Browse Topic: Roads and highways

Items (1,290)
Heavy-duty commercial vehicles (HDCVs) are the key mobile nodes in intelligent transportation systems (ITS). However, their complex operating conditions and the diversity of data sources (such as road conditions, driver behavior, traffic signals, and on-board sensors) present considerable difficulties for accurately estimating the state and perceiving the environment using a single modality of data. This requires effective multi-modal data fusion to enhance the control and decision-making capabilities of HDCVs. This paper addresses this need by proposing a customized multi-modal intelligent transportation data fusion framework for intelligent HDCVs. This paper presents a solution for establishing a multi-modal intelligent transportation data collection platform, including real-scene collection methods and simulation scene collection methods based on the SUMO-MATLAB joint simulation platform. Through three representative case studies, the application methods of multi-modal traffic data
Chen, ZhengxianWang, ShaoqiJiang, HuimingZhou, FojinWang, MingqiangLi, Jun
This study investigates the critical factors influencing the performance of hydro-pneumatic suspension systems (HPSS) in mining explosion-proof engineering vehicles operating in complex underground coal mine environments. To address challenges such as poor ride comfort and insufficient load-bearing capacity under harsh mining conditions, a two-stage pressure HPSS was analyzed through integrated numerical modeling and field validation. A mathematical model was established based on the structural principles of the suspension system, focusing on key parameters including cylinder bore (195–255 mm), piston area (170–210 mm), damping orifice diameter (7–8 mm), check valve flow area, and accumulator configurations (low-pressure: 1.2 MPa, high-pressure: 6 MPa). Experimental trials were conducted in active coal mines, simulating typical mining scenarios such as uneven road surfaces (120 mm obstacles), heavy-load gangue transportation, and confined-space operations in thin coal seams (<1.5 m
Song, YanLiang, Yufang
Single motorcycle accidents are common in Nagano Prefecture where is mountainous areas in Japan. In a previous study, analysis of traffic accident statistics data suggested that the fatality and serious injury rates for uphill right curves and downhill left curves are high, however the true causes of these accidents remain unclear. In this study, a motorcycle simulator was used to evaluate the driving characteristics due to these road alignments. Evaluation courses based on combinations of uphill/downhill slopes and left/right curves were created, and experiments were conducted. The subjects of the study were expert riders and novice riders. The results showed that right curves are even more difficult to see near the entrance of the curve when accompanied by an uphill slope, making it easier to delay recognition and judgment of the curve. Expert riders recognized curves faster than novice riders. Additionally, expert riders take a large lean of the vehicle body, actively attempted to
Kuniyuki, HiroshiKatayama, YutaKitagawa, TaiseiNumao, Yusuke
The accurate prediction of road performance decay is of great significance for road maintenance and management. This paper takes the Xinjiang G577 highway as the research object, collects the measured data of the typical indexes of asphalt pavement since the past years (Deterioration Condition Index (PCI), Technical Condition Index (PQI)), and studies its decay. The model is constructed on the basis of time series1, and the exponential decay model of asphalt road PQI and PCI is derived. The model’s accuracy is then tested by calculating the correlation coefficient, mean absolute error (MAE), and other accuracy tests. The results demonstrate that the model exhibits a high degree of fit.
