Browse Topic: Transportation Systems

Items (4,669)
This study delves into the dynamics of three-wheeled Personal Mobility Vehicles (PMVs) equipped with an active tilting mechanism. In three-wheeled vehicles with a single front wheel, the risk of tipping over during sudden braking and sharp turning is often highlighted. To address this issue, the authors have focused their research on three-wheeled PMVs with two front wheels and one rear wheel, equipped with an active tilting mechanism. Previous studies using dynamic simulation tools have demonstrated that such PMVs possess higher obstacle avoidance capabilities compared to motorcycles and even passenger cars. However, these simulations were based on the assumption of avoidance maneuvers without braking, and no studies have yet examined the behavior of three-wheeled PMVs with an active tilting mechanism under the more complex conditions of braking during turning. Therefore, prior to conducting dynamic simulations under braking and turning conditions, this study aims to clarify the
Haraguchi, TetsunoriKaneko, Tetsuya
The synergistic adoption of automated driving technologies and the electrification of the vehicle power train offers the possibility of proposing new and innovative solutions for public transportation systems. In particular, an interesting solution is represented by modular systems in which multiple autonomous vehicles/transportation modules can be aggregated to form reconfigurable compositions according to desired transportation demand. In this work, a configurable connection between vehicles is adopted, as convoying ensures the possibility of power sharing between vehicles, allowing coordinated power management throughout the composition. Connected vehicles can also share power between batteries for battery recharge that is performed using a custom solution from a tram-like catenary. In this work, the authors design a demonstrator to investigate the feasibility of the proposed solution. Once designed, the proposed system has been assembled and tested at the ENEA Casaccia Research
Alessandrini, AdrianoBerzi, LorenzoFabbri, MarcoFranci, MichaelGulino, Michelangelo SantoPugi, LucaOrtenzi, FernandoVitiello, Francesco
In the next years, the global hydrogen vehicle market is expected to grow at a very high rate. Consequently, it is necessary for scholars and professionals to study and test specific components in order to rise motor efficiency leveraging the new features of connectivity available in smart roads. In particular, our research is focused on the developement of an engine control module driven by evaluation of usage characteristics (e.g., driving style) and "connected-to-x" scenarios using the standard engine control approach. Moreover, the module proposed enables the implementation of "fast running" models to improve the response of vehicles and make the best possible use of H2-powered engine characteristics. That said, in this paper is proposed a new approach to implement the control module, using Support Vector Machine (SVM) as the machine learning algorithm to detect driving style, and consequently modify the parameters of the engine. We choose SVM because i) it is less prone to
Mastroianni, MicheleMerola, SimonaIrimescu, AdrianDe Santis, MarcoEsposito, ChristianAversano, Lerina
Single motorcycle accidents are common in Nagano Prefecture where is mountainous areas in Japan. In a previous study, analysis of traffic accident statistics data suggested that the fatality and serious injury rates for uphill right curves and downhill left curves are high, however the true causes of these accidents remain unclear. In this study, a motorcycle simulator was used to evaluate the driving characteristics due to these road alignments. Evaluation courses based on combinations of uphill/downhill slopes and left/right curves were created, and experiments were conducted. The subjects of the study were expert riders and novice riders. The results showed that right curves are even more difficult to see near the entrance of the curve when accompanied by an uphill slope, making it easier to delay recognition and judgment of the curve. Expert riders recognized curves faster than novice riders. Additionally, expert riders take a large lean of the vehicle body, actively attempted to
Kuniyuki, HiroshiKatayama, YutaKitagawa, TaiseiNumao, Yusuke
The reduction of the CO2 footprint of transport vehicles is a major challenge to minimize the harmful impact of technology on the environment. Beside passenger cars and light and heavy-duty vehicles, this affects also the two-wheeler category and the non-road mobile machinery (NRMM). One promising path for the de-carbonization is the transition from fossil-fuel powered ICE powertrains to electric powertrains. Several examples of electrified powertrains showcase possibilities for small hand-held power-tools or small mopeds and scooters. As the powertrain categories two-wheeler and NRMM are very diversified and consist of various sub-categories and sub-classes with many different applications, the feasibility of electrification for the whole category cannot be judged by few examples. In this publication, a methodology for assessing the electrification potential of hand-held power tools and two-wheelers is shown. The method uses 4 different factors, which determine the feasibility for
Schmidt, StephanSchacht, Hans-JuergenWeller, KonstantinAbsenger, Johann Friedrich
This article presents a new generation of electric motors developed for light mobility and industrial applications. The motor range is based on synchronous reluctance technology using non-rare-earth permanent magnets. Three continuous power levels have been developed: 2, 4 and 6 kW. The challenges related to that motor range is their high continuous performances (cooled by natural convection) under nominal 48V, and reparability easiness without adding complexity. These motors stand out thanks to their competitive manufacturing cost and peak efficiency above 94%, which is a remarkable performance for this power and torque class. A prototype of a 6 kW continuous power has been produced and benchmarked. The experimental test showed a high level of correlation with the simulation calculation.
