Browse Topic: Traffic management
The transportation industry is transforming with the integration of advanced data technologies, edge devices, and artificial intelligence (AI). Intelligent transportation systems (ITS) are pivotal in optimizing traffic flow and safety. Central to this are transportation management centers, which manage transportation systems, traffic flow, and incident responses. Leveraging Advanced Data Technologies for Smart Traffic Management explores emerging trends in transportation data, focusing on data collection, aggregation, and sharing. Effective data management, AI application, and secure data sharing are crucial for optimizing operations. Integrating edge devices with existing systems presents challenges impacting security, cost, and efficiency. Ultimately, AI in transportation offers significant opportunities to predict and manage traffic conditions. AI-driven tools analyze historical data and current conditions to forecast future events. The importance of multidisciplinary approaches and
With many stakeholders involved, and major investments supporting it, the advancements in automated driving (AD) are undoubtedly there. Generally speaking, the motivation for advancing AD is driver convenience and road safety. Regarding the development of AD, original equipment manufacturers, technology start-ups, and AD systems developers have taken different approaches for automated vehicles (AVs). Some manufacturers are on the path toward stand-alone vehicles, mostly relying on onboard sensors and intelligence. On the other hand, the connected, cooperative, and automated mobility (CCAM) approach relies on additional communication and information exchange to ensure safe and secure operation. CCAM holds great potential to improve traffic management, road safety, equity, and convenience. In both approaches, there are increasingly large amounts of data generated and used for AD functions in perception, situational awareness, path prediction, and decision-making. The use of artificial
Letter from the Guest Editors
In traffic scenarios, the spacing between vehicles plays a key role, as the actions of one vehicle can significantly impact others, particularly with regards to energy conservation. Accordingly, modern vehicles are equipped with inter-vehicle communication systems to maintain specific distances between vehicles. The aerodynamic forces experienced by both leading vehicles (leaders) and following vehicles (followers) are connected to the flow patterns in the wake region of the leaders. Therefore, improving our understanding of the turbulent characteristics associated with vehicles platooning is important. This paper investigates the effects of inter-vehicle distances on the flow structure of two vehicles: a small SUV as the leader and a larger light commercial van as the follower, using a Delayed Detached Eddy Simulation (DDES) CFD technique. The study focuses on three specific inter-vehicle distances: S = 0.28 L, 0.4L, and 0.5L, where S represents the spacing between the two vehicles
To facilitate the construction of a robust transport infrastructure, it is essential to implement a digital transformation of the current highway system. The concept of digital twins, which are virtual replicas of physical assets, offers a novel approach to enhancing the operational efficiency and predictive maintenance capabilities of highway networks. The present study begins with an exhaustive examination of the demand for the smart highway digital twin model, underscoring the necessity for a comprehensive framework that addresses the multifaceted aspects of digital transformation. The framework, as proposed, is composed of six integral components: spatiotemporal data acquisition and processing, multidimensional model development, model integration, application layer construction, model iteration, and model governance. Each element is critical in ensuring the fidelity and utility of the digital twin, which must accurately reflect the dynamic nature of highway systems. The
The escalation of road infrastructure anomalies, such as speed breakers and potholes, presents a formidable challenge to vehicular safety, efficient traffic management, and road maintenance strategies worldwide. In addressing these pervasive issues, this paper proposes an advanced, integrated approach for the detection and classification of speed breakers and potholes. Utilizing a sophisticated blend of deep learning methodologies and enhanced image processing techniques, our solution leverages Object Detection to analyze and interpret real-time visual data captured through advanced vehicle-mounted camera systems. This research meticulously details the comprehensive process involved in the development of this system, including the acquisition and preprocessing of a vast, varied dataset representative of numerous road types, conditions, and environmental factors. Through rigorous training, testing, and validation phases, the model demonstrates remarkable proficiency in recognizing and