Tian, WeiBai, HaotianWang, TaiweiWang, JiayanDai, Xiaomin
Dynamic monitoring of queue lengths of vehicles waiting for toll booths on highways is critical for maximizing traffic flow and increasing traffic performance. On the other hand, traditional methods mainly utilize fixed sensors that have various issues including high cost and low flexibility. To address this problem, this paper introduces a novel model based on the YOLOv5 object detection algorithm and Kalman filter tracking algorithm to achieve real-time monitoring of vehicle queue length. First of all, the novel model utilizes YOLOv5 to accurately detect vehicles and get each vehicle’s bounding box information. Then Kalman filter algorithm is used to predict and track the motion state of the vehicle, and the position and speed of each vehicle are estimated accurately. The model calculates queue length in real-time by continuously monitoring the position and speed of each vehicle. To improve the complexity and accuracy of the model, a multi-target tracking framework is introduced to
Yang, Qifeng
In recent years, the vibration comfort of automobiles has become a key consideration for consumers when purchasing vehicles. This study introduces human electrocardiogram (ECG) signals and blood pressure, and proposes a comfort prediction model based on physiological indicators. The research steps include: obtaining riding indicators and subjective feelings on flat and bumpy roads, and analyzing the differences in heart rate variability indicators and blood pressure under different road conditions through paired sample tests; playing different sound signals on bumpy roads, and using repeated measures analysis of variance to explore their impacts on physiological indicators and subjective evaluations; conducting data validity tests on the subjective evaluation results, and constructing a comfort prediction model based on correlation analysis and support vector regression algorithm. The results show that there are significant differences in indicators such as the average RR interval and
Hu, LiChen, HaoWan, YeqingTian, RuiliXu, Jiahao
With the continuous promotion and pilot application of the “a country with strong transportation network” project, BIM technology has been more and more widely used in expressway projects. With BIM technology as the core, based on the unified data standard, combined with the business management needs of the expressway in the early stage, construction period and operation period, build an integrated platform to explore the application of BIM technology in the whole life cycle of the expressway. Take Majing Expressway in Shaanxi Province as an example, carry out application at all stages, integrate the management information of the whole process, carry out data flow at all stages, and realize the digitalization of the whole life cycle.
Zhang, PengZheng, WeiGou, JingboLi, Shuai
In view of the contradiction between the best engine monomer performance and the poor vehicle performance existing energy management strategies, the objective of this study is to leverage deep reinforcement learning to incorporate the thermal characteristics of the engine into the optimization process of energy management strategies, thereby enhancing fuel economy under real-world vehicle operating conditions. Combining the real-time road condition information provided by the vehicle network system, the state space and action space are formulated based on the Soft Actor-Critic (SAC) reinforcement learning algorithm, taking into account energy power and engine cooling constraints, while a generalized reward function design methodology is proposed. Based on bench test data, this paper establishes a series hybrid electric vehicle model with integrated engine thermal characteristics, and validates the effectiveness of the algorithm under actual road conditions by using the engine bench
Fu, WeiqiLei, NuoZhang, Hao
Highway tunnel lighting has a key impact on traffic safety and lowcarbon energy saving. Under the same lighting conditions, the brightness and uniformity of the road surface are closely related to the reflection characteristics of the road surface. In this paper, firstly, the brightness of asphalt concrete specimens made of different materials was tested by indoor experiments, and the reflective parameters of asphalt concrete of different colors were compared, and then the images of colored pavement of different colors were collected at the tunnel site, and the brightness and uniformity indexes of the colored pavement and the conventional asphalt pavement were analyzed and compared by using graphic image analysis technology. The results show that when the lighting conditions are the same, the luminance of yellow asphalt concrete is about 2.3 times that of black asphalt concrete, and the luminance of red asphalt concrete is about 1.5 times that of black asphalt concrete, and the use of
Si, JialaiWang, ZijianWang, LuhaiMa, FeiHan, LuluZhang, Zhongbin
In recent years, China has persistently rolled out initiatives to build and showcase rural road networks. This study aimed to examine the effect of the rural road demonstration and creation policy on people’s living standards. Using SPSSPRO software and the difference-in-differences (DID) method, we established an effectiveness evaluation model. We analyzed Engel coefficient data covering the period from 2012 to 2022, gathered from 10 cities – some participating in the demonstration and some not. The findings suggest that the policy on rural road development yields benefits by lowering the Engel coefficient in rural areas, thereby enhancing farmers’ quality of life. The study’s conclusions provide significant insights for furthering the rural road demonstration and construction initiative, as well as for promoting the high-quality progression of rural road networks.