CISSE, Koua MalickMilosavljevic, MisaMallard, VincentValin, ThomasDe Paola, Gaetano
A battery bicycle with luggage space is designed and developed to have variable luggage space available to the rider. The developed design with bicycle frame has an innovative sideway moving frame for variable need-based space. The design was prepared for an e-commerce delivery application, suppling products through an easy, quick, and low-cost mode of transport with variable spacing options. The design was prepared for 160 kg weight, with 210 cm, 90 cm, and 35 cm as length height and width, respectively. The designed bicycle can carry luggage up to 100 kg. The design is powered by a 250-watt electric motor and can move with a maximum speed of 24 km/hr. The steering mechanism, cargo bucket, and the base frame are made in two parts for commuter convenience. The cargo bucket is front-mounted, on a sliding frame that enables one half of the bucket to be slid into the other half through sideways movement by fitted channels. The design has both electric and non-electric driving modes. The
Vashist, DevendraSatti, HarshAwasthi, A.KMUKHERJEE, SOURAV
Modern mobility solutions increasingly rely on HVAC systems due to growing transport demands, traffic congestion, and harsh environmental conditions. These systems, comprising a compressor, evaporator, condenser, and thermal expansion valve, require adequate airflow for optimal performance. Insufficient airflow, caused by factors like undersized ducts, improper fan settings, clogged filters, or high static pressures from duct restrictions, significantly hinders cooling capacity. The objective of this study is to develop a predictive model for passenger vehicle AC system performance under controlled environmental conditions. Discrepancies between predicted and desired performance will trigger a structured problem-solving process involving iterative testing, root cause analysis, and the development of corrective measures. The improvements will be focused on the vehicle-level HVAC design, adhering to customer specifications. This research will also establish an experimental validation
Meena, Avadhesh KumarAgarwal, RoopakSharma, KamalKishore, Kamal
In the context of intelligent transportation systems and applications such as autonomous driving, it is essential to predict a vehicle’s immediate future states to enable precise and timely prediction of vehicles’ movements. This article proposes a hybrid short-term kinematic vehicle prediction framework that integrates a novel object detection model, You Only Look Once version 11 (YOLOv11), with an unscented Kalman filter (UKF), a reliable state estimation technique. This study provides a unique method for real-time detection of vehicles in traffic scenes, tracking and predicting their short-term kinematics. Locating the vehicle accurately and classifying it in a range of dynamic scenarios is achievable by the enhanced detection capabilities of YOLOv11. These detections are used as inputs by the UKF to estimate and predict the future positions of the vehicles while considering measurement noise and dynamic model errors. The focus of this work is on individual vehicle motion prediction
Pahal, SudeshNandal, Priyanka
Highway tunnel lighting has a key impact on traffic safety and lowcarbon energy saving. Under the same lighting conditions, the brightness and uniformity of the road surface are closely related to the reflection characteristics of the road surface. In this paper, firstly, the brightness of asphalt concrete specimens made of different materials was tested by indoor experiments, and the reflective parameters of asphalt concrete of different colors were compared, and then the images of colored pavement of different colors were collected at the tunnel site, and the brightness and uniformity indexes of the colored pavement and the conventional asphalt pavement were analyzed and compared by using graphic image analysis technology. The results show that when the lighting conditions are the same, the luminance of yellow asphalt concrete is about 2.3 times that of black asphalt concrete, and the luminance of red asphalt concrete is about 1.5 times that of black asphalt concrete, and the use of
Si, JialaiWang, ZijianWang, LuhaiMa, FeiHan, LuluZhang, Zhongbin
In the context of China’s rapidly expanding urbanization, there is an increasing trend of car ownership among residents, which has led to a concomitant rise in traffic demand and a worsening of traffic congestion. To address this challenge, Variable Guided Lanes have been proposed as a novel traffic management strategy. This strategy entails the real-time adjustment of lane function, in response to fluctuations in traffic flow, with the objective of enhancing intersection access efficiency. The present study employs the average delay of vehicles in the inlet lane of the intersection as the discriminating index, and the left-turn and straight flow in the inlet lane as the discriminating condition. The study establishes an equal average delay model and delineates a threshold curve to assess the suitability of the lane for the implementation of Variable Guided Lanes. Furthermore, the study investigates whether the characteristics of the variable lanes are altered for the applicability
Zhang, QinanZhang, Yongzhong
