Browse Topic: Traffic management
To facilitate the construction of a robust transport infrastructure, it is essential to implement a digital transformation of the current highway system. The concept of digital twins, which are virtual replicas of physical assets, offers a novel approach to enhancing the operational efficiency and predictive maintenance capabilities of highway networks. The present study begins with an exhaustive examination of the demand for the smart highway digital twin model, underscoring the necessity for a comprehensive framework that addresses the multifaceted aspects of digital transformation. The framework, as proposed, is composed of six integral components: spatiotemporal data acquisition and processing, multidimensional model development, model integration, application layer construction, model iteration, and model governance. Each element is critical in ensuring the fidelity and utility of the digital twin, which must accurately reflect the dynamic nature of highway systems. The
The escalation of road infrastructure anomalies, such as speed breakers and potholes, presents a formidable challenge to vehicular safety, efficient traffic management, and road maintenance strategies worldwide. In addressing these pervasive issues, this paper proposes an advanced, integrated approach for the detection and classification of speed breakers and potholes. Utilizing a sophisticated blend of deep learning methodologies and enhanced image processing techniques, our solution leverages Object Detection to analyze and interpret real-time visual data captured through advanced vehicle-mounted camera systems. This research meticulously details the comprehensive process involved in the development of this system, including the acquisition and preprocessing of a vast, varied dataset representative of numerous road types, conditions, and environmental factors. Through rigorous training, testing, and validation phases, the model demonstrates remarkable proficiency in recognizing and
Artificial Intelligence (AI) has emerged as a transformative force across various industries, revolutionizing processes and enhancing efficiency. In the automotive domain, AI's adaption has ushered in a new era of innovation and driving advancements across manufacturing, safety, and user experience. By leveraging AI technologies, the automotive industry is undergoing a significant transformation that is reshaping the way vehicles are manufactured, operated, and experienced. The benefits of AI-powered vehicles are not limited to their manufacturing, operation, and enhancing the user experience but also by integrating AI-powered vehicles with smart city infrastructure can unlock much more potential of the technology and can offer numerous advantages such as enhanced safety, efficiency, growth, and sustainability. Smart cities aim to create more livable, resilient, and inclusive communities by harnessing innovation through technologies like Internet of Things (IoT), devices, data
The deployment of autonomous urban buses brings with it the hope of addressing concerns associated with safety and aging drivers. However, issues related autonomous vehicle (AV) positioning and interactions with road users pose challenges to realizing these benefits. This report covers unsettled issues and potential solutions related to the operation of autonomous urban buses, including the crucial need for all-weather localization capabilities to ensure reliable navigation in diverse environmental conditions. Additionally, minimizing the gap between AVs and platforms during designated parking requires precise localization. Next-gen Urban Buses: Autonomy and Connectivity addresses the challenge of predicting the intentions of pedestrians, vehicles, and obstacles for appropriate responses, the detection of traffic police gestures to ensure compliance with traffic signals, and the optimization of traffic performance through urban platooning—including the need for advanced communication
This article offers an algorithmic solution for moving a homogeneous platoon of position-controlled vehicles on a curved path with varying speeds and in the presence of communication losses and delays. This article considers a trajectory-based platooning with the leader–following communication topology, where the lead vehicle communicates its reference position and orientation to each autonomous follower vehicle. A follower vehicle stores this communicated information for a specific period as a virtual trail of the lead vehicle starting from the lead vehicle’s initial position and orientation. An algorithm uses this trail to find the follower vehicle’s reference position and orientation on that trail, such that the follower vehicle maintains a constant distance from the lead vehicle. The proposed algorithm helps form a platoon where each vehicle can traverse a curve with varying speeds. In contrast, in the existing literature, most of the solutions for vehicle platooning on a curved