Zhou, YiyanQiao, Rui
On highways, platoons of semi-trucks are a common phenomenon. By maintaining a small headway, these platoons can effectively reduce air resistance, thereby improving fuel efficiency and reducing carbon emissions. However, this driving mode is also accompanied by many safety and operational risks, such as increased risk of rear-end collisions, reduced driving comfort, and susceptibility to interference from other vehicles outside the platoon. Therefore, behavioral analysis and evaluation of semi-truck platoons naturally formed in real traffic environments are of great significance for improving their driving safety, comfort and stability. This study focuses on the headway characteristics of semi-truck platoons, analyzes their headway distribution, headway gap and braking response behavior, and then proposes a safe headway threshold for emergency braking to effectively reduce the probability of rear-end collisions. In addition, the study also defines an optimal headway range to reduce
Hu, XiaoqiangCao, Qiang
To explore the comparison and optimization of cross sections for six lane traffic organization in the digital design conditions of expressway reconstruction and expansion, a systematic analysis was conducted on the selection and different combinations of cross section layout parameters for bidirectional six lane traffic protection schemes during the construction period based on the Guangzhou Shenzhen Expressway reconstruction and expansion project. A simulation model based on real traffic flow was constructed, and a recommended cross section layout scheme for six lane traffic protection schemes during expressway reconstruction and expansion construction based on traffic safety and traffic efficiency was proposed. The comprehensive ranking of cross section parameter importance was given. The results showed that in terms of comprehensive importance priority, the right lateral clearance width>right lane width>left lateral clearance width>middle lane width>left lane width can provide
Qin, JianglinChen, Yazhen
This study extends the bottleneck model to analyze dynamic user equilibrium (UE) in carpooling during the morning peak commute. It is assumed that the carpooling platform offers both traditional human-driven vehicles and novel shared autonomous vehicles. First, we analyze the traffic distribution on a two-lane road. We find that traffic distribution is influenced by the additional cost of carpooling behavior. A corresponding functional relationship is established and visualized. Second, we derive the critical fare threshold for carpooling. Carpooling occurs only when the fare is below this threshold. Third, we obtain the user equilibrium (UE) solution under a specified case, including flow distribution, equilibrium cost, and total number of vehicle. Furthermore, a system-optimal dynamic tolling scheme is proposed to minimize total system cost while maintaining commuter UE. By equating the system marginal cost to the equilibrium cost, we derive the analytical expression for the lane
Zheng, XiaoLongZhong, RenXin
This study focuses on analyzing the impact of the Francis Scott Key Bridge collapse on traffic flow and the traffic network in Baltimore City. By employing the processing of publicly available datasets, the construction of a traffic network model and a comprehensive scoring method and an improved K-means clustering algorithm based on the idea of the rotational method, the following conclusions have been drawn in this study. First, the bridge collapse significantly changed the distribution of traffic flow. According to the AADT data of 17 key traffic nodes, after the bridge collapse, the AADT of all nodes generally increased except for the nodes closest to the tunnel and bridge. For example, traffic nodes around the city center (e.g., nodes with OSMID numbers 37831627 and 602433660) experienced an increase in AADT, suggesting that traffic flows we Second, the 17 key nodes selected represent the major nodes of the Baltimore City traffic system and provide accurate data to support
Hao, ZhenxiangHu, JianpingRan, JinZheng, YuhangMa, Chenyuan
To evaluate the performance evolution patterns of road structures under natural environmental conditions and loading, data were collected from the RIOHTrack system. Pavement deflection, smoothness, and skid resistance were selected as evaluation indicators. The performance evolution characteristics over 50 million load cycles were analyzed to investigate the impact of different structural configurations on service performance. The study results are summarized as follows: The deflection basin area exhibits significant annual cyclic fluctuations, indicating that ambient temperature significantly affects pavement deflection. The initial rapid decrease in texture depth was attributed to the compaction of the surface layer under traffic loading, leading to a reduction in texture depth. Differences in tire and subgrade stiffness can cause variations in texture depth across various scenarios. Circular pavement structures' smoothness can be categorized into three classes; however, even within
He, YanLi, HaiboHe, ChuanpingZhang, YangpengMa, QingLi, PengfeiWang, Jie