In recent years, China has persistently rolled out initiatives to build and showcase rural road networks. This study aimed to examine the effect of the rural road demonstration and creation policy on people’s living standards. Using SPSSPRO software and the difference-in-differences (DID) method, we established an effectiveness evaluation model. We analyzed Engel coefficient data covering the period from 2012 to 2022, gathered from 10 cities – some participating in the demonstration and some not. The findings suggest that the policy on rural road development yields benefits by lowering the Engel coefficient in rural areas, thereby enhancing farmers’ quality of life. The study’s conclusions provide significant insights for furthering the rural road demonstration and construction initiative, as well as for promoting the high-quality progression of rural road networks.
Zhou, YiyanQiao, Rui
To explore the comparison and optimization of cross sections for six lane traffic organization in the digital design conditions of expressway reconstruction and expansion, a systematic analysis was conducted on the selection and different combinations of cross section layout parameters for bidirectional six lane traffic protection schemes during the construction period based on the Guangzhou Shenzhen Expressway reconstruction and expansion project. A simulation model based on real traffic flow was constructed, and a recommended cross section layout scheme for six lane traffic protection schemes during expressway reconstruction and expansion construction based on traffic safety and traffic efficiency was proposed. The comprehensive ranking of cross section parameter importance was given. The results showed that in terms of comprehensive importance priority, the right lateral clearance width>right lane width>left lateral clearance width>middle lane width>left lane width can provide
Qin, JianglinChen, Yazhen
Discovering the trend of risk changes and formulating risk prevention and control measures are important links in achieving proactive risk prevention and control. Constructing and analyzing field models can visualize the distribution and change of risks and formulate effective risk prevention and control measures. Based on the current situation and trend of field model research, this paper discusses its application in risk identification, aiming to improve the accuracy of risk avoidance. Firstly, different types of field models are classified, and their respective characteristics and application scenarios are introduced. Secondly, the shortcomings in the development of field models are summarised. Finally, in the field of autonomous driving and intelligent traffic management, it is proposed that the accuracy of the model can be improved by multi-scene data fusion, the dynamic response enhances the efficiency of risk avoidance, and the aspect of risk classification in complex
Song, YulianYue, LihongWang, Chunxiao
Based on the similarity analysis of Intelligent Connected Vehicles (ICVs), a distributed V2X hardware-in-the-loop test system for ICVs is designed, including the PanoSim autonomous driving simulation engine, GNSS simulator, V2X simulator, and management and cooperative control software. The system integrates the major technologies of distributed interaction, including operation management, time synchronization, coordinate conversion, and data preprocessing, and realizes the spatial and temporal consistency of each simulation node. 89 V2X first-stage application scenarios (e.g., FCW, RLVW) and 5 V2X second-stage application scenarios (e.g., CLC) use case experimental results have proved the reliability of the system. The FCW use case experiment results show that its simulation results pass with high confidence. The study emphasizes the value of the system in reducing development costs, improving safety, and accelerating the deployment of V2X applications, while identifying future
Gao, TianfangZhang, XingHuiChen, LiangHuang, ZhichenNi, Dong
Use Decision Making Trial and Evaluation Laborator (DEMATEL) and Analytic Hierarchy Process (AHP) to jointly analysis and determine the key factors of Guangzhou intelligent logistics. Through the questionnaire survey of 92 logistics enterprises in Guangzhou, it is concluded that Information infrastructure, big data, Internet of Things, artificial intelligence, Logistics dynamic updates, and Smart warehousing have a great impact on intelligent logistics. Combining practical engineering with theory to make the implementation of Guangzhou’s smart logistics project more scientific, It is characterized by a higher degree of scientificity. Moreover, it is of great warning value, which can alert relevant parties to potential issues. Meanwhile, it provides essential guidance for the implementation of the smart city project in Guangzhou, facilitating a more efficient and well - directed execution process. This study is limited to logistics business respondents in Guangzhou and may limit the
Zhang, ShuangshuangChen, NingKhaw, Khai WahLiu, ChenxiJin, Lili
This thesis explores strategies for controlling traffic signals at intersections within the context of ITS., emphasizing the role of DRL in optimizing traffic flow. In recent years, urbanization and the rapid increase in vehicle numbers in China have exacerbated traffic congestion, significantly hindering urban development. This study explores innovative approaches to alleviating traffic congestion, focusing on smart traffic signal systems that adjust according to real-time traffic conditions. The research reviews fundamental concepts in traffic signal control, including traffic flow, signal phases, and signal cycles, and investigates how DRL can dynamically adjust traffic light cycles to optimize intersection performance. The findings suggest that DRL provides an effective method for managing complex and unpredictable traffic environments, as it enables systems to self-learn and continuously refine their strategies based on environmental changes. The adoption of this technology holds
