Browse Topic: Intelligent transportation systems
Intelligent Structural Health Monitoring (SHM) of bridge is a technology that utilizes advanced sensor technology along with professional bridge engineering knowledge, coupled with machine vision and other intelligent methods for continuously monitoring and evaluating the status of bridge structures. One application of SHM technology for bridges by way of machine learning is in the use of damage detection and quantification. In this way, changes in bridge conditions can be analyzed efficiently and accurately, ensuring stable operational performance throughout the lifecycle of the bridge. However, in the field of damage detection, although machine vision can effectively identify and quantify existing damages, it still lacks accuracy for predicting future damage trends based on real-time data. Such shortfall l may lead to late addressing of potential safety hazards, causing accelerated damage development and threatening structural safety. To tackle this problem, this study designs a deep
To facilitate the construction of a robust transport infrastructure, it is essential to implement a digital transformation of the current highway system. The concept of digital twins, which are virtual replicas of physical assets, offers a novel approach to enhancing the operational efficiency and predictive maintenance capabilities of highway networks. The present study begins with an exhaustive examination of the demand for the smart highway digital twin model, underscoring the necessity for a comprehensive framework that addresses the multifaceted aspects of digital transformation. The framework, as proposed, is composed of six integral components: spatiotemporal data acquisition and processing, multidimensional model development, model integration, application layer construction, model iteration, and model governance. Each element is critical in ensuring the fidelity and utility of the digital twin, which must accurately reflect the dynamic nature of highway systems. The
The escalation of road infrastructure anomalies, such as speed breakers and potholes, presents a formidable challenge to vehicular safety, efficient traffic management, and road maintenance strategies worldwide. In addressing these pervasive issues, this paper proposes an advanced, integrated approach for the detection and classification of speed breakers and potholes. Utilizing a sophisticated blend of deep learning methodologies and enhanced image processing techniques, our solution leverages Object Detection to analyze and interpret real-time visual data captured through advanced vehicle-mounted camera systems. This research meticulously details the comprehensive process involved in the development of this system, including the acquisition and preprocessing of a vast, varied dataset representative of numerous road types, conditions, and environmental factors. Through rigorous training, testing, and validation phases, the model demonstrates remarkable proficiency in recognizing and
The term Software-Defined Vehicle (SDV) describes the vision of software-driven automotive development, where new features, such as improved autonomous driving, are added through software updates. Groups like SOAFEE advocate cloud-native approaches – i.e., service-oriented architectures and distributed workloads – in vehicles. However, monitoring and diagnosing such vehicle architectures remain largely unaddressed. ASAM’s SOVD API (ISO 17978) fills this gap by providing a foundation for diagnosing vehicles with service-oriented architectures and connected vehicles based on high-performance computing units (HPCs). For service-oriented architectures, aspects like the execution environment, service orchestration, functionalities, dependencies, and execution times must be diagnosable. Since SDVs depend on cloud services, diagnostic functionality must extend beyond the vehicle to include the cloud for identifying the root cause of a malfunction. Due to SDVs’ dynamic nature, vehicle systems
Artificial Intelligence (AI) has emerged as a transformative force across various industries, revolutionizing processes and enhancing efficiency. In the automotive domain, AI's adaption has ushered in a new era of innovation and driving advancements across manufacturing, safety, and user experience. By leveraging AI technologies, the automotive industry is undergoing a significant transformation that is reshaping the way vehicles are manufactured, operated, and experienced. The benefits of AI-powered vehicles are not limited to their manufacturing, operation, and enhancing the user experience but also by integrating AI-powered vehicles with smart city infrastructure can unlock much more potential of the technology and can offer numerous advantages such as enhanced safety, efficiency, growth, and sustainability. Smart cities aim to create more livable, resilient, and inclusive communities by harnessing innovation through technologies like Internet of Things (IoT), devices, data
This SAE Standard specifies a message set, and its data frames and data elements, for use by applications that use vehicle-to-everything (V2X) communications systems.
Items per page:
50
1 – 50 of 435