This paper studies the transportation demands of different stakeholders, namely urban residents, entrepreneurs and tourists. It also studies the construction of network model optimization functions and corresponding indicators, and analyzes what kind of impact the bridge collapse will have on different stakeholders. Urban residents attach great importance to convenience in their daily lives. They usually like to travel by walking or cycling. They also prefer to use public transportation facilities. Entrepreneurs mainly rely on the efficiency of goods transportation to develop their businesses. They pay more attention to the accessibility of commercial and industrial areas. Tourists, on the other hand, prefer convenient connections between tourist attractions and hotels, as this makes their visits more convenient. After the bridge collapsed, the traffic pressure shifted to other main roads, such as I-95 and I-895. This led to longer commuting times and a significant increase in
Xiang, XiaohongYing, RongrongZhou, Lin
In recent years, China’s traditional road passenger transport market has been constantly impacted by the expansion and popularity of high-speed rail, aviation, private cars, and online car Hailing. The demand for road passenger transport has shrunk significantly, and the market operation has encountered severe challenges. More and more road passenger transport enterprises are seeking to transform the traditional line passenger transport business into a more flexible chartered passenger transport business. The business qualification and the number of chartered passenger transport indicators need to be approved and licensed by the administrative department. The administrative department of most cities in China implements the total amount control mode for chartered passenger transport indicators, because chartered passenger transport is affected by many factors, such as the level of enterprise safety management, enterprise operating efficiency, market competition behavior, administrative
Zhao, Xiangyu
Urban road traffic state classification is essential for identifying early-stage deterioration and enabling proactive traffic management. This study presents a novel method to accurately assess the traffic state of urban roads while addressing the limitations of existing methods in spatial generalization performance. The approach consists of three key components. First, several indicators are designed to capture the spatial-temporal evolution mechanisms of traffic state, speed freedom, flow saturation, and their variations over time and space. Then, a feature learning module based on an AutoEncoder network is introduced to reduce the dimensionality of the constructed feature set. This enhances feature distinction while mitigating noise effects on classification results. Third, k-means clustering is applied to analyze significant features extracted from the AutoEncoder latent space, categorizing road traffic states into fluent, basic fluent, moderate congested and severe congested
Wang, XiaocongHuang, MinGuo, XinlingXie, JieminZhang, Xiaolan
In the commercial and off-highway sectors, equipment reliability isn't just a maintenance target but a business imperative. Whether it's a long-haul truck on the interstate or a dozer working through dust and rock, these machines operate in some of the most demanding environments on Earth. And while engine design and fuel choice often dominate conversations about performance, the role of grease is just as critical, particularly as equipment is pushed harder and longer under more variable conditions. Over the last decade, heavy-duty grease development has undergone a quiet evolution. Performance expectations have risen sharply. So have the environmental and regulatory considerations that influence formulation decisions.
Kumar, Anoop
The excitation forces of the tamper pairs in the vibrational screed system not only affect the road density but also affect the road surface quality. Thus, to enhance the performance of the asphalt paver machine, an experimental study of an asphalt paver machine is carried out to evaluate in detail the effect of the excitation frequencies of the tamper pairs and vibrator screed on the density and quality of the road surface. From the actual structure of the vibrational screed system of the asphalt paver machine used in the experiment, its mathematical model is then built to calculate the vibration equations. The fuzzy controller is then applied to control the deflection angles between the tamper pairs to enhance the working performance of the vibrational screed system. The study result shows that both the excitation frequencies of the tamper pairs (ftp ) and vibrator screed (fvs ) greatly affect the density and quality of the road surface. To increase the compression density of the
Song, FengxiangRen, ShageNguyen, Vanliem
Assessing the effect of road grade on the performance evaluation and testing of heavy-duty vehicles (HDVs) requires the efficient construction of a high-quality multi-parameter driving cycle of HDVs. However, existing pure random heuristic methods fail to preserve the driving characteristics of the original driving cycles, resulting in poor-quality outputs. In addition, the randomness inherent in multiple heuristic approaches limits the search efficiency. To address these issues, this study proposes a novel Monte Carlo tree search heuristic method (MCTSHM) for efficiently constructing multi-parameter driving cycles of HDVs. First, a satisfactory criterion model was used to design the objective function for the multi-parameter driving cycle, ensuring the evaluation indices satisfy given constraints. Next, heuristics were designed to maintain the dynamic transition characteristics of driving cycles. An improved Monte Carlo tree search was conducted to efficiently select heuristics more