Liu, JunaoZuo, Tingyou
On highways, platoons of semi-trucks are a common phenomenon. By maintaining a small headway, these platoons can effectively reduce air resistance, thereby improving fuel efficiency and reducing carbon emissions. However, this driving mode is also accompanied by many safety and operational risks, such as increased risk of rear-end collisions, reduced driving comfort, and susceptibility to interference from other vehicles outside the platoon. Therefore, behavioral analysis and evaluation of semi-truck platoons naturally formed in real traffic environments are of great significance for improving their driving safety, comfort and stability. This study focuses on the headway characteristics of semi-truck platoons, analyzes their headway distribution, headway gap and braking response behavior, and then proposes a safe headway threshold for emergency braking to effectively reduce the probability of rear-end collisions. In addition, the study also defines an optimal headway range to reduce
Hu, XiaoqiangCao, Qiang
Dynamic monitoring of queue lengths of vehicles waiting for toll booths on highways is critical for maximizing traffic flow and increasing traffic performance. On the other hand, traditional methods mainly utilize fixed sensors that have various issues including high cost and low flexibility. To address this problem, this paper introduces a novel model based on the YOLOv5 object detection algorithm and Kalman filter tracking algorithm to achieve real-time monitoring of vehicle queue length. First of all, the novel model utilizes YOLOv5 to accurately detect vehicles and get each vehicle’s bounding box information. Then Kalman filter algorithm is used to predict and track the motion state of the vehicle, and the position and speed of each vehicle are estimated accurately. The model calculates queue length in real-time by continuously monitoring the position and speed of each vehicle. To improve the complexity and accuracy of the model, a multi-target tracking framework is introduced to
Yang, Qifeng
With the escalating rate of urbanization in China, the urban construction sector is encountering numerous challenges, including issues such as traffic congestion and environmental pollution. To enhance traffic efficiency and offer planning guidance for urban development, this study focuses on the fully or partial opening of community entrances. VISSIM is utilized to examine the community opening and simulate the internal road network, while also employing the SPSS data analysis tool for supplementary analysis. The objective of this method is to compare and analyze the traffic conditions and environmental impact of the community before and after its opening with different automobiles. Through the establishment of a comprehensive evaluation system, the study calculates and analyzes the average vehicle speed, noise levels, energy consumption, and carbon dioxide emissions before and after the opening of the community. Finally, several recommendations are proposed to enhance community
Li, MengyuanZhuo, ChenxuXiong, SiminXu, Lihao
This study focuses on analyzing the impact of the Francis Scott Key Bridge collapse on traffic flow and the traffic network in Baltimore City. By employing the processing of publicly available datasets, the construction of a traffic network model and a comprehensive scoring method and an improved K-means clustering algorithm based on the idea of the rotational method, the following conclusions have been drawn in this study. First, the bridge collapse significantly changed the distribution of traffic flow. According to the AADT data of 17 key traffic nodes, after the bridge collapse, the AADT of all nodes generally increased except for the nodes closest to the tunnel and bridge. For example, traffic nodes around the city center (e.g., nodes with OSMID numbers 37831627 and 602433660) experienced an increase in AADT, suggesting that traffic flows we Second, the 17 key nodes selected represent the major nodes of the Baltimore City traffic system and provide accurate data to support
Hao, ZhenxiangHu, JianpingRan, JinZheng, YuhangMa, Chenyuan
In recent years, the vibration comfort of automobiles has become a key consideration for consumers when purchasing vehicles. This study introduces human electrocardiogram (ECG) signals and blood pressure, and proposes a comfort prediction model based on physiological indicators. The research steps include: obtaining riding indicators and subjective feelings on flat and bumpy roads, and analyzing the differences in heart rate variability indicators and blood pressure under different road conditions through paired sample tests; playing different sound signals on bumpy roads, and using repeated measures analysis of variance to explore their impacts on physiological indicators and subjective evaluations; conducting data validity tests on the subjective evaluation results, and constructing a comfort prediction model based on correlation analysis and support vector regression algorithm. The results show that there are significant differences in indicators such as the average RR interval and
