano Prefecture where is mountainous areas in Japan. In a previous study, analysis of traffic accident statistics data suggested that the fatality and serious injury rates for uphill right curves and downhill left curves are high, however the true causes of these accidents remain unclear. In this study, a motorcycle simulator was used to evaluate the driving characteristics due to these road alignments. Evaluation courses based on combinations of uphill/downhill slopes and left/right curves were created, and experiments were conducted. The subjects of the study were expert riders and novice riders. The results showed that right curves are even more difficult to see near the entrance of the curve when accompanied by an uphill slope, making it easier to delay recognition and judgment of the curve. Expert riders recognized curves faster than novice riders. Additionally, expert riders take a large lean of the vehicle body, actively attempted to
Kuniyuki, HiroshiKatayama, YutaKitagawa, TaiseiNumao, Yusuke
Items per page:
1 – 50 of 4738