Zhang, ManPei, ZhenlongHe, SiyuanQian, Xueming
This article presents a novel mechanical model for simulating the behavior of pavement deflection measuring systems (PDMS). The accuracy of the model was validated by comparing the acceleration of the new model with the data achieved through experimental tests fusing a deflection measurement system mounted on a Ford F-150 truck. The experimental test for the PDMS is carried out on a random road profile, generated by an inertial profiler, over a 7.4-mile (12 km) loop around a lake near Austin, Texas. Integrating a reliability-based optimization (RBO) algorithm in a PDMS aims to optimize system parameters and reduce vibrations effectively. The PDMS noises and uncertainties make it crucial to use a robust system to ensure the stability of the system. This article presents a robust algorithm for considering the uncertainties of PDMS parameters, including the damping coefficients and spring stiffness of the supporting brackets. Moreover, it considers the variation of system parameters, such
Yarmohammadisatri, SadeghSandu, CorinaClaudel, Christian
The optimization and further development of automated driving functions offer significant potential for reducing the driver's workload and increasing road safety. Among these functions, vehicle lateral control plays a critical role, especially with regard to its acceptance by end customers. Significant development efforts are required to ensure the effectiveness and reliability of this aspect in real-world conditions. This work focuses on analyzing lateral vehicle control using extensive measurement data collected from a dedicated vehicle fleet at the Institute of Automotive Engineering at the Technical University of Braunschweig. Equipped with state-of-the-art measurement technology, the fleet has driven several hundred thousand kilometers, allowing for the collection of detailed information on vehicle trajectories under various driving conditions. A total of 93 participants, aged between 20 and 43 years, contributed to the dataset. These measurements have been classified into
Iatropoulos, JannesPanzer, AnnaArntz, MartinPrueggler, AdrianHenze, Roman
The road network is a critical component of modern urban mobility systems, with signalized traffic intersections playing a pivotal role. Traditionally, traffic light phase timings and durations at intersections are designed by transportation engineers using historical traffic data. Some modern intersections employ trigger-based mechanisms to improve traffic flow; however, these systems often lack global awareness of traffic conditions across multiple intersections within a network. With the increasing availability of traffic data and advancements in machine learning, traffic light systems can be enhanced by modeling them as agents operating in an environment. This paper proposes a Reinforcement Learning (RL) based approach for multi-agent traffic light systems within a simulation environment. The simulation is calibrated using real-world traffic data, enabling RL agents to learn effective control strategies based on realistic scenarios. A key advantage of using a calibrated simulation
Kalra, VikhyatTulpule, PunitGiuliani, Pio Michele
In electric vehicles, the control of driveline oscillations and tire traction is critical for guaranteeing driver comfort and safety. Yet, achieving sufficient driveline control performance remains challenging in the presence of rapidly varying road conditions. Two promising avenues for further improving driveline control are adaptive model predictive control (MPC) and model-based reinforcement learning (RL). We derive such controllers from the same non-linear vehicle model and validate them through pre-defined test scenarios. The MPC approach employs input and output trajectory tracking with soft constraints to ensure feasible control actions even in the presence of constraint violations and is further supported by a Kalman filter for robust state estimation and prediction. In contrast, the RL controller leverages the model-based DreamerV3 algorithm to learn control policies autonomously, adapting to different road conditions without relying on external information. The results
Uhl, Ramón TaminoSchüle, IsabelLudmann, LaurinGeist, A. René
Road noise caused by road excitation is a critical factor for vehicle NVH (Noise, Vibration, and Harshness) performance. However, assessing the individual contribution of components, particularly bushings, to NVH performance is generally challenging, as automobiles are composed of numerous interconnected parts. This study describes the application of Component Transfer Path Analysis (CTPA) on a full vehicle to provide insights into improving NVH performance. With the aid of Virtual Point Transformation (VPT), blocked forces are determined at the wheel hubs; afterward, a TPA is carried out. As blocked forces at the wheel hub are independent of the vehicle dynamics, these forces can be used in simulations of modified vehicle components. These results allow for the estimation of vehicle road noise. To simulate changes in vehicle components, including wheel/tire and rubber bushings, Frequency-Based Substructuring (FBS) is used to modify the vehicle setup in a simulation model. In this
Kim, JunguReichart