Hu, LiChen, HaoWan, YeqingTian, RuiliXu, Jiahao
The adhesion condition of the road surface is an important factor in the driving decision-making, and the lower the adhesion coefficient of the road, the greater the risk of safety. In order to study the development and progress in the research of the substances, a comparative analysis of Chinese and foreign references was carried out. The sensitive factors to the adhesion coefficient and influence of adhesion condition on driving were summarized. Then two main strategies to avoid a collision were presented, including longitudinal braking and lateral lane change. A detailed description of three methods used in automotive decision-making processes was offered, including rule-based method, supervised learning method, and reinforcement learning method, each characterized with certain attributes. Topics in the field of driving decision-making considering adhesion condition for intelligent connected vehicles were pointed out and future-oriented research formulations were provided. These
Wang, HongHou, De-Zao
This study establishes models of airport vertical navigation lights and aircraft vulnerable components (wings and landing gear) using SOLIDWORKS. Based on the frangibility standards for airport navigation facilities, the control dimensions of the circular tube model for navigation lights are determined. Numerical simulations are conducted in ANSYS Workbench to analyze collisions between aircraft wings/landing gear and navigation lights under three different velocity conditions. Internal energy analysis, bidirectional force response, and stress nephograms during the impact process are evaluated. The results indicate that current standards ensure that collisions with vertical navigation lights during takeoff and landing do not cause deformation or damage to aircraft vulnerable components, thereby guaranteeing the safety of aircraft and pilots.
Wang, JianwuSong, XiaoboWei, YanLiu, HongweiYou, ShengnanSun, Jinkun
In recent years, traffic issues in China have been emerging continuously, and the traffic congestion problem in Beijing is particularly prominent. We have explored the relationships between factors such as driving duration, road length, weather conditions in Beijing and traffic congestion. By using the Logistic Regression Model to analyze the relationships among driving duration, road length and traffic congestion, we found that both driving duration and road length are negatively correlated with traffic congestion. The model shows high accuracy and recall rate, demonstrating excellent performance. We also employed the Weighted Average Correlation Model to study the relationship between weather conditions and traffic congestion. The results indicate that traffic congestion is more severe in rain, snow, and foggy weather, while it is less serious in sunny and cloudy weather. Subsequently, through the noise level verification, the stability of the model was confirmed. At the same time
Feng, JiaruiHan, Xiran
In recent years, China’s traditional road passenger transport market has been constantly impacted by the expansion and popularity of high-speed rail, aviation, private cars, and online car Hailing. The demand for road passenger transport has shrunk significantly, and the market operation has encountered severe challenges. More and more road passenger transport enterprises are seeking to transform the traditional line passenger transport business into a more flexible chartered passenger transport business. The business qualification and the number of chartered passenger transport indicators need to be approved and licensed by the administrative department. The administrative department of most cities in China implements the total amount control mode for chartered passenger transport indicators, because chartered passenger transport is affected by many factors, such as the level of enterprise safety management, enterprise operating efficiency, market competition behavior, administrative
Zhao, Xiangyu
Urban road traffic state classification is essential for identifying early-stage deterioration and enabling proactive traffic management. This study presents a novel method to accurately assess the traffic state of urban roads while addressing the limitations of existing methods in spatial generalization performance. The approach consists of three key components. First, several indicators are designed to capture the spatial-temporal evolution mechanisms of traffic state, speed freedom, flow saturation, and their variations over time and space. Then, a feature learning module based on an AutoEncoder network is introduced to reduce the dimensionality of the constructed feature set. This enhances feature distinction while mitigating noise effects on classification results. Third, k-means clustering is applied to analyze significant features extracted from the AutoEncoder latent space, categorizing road traffic states into fluent, basic fluent, moderate congested and severe congested
Wang, XiaocongHuang, MinGuo, XinlingXie, JieminZhang, Xiaolan