Artificial Intelligence (AI) has emerged as a transformative force across various industries, revolutionizing processes and enhancing efficiency. In the automotive domain, AI's adaption has ushered in a new era of innovation and driving advancements across manufacturing, safety, and user experience. By leveraging AI technologies, the automotive industry is undergoing a significant transformation that is reshaping the way vehicles are manufactured, operated, and experienced. The benefits of AI-powered vehicles are not limited to their manufacturing, operation, and enhancing the user experience but also by integrating AI-powered vehicles with smart city infrastructure can unlock much more potential of the technology and can offer numerous advantages such as enhanced safety, efficiency, growth, and sustainability. Smart cities aim to create more livable, resilient, and inclusive communities by harnessing innovation through technologies like Internet of Things (IoT), devices, data
The deployment of autonomous urban buses brings with it the hope of addressing concerns associated with safety and aging drivers. However, issues related autonomous vehicle (AV) positioning and interactions with road users pose challenges to realizing these benefits. This report covers unsettled issues and potential solutions related to the operation of autonomous urban buses, including the crucial need for all-weather localization capabilities to ensure reliable navigation in diverse environmental conditions. Additionally, minimizing the gap between AVs and platforms during designated parking requires precise localization. Next-gen Urban Buses: Autonomy and Connectivity addresses the challenge of predicting the intentions of pedestrians, vehicles, and obstacles for appropriate responses, the detection of traffic police gestures to ensure compliance with traffic signals, and the optimization of traffic performance through urban platooning—including the need for advanced communication
This article offers an algorithmic solution for moving a homogeneous platoon of position-controlled vehicles on a curved path with varying speeds and in the presence of communication losses and delays. This article considers a trajectory-based platooning with the leader–following communication topology, where the lead vehicle communicates its reference position and orientation to each autonomous follower vehicle. A follower vehicle stores this communicated information for a specific period as a virtual trail of the lead vehicle starting from the lead vehicle’s initial position and orientation. An algorithm uses this trail to find the follower vehicle’s reference position and orientation on that trail, such that the follower vehicle maintains a constant distance from the lead vehicle. The proposed algorithm helps form a platoon where each vehicle can traverse a curve with varying speeds. In contrast, in the existing literature, most of the solutions for vehicle platooning on a curved
This research investigates platoon dispersion characteristics in mixed-traffic flow of autonomous and human-driven vehicles. It presents a cellular automata-based platoon dispersion model. The study’s key findings are as follows: platoon dispersion initially increases and then decreases with the rise in autonomous vehicle proportions. When the autonomous vehicle proportion is approaching 100%, platoon dispersion descends rapidly and is completely eliminated while the proportion is 100%. Compared to platoon consisting entirely of human-driven vehicles, the peak value of standard deviation of vehicle speed is 1.71 times and the travel time drops by 38.19% when the proportion is 1. Moreover, the lane-changing behavior enhances platoon speed, acceleration, and space utilization at micro- and macrolevels by optimizing space resource allocation within the platoon. The study employs a two-lane mixed-flow platoon dispersion model that assumes uniform vehicle characteristics and prioritizes
Urban Air Mobility (UAM) envisions heterogenous airborne entities like crewed and uncrewed passenger and cargo vehicles within, and between urban and rural environment. To achieve this, a paradigm shift to a cooperative operating environment similar to Extensible Traffic Management (xTM) is needed. This requires the blending of traditional Air Traffic Services (ATS) with the new generation UAM vehicles having their unique flight dynamics and handling characteristics. A hybrid environment needs to be established with enhanced shared situational awareness for all stakeholders, enabling equitable airspace access, minimizing risk, optimized airspace use, and providing flexible and adaptable airspace rules. This paper introduces a novel concept of distributed airspace management which would be apt for all kinds of operational scenarios perceived for UAM. The proposal is centered around the efficiency and safety in air space management being achieved by self-discipline. It utilizes
Items per page:
50
1 – 50 of 525