Browse Topic: Intelligent transportation systems
To facilitate the construction of a robust transport infrastructure, it is essential to implement a digital transformation of the current highway system. The concept of digital twins, which are virtual replicas of physical assets, offers a novel approach to enhancing the operational efficiency and predictive maintenance capabilities of highway networks. The present study begins with an exhaustive examination of the demand for the smart highway digital twin model, underscoring the necessity for a comprehensive framework that addresses the multifaceted aspects of digital transformation. The framework, as proposed, is composed of six integral components: spatiotemporal data acquisition and processing, multidimensional model development, model integration, application layer construction, model iteration, and model governance. Each element is critical in ensuring the fidelity and utility of the digital twin, which must accurately reflect the dynamic nature of highway systems. The
Intelligent Structural Health Monitoring (SHM) of bridge is a technology that utilizes advanced sensor technology along with professional bridge engineering knowledge, coupled with machine vision and other intelligent methods for continuously monitoring and evaluating the status of bridge structures. One application of SHM technology for bridges by way of machine learning is in the use of damage detection and quantification. In this way, changes in bridge conditions can be analyzed efficiently and accurately, ensuring stable operational performance throughout the lifecycle of the bridge. However, in the field of damage detection, although machine vision can effectively identify and quantify existing damages, it still lacks accuracy for predicting future damage trends based on real-time data. Such shortfall l may lead to late addressing of potential safety hazards, causing accelerated damage development and threatening structural safety. To tackle this problem, this study designs a deep
The escalation of road infrastructure anomalies, such as speed breakers and potholes, presents a formidable challenge to vehicular safety, efficient traffic management, and road maintenance strategies worldwide. In addressing these pervasive issues, this paper proposes an advanced, integrated approach for the detection and classification of speed breakers and potholes. Utilizing a sophisticated blend of deep learning methodologies and enhanced image processing techniques, our solution leverages Object Detection to analyze and interpret real-time visual data captured through advanced vehicle-mounted camera systems. This research meticulously details the comprehensive process involved in the development of this system, including the acquisition and preprocessing of a vast, varied dataset representative of numerous road types, conditions, and environmental factors. Through rigorous training, testing, and validation phases, the model demonstrates remarkable proficiency in recognizing and
Artificial Intelligence (AI) has emerged as a transformative force across various industries, revolutionizing processes and enhancing efficiency. In the automotive domain, AI's adaption has ushered in a new era of innovation and driving advancements across manufacturing, safety, and user experience. By leveraging AI technologies, the automotive industry is undergoing a significant transformation that is reshaping the way vehicles are manufactured, operated, and experienced. The benefits of AI-powered vehicles are not limited to their manufacturing, operation, and enhancing the user experience but also by integrating AI-powered vehicles with smart city infrastructure can unlock much more potential of the technology and can offer numerous advantages such as enhanced safety, efficiency, growth, and sustainability. Smart cities aim to create more livable, resilient, and inclusive communities by harnessing innovation through technologies like Internet of Things (IoT), devices, data
This SAE Standard specifies a message set, and its data frames and data elements, for use by applications that use vehicle-to-everything (V2X) communications systems.
The deployment of autonomous urban buses brings with it the hope of addressing concerns associated with safety and aging drivers. However, issues related autonomous vehicle (AV) positioning and interactions with road users pose challenges to realizing these benefits. This report covers unsettled issues and potential solutions related to the operation of autonomous urban buses, including the crucial need for all-weather localization capabilities to ensure reliable navigation in diverse environmental conditions. Additionally, minimizing the gap between AVs and platforms during designated parking requires precise localization. Next-gen Urban Buses: Autonomy and Connectivity addresses the challenge of predicting the intentions of pedestrians, vehicles, and obstacles for appropriate responses, the detection of traffic police gestures to ensure compliance with traffic signals, and the optimization of traffic performance through urban platooning—including the need for advanced communication
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach of this algorithm is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm. This solution is either computed decentralized by various traffic participants, who share and
This research investigates platoon dispersion characteristics in mixed-traffic flow of autonomous and human-driven vehicles. It presents a cellular automata-based platoon dispersion model. The study’s key findings are as follows: platoon dispersion initially increases and then decreases with the rise in autonomous vehicle proportions. When the autonomous vehicle proportion is approaching 100%, platoon dispersion descends rapidly and is completely eliminated while the proportion is 100%. Compared to platoon consisting entirely of human-driven vehicles, the peak value of standard deviation of vehicle speed is 1.71 times and the travel time drops by 38.19% when the proportion is 1. Moreover, the lane-changing behavior enhances platoon speed, acceleration, and space utilization at micro- and macrolevels by optimizing space resource allocation within the platoon. The study employs a two-lane mixed-flow platoon dispersion model that assumes uniform vehicle characteristics and prioritizes
Data privacy questions are particularly timely in the automotive industry as—now more than ever before—vehicles are collecting and sharing data at great speeds and quantities. Though connectivity and vehicle-to-vehicle technologies are perhaps the most obvious, smart city infrastructure, maintenance, and infotainment systems are also relevant in the data privacy law discourse. Facial Recognition Software and Privacy Law in Transportation Technology considers the current legal landscape of privacy law and the unanswered questions that have surfaced in recent years. A survey of the limited recent federal case law and statutory law, as well as examples of comprehensive state data privacy laws, is included. Perhaps most importantly, this report simplifies the balancing act that manufacturers and consumers are performing by complying with data privacy laws, sharing enough data to maximize safety and convenience, and protecting personal information. Click here to access the full SAE EDGETM
Connected and autonomous vehicles (CAVs) and their productization are a major focus of the automotive and mobility industries as a whole. However, despite significant investments in this technology, CAVs are still at risk of collisions, particularly in unforeseen circumstances or “edge cases.” It is also critical to ensure that redundant environmental data are available to provide additional information for the autonomous driving software stack in case of emergencies. Additionally, vehicle-to-everything (V2X) technologies can be included in discussions on safer autonomous driving design. Recently, there has been a slight increase in interest in the use of responder-to-vehicle (R2V) technology for emergency vehicles, such as ambulances, fire trucks, and police cars. R2V technology allows for the exchange of information between different types of responder vehicles, including CAVs. It can be used in collision avoidance or emergency situations involving CAV responder vehicles. The
Items per page:
50
1 – 50 of 415