In view of the contradiction between the best engine monomer performance and the poor vehicle performance existing energy management strategies, the objective of this study is to leverage deep reinforcement learning to incorporate the thermal characteristics of the engine into the optimization process of energy management strategies, thereby enhancing fuel economy under real-world vehicle operating conditions. Combining the real-time road condition information provided by the vehicle network system, the state space and action space are formulated based on the Soft Actor-Critic (SAC) reinforcement learning algorithm, taking into account energy power and engine cooling constraints, while a generalized reward function design methodology is proposed. Based on bench test data, this paper establishes a series hybrid electric vehicle model with integrated engine thermal characteristics, and validates the effectiveness of the algorithm under actual road conditions by using the engine bench
Fu, WeiqiLei, NuoZhang, Hao
With the continuous promotion and pilot application of the “a country with strong transportation network” project, BIM technology has been more and more widely used in expressway projects. With BIM technology as the core, based on the unified data standard, combined with the business management needs of the expressway in the early stage, construction period and operation period, build an integrated platform to explore the application of BIM technology in the whole life cycle of the expressway. Take Majing Expressway in Shaanxi Province as an example, carry out application at all stages, integrate the management information of the whole process, carry out data flow at all stages, and realize the digitalization of the whole life cycle.
Zhang, PengZheng, WeiGou, JingboLi, Shuai
With the development of e-commerce and urbanization, logistics distribution has become a key challenge in improving traffic management and efficiency. The use of parcel lockers can alleviate delivery pressure, enhance user experience, and reduce costs. This paper investigates the Multi-Objective Vehicle Routing Problem with Parcel Lockers (MOVRPPL), aiming to optimize transportation costs, customer satisfaction, and the number of vehicles to improve resource utilization. Based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II), this paper proposes the NSGA-II-NI algorithm, which incorporates the nearest neighbor crossover algorithm and route optimization to approximate the Pareto optimal solution set. Experiments using the Solomon dataset are conducted, and the performance is evaluated using the Inverted Generational Distance (IGD) and Hypervolume (HV), compared with the state-of-the-art algorithm NSGA-II-HI. The experimental results show that our method achieves a better
Liu, YuxinWang, Ying
This paper studies the transportation demands of different stakeholders, namely urban residents, entrepreneurs and tourists. It also studies the construction of network model optimization functions and corresponding indicators, and analyzes what kind of impact the bridge collapse will have on different stakeholders. Urban residents attach great importance to convenience in their daily lives. They usually like to travel by walking or cycling. They also prefer to use public transportation facilities. Entrepreneurs mainly rely on the efficiency of goods transportation to develop their businesses. They pay more attention to the accessibility of commercial and industrial areas. Tourists, on the other hand, prefer convenient connections between tourist attractions and hotels, as this makes their visits more convenient. After the bridge collapsed, the traffic pressure shifted to other main roads, such as I-95 and I-895. This led to longer commuting times and a significant increase in
Xiang, XiaohongYing, RongrongZhou, Lin
To evaluate the performance evolution patterns of road structures under natural environmental conditions and loading, data were collected from the RIOHTrack system. Pavement deflection, smoothness, and skid resistance were selected as evaluation indicators. The performance evolution characteristics over 50 million load cycles were analyzed to investigate the impact of different structural configurations on service performance. The study results are summarized as follows: The deflection basin area exhibits significant annual cyclic fluctuations, indicating that ambient temperature significantly affects pavement deflection. The initial rapid decrease in texture depth was attributed to the compaction of the surface layer under traffic loading, leading to a reduction in texture depth. Differences in tire and subgrade stiffness can cause variations in texture depth across various scenarios. Circular pavement structures' smoothness can be categorized into three classes; however, even within
He, YanLi, HaiboHe, ChuanpingZhang, YangpengMa, QingLi, PengfeiWang, Jie
The accurate prediction of road performance decay is of great significance for road maintenance and management. This paper takes the Xinjiang G577 highway as the research object, collects the measured data of the typical indexes of asphalt pavement since the past years (Deterioration Condition Index (PCI), Technical Condition Index (PQI)), and studies its decay. The model is constructed on the basis of time series1, and the exponential decay model of asphalt road PQI and PCI is derived. The model’s accuracy is then tested by calculating the correlation coefficient, mean absolute error (MAE), and other accuracy tests. The results demonstrate that the model exhibits a high degree of fit.