This research investigates platoon dispersion characteristics in mixed-traffic flow of autonomous and human-driven vehicles. It presents a cellular automata-based platoon dispersion model. The study’s key findings are as follows: platoon dispersion initially increases and then decreases with the rise in autonomous vehicle proportions. When the autonomous vehicle proportion is approaching 100%, platoon dispersion descends rapidly and is completely eliminated while the proportion is 100%. Compared to platoon consisting entirely of human-driven vehicles, the peak value of standard deviation of vehicle speed is 1.71 times and the travel time drops by 38.19% when the proportion is 1. Moreover, the lane-changing behavior enhances platoon speed, acceleration, and space utilization at micro- and macrolevels by optimizing space resource allocation within the platoon. The study employs a two-lane mixed-flow platoon dispersion model that assumes uniform vehicle characteristics and prioritizes
Urban Air Mobility (UAM) envisions heterogenous airborne entities like crewed and uncrewed passenger and cargo vehicles within, and between urban and rural environment. To achieve this, a paradigm shift to a cooperative operating environment similar to Extensible Traffic Management (xTM) is needed. This requires the blending of traditional Air Traffic Services (ATS) with the new generation UAM vehicles having their unique flight dynamics and handling characteristics. A hybrid environment needs to be established with enhanced shared situational awareness for all stakeholders, enabling equitable airspace access, minimizing risk, optimized airspace use, and providing flexible and adaptable airspace rules. This paper introduces a novel concept of distributed airspace management which would be apt for all kinds of operational scenarios perceived for UAM. The proposal is centered around the efficiency and safety in air space management being achieved by self-discipline. It utilizes
Truck platooning is an emerging technology that exploits the drag reduction experienced by bluff bodies moving together in close longitudinal proximity. The drag-reduction phenomenon is produced via two mechanisms: wake-effect drag reduction from leading vehicles, whereby a following vehicle operates in a region of lower apparent wind speed, thus reducing its drag; and base-drag reduction from following vehicles, whereby the high-pressure field forward of a closely-following vehicle will increase the base pressure of a leading vehicle, thus reducing its drag. This paper presents a physics-guided empirical model for calculating the drag-reduction benefits from truck platooning. The model provides a general framework from which the drag reduction of any vehicle in a heterogeneous truck platoon can be calculated, based on its isolated-vehicle drag-coefficient performance and limited geometric considerations. The model is adapted from others that predict the influence of inter-vehicle
India is a highly populous country. The traffic problems faced by the people here are not uncommon. The increase in traffic leads to increase in accidents, pollution, inconvenience and frustration. It also comes with costs of additional fuel and time. Though public transport is extensively available in India, still it isn't sufficient for the population of India. Especially in Metro cities, public transport services are often crowded. So, to travel peacefully people are opting for commuting in their own vehicles. And as a result, more vehicles are coming on roads. Other major reasons for increasing traffic are lack of proper implementation of traffic rules and traffic signals out of sync. In addition to city traffic, congestion is also seen on highways, mainly at toll plazas. Although implementation of FASTag has reduced it to some extent, some toll plazas still face traffic congestion issues. This paper provides an idea to ease the traffic problems in the city and on the highways too
Vehicular automation in the form of a connected and automated vehicle platoon is demanding as it aims to increase traffic flow and driver safety. Controlling a vehicle platoon on a curved path is challenging, and most solutions in the existing literature demonstrate platooning on a straight path or curved paths at constant speeds. This article proposes an algorithmic solution with leader-following (LF) communication topology and constant distance (CD) spacing for platooning homogeneous position-controlled vehicles (PCVs) on a curved path, with each vehicle capable of cornering at variable speeds. The lead vehicle communicates its reference position and orientation to all the follower vehicles. A follower vehicle stores this information as a virtual trail of the lead vehicle for a specific period. An algorithm uses this trail to find the follower vehicle’s reference path by solving an optimization problem. This algorithm is feasible and maintains a constant inter-vehicle distance. The
Items per page:
50
1 – 50 of 509