Tian, WeiBai, HaotianWang, TaiweiWang, JiayanDai, Xiaomin
This study extends the bottleneck model to analyze dynamic user equilibrium (UE) in carpooling during the morning peak commute. It is assumed that the carpooling platform offers both traditional human-driven vehicles and novel shared autonomous vehicles. First, we analyze the traffic distribution on a two-lane road. We find that traffic distribution is influenced by the additional cost of carpooling behavior. A corresponding functional relationship is established and visualized. Second, we derive the critical fare threshold for carpooling. Carpooling occurs only when the fare is below this threshold. Third, we obtain the user equilibrium (UE) solution under a specified case, including flow distribution, equilibrium cost, and total number of vehicle. Furthermore, a system-optimal dynamic tolling scheme is proposed to minimize total system cost while maintaining commuter UE. By equating the system marginal cost to the equilibrium cost, we derive the analytical expression for the lane
Zheng, XiaoLongZhong, RenXin
Smart airport is a key driver for the future development of civil aviation and a cornerstone of China’s ongoing “Four Airport” construction initiative. It is important to improve technology in many areas. This includes airport building, daily work, management, and making decisions. As air travel changes, using new tools like artificial intelligence, big data, and the Internet of Things (IoT) is very important. These tools help make airports more efficient, safe, and better for the environment. Because of this, building smart airports is not just a big goal but also a new way to deal with the challenges in today’s air travel systems. A key part in building smart airports is making a full evaluation system to check how well the projects are working. When a strong index system is made for smart airports, people involved can see clearly what is working well and what is not. So, chose using a three-scale hierarchical analysis method gives a clear and step-by-step way to look at different
Li, Shi-lingFu, Lu
In the commercial and off-highway sectors, equipment reliability isn't just a maintenance target but a business imperative. Whether it's a long-haul truck on the interstate or a dozer working through dust and rock, these machines operate in some of the most demanding environments on Earth. And while engine design and fuel choice often dominate conversations about performance, the role of grease is just as critical, particularly as equipment is pushed harder and longer under more variable conditions. Over the last decade, heavy-duty grease development has undergone a quiet evolution. Performance expectations have risen sharply. So have the environmental and regulatory considerations that influence formulation decisions.
Kumar, Anoop
The excitation forces of the tamper pairs in the vibrational screed system not only affect the road density but also affect the road surface quality. Thus, to enhance the performance of the asphalt paver machine, an experimental study of an asphalt paver machine is carried out to evaluate in detail the effect of the excitation frequencies of the tamper pairs and vibrator screed on the density and quality of the road surface. From the actual structure of the vibrational screed system of the asphalt paver machine used in the experiment, its mathematical model is then built to calculate the vibration equations. The fuzzy controller is then applied to control the deflection angles between the tamper pairs to enhance the working performance of the vibrational screed system. The study result shows that both the excitation frequencies of the tamper pairs (ftp ) and vibrator screed (fvs ) greatly affect the density and quality of the road surface. To increase the compression density of the
Song, FengxiangRen, ShageNguyen, Vanliem
Assessing the effect of road grade on the performance evaluation and testing of heavy-duty vehicles (HDVs) requires the efficient construction of a high-quality multi-parameter driving cycle of HDVs. However, existing pure random heuristic methods fail to preserve the driving characteristics of the original driving cycles, resulting in poor-quality outputs. In addition, the randomness inherent in multiple heuristic approaches limits the search efficiency. To address these issues, this study proposes a novel Monte Carlo tree search heuristic method (MCTSHM) for efficiently constructing multi-parameter driving cycles of HDVs. First, a satisfactory criterion model was used to design the objective function for the multi-parameter driving cycle, ensuring the evaluation indices satisfy given constraints. Next, heuristics were designed to maintain the dynamic transition characteristics of driving cycles. An improved Monte Carlo tree search was conducted to efficiently select heuristics more
Zhang, ManPei, ZhenlongHe, SiyuanQian, Xueming
Michigan Technological University (MTU) responded to and was awarded Broad Agency Announcement (BAA) Number: W56JSR-18-S-0001 through the Army Rapid Capabilities and Critical Technologies Office (RCCTO). The delivered performance enhanced HMMWV offers increased mobility with over 50% increase in acceleration, improving maneuverability and significant operational range with extended mission duration. Additionally, with on-board energy storage, the vehicle provides extended silent watch and silent mobility capabilities enabling low acoustic and thermal signatures, along with on-board and export vehicle power enabling the powering of mission systems. This paper details the characteristics and performance of an HMMWV with a hybridized powertrain that was designed to meet and demonstrate these benefits.
Worm, ZanderKiefer, DylanSchmidt, HenryPutrus, JohnathonRizzo, DeniseSubert, DaveDice, PaulNaber, Jeffrey D.
We develop a set of communications-aware behaviors that enable formations of robotic agents to travel through communications-deprived environments while remaining in contact with a central base station. These behaviors enable the agents to operate in environments common in dismounted and search and rescue operations. By operating as a mobile ad-hoc network (MANET), robotic agents can respond to environmental changes and react to the loss of any agent. We demonstrate in simulation and on custom robotic hardware a methodology that constructs a communications network by “peeling-off” individual agents from a formation to act as communication relays. We then present a behavior that reconfigures the team’s network topology to reach different locations within an environment while maintaining communications. Finally, we introduce a recovery behavior that enables agents to reestablish communications if a link in the network is lost. Our hardware trials demonstrate the systems capability to
Noren, CharlesChaudhary, SahilShirose, BurhanuddinVundurthy, BhaskarTravers, Matthew
The search for alternative solutions for vehicle electrification, while reducing the carbon footprint during the transition to green mobility, leads to the investigation of electro-fuels (e-fuels) in conventional internal combustion engines. Leveraging previous research, the present study focuses on the optimisation of a Compression Ignition (CI) engine combustion control in response to the use of the Oxymethylene Dimethyl Ethers (OMEx) blended with conventional diesel. The selected e-fuel is the OME3, which is expected to be used as a drop-in solution and to easily achieve a reduction in soot emissions due to both its high oxygen content and lack of direct carbon bonds in its molecular structure. To verify its potential, a 1D single-cylinder CI multi-zone engine model has been exploited to simulate various diesel/OME3 blends in a wide engine operating range. The first step deals with the evaluation of performance and emissions to demonstrate the differences, particularly in terms of
Foglia, AntonioCervone, DavideFrasci, EmmanueleArsie, IvanPolverino, PierpaoloPianese, Cesare
Electric vehicles are increasingly important for emission reduction and the promotion of sustainable mobility. Despite their advantages over conventional vehicles, the energy consumption of electric vehicles is heavily influenced by various factors such as driving behavior, elevation profile, and environmental conditions. In particular, the driving style plays a crucial role in determining range and energy consumption. This influence is also observed in the context of the Interreg project FreeE-Bus. This project focuses on the development of optimized charging management for electric buses in the public transport system of the Lake Constance region. Due to strict data protection regulations that prevent a detailed analysis of driver data, assessing the impact of driving styles is difficult. This paper addresses this issue by developing an innovative driver model that simulates different driver types and analyzes their effects on energy consumption. The driver model employs a Model
Konzept, AnjaReick, BenediktMiller, MariusRautenberg, PhilipStörzer, Martin
Launched in 2022, AeroSolfd, a HORIZON Europe project, aims to advance clean urban mobility by developing affordable and sustainable retrofit solutions for gasoline vehicles. This three-year initiative addresses not only tailpipe emissions but also brake emissions and pollution in semi-enclosed environments. Within AeroSolfd, the Swiss-based VERT association focuses on reducing tailpipe emissions using state-of-the-art Gasoline Particulate Filter (GPF) technology featuring an uncoated ceramic multicell wall-flow filter. VERT, in partnership with HJS, CPK, BFH, developed and tested a GPF-retrofit system at Technology Readiness Level 8 (TRL 8). Results demonstrate over 99% filtration efficiency for particles smaller than 500 nm on standard cycles (WLTC) and real-world driving cycles (RDE). Forty-two gasoline vehicles (GDI and PFI) were retrofitted with the GPF retrofit across Germany, Switzerland, Israel, and Denmark over a 6 to 8-month operational period. No issues were observed with
Rubino, LaurettaMayer, Andreas C.Lutz, Thomas W.Czerwinski, JanLarsen, Lars C.
Items per page:
1 – 50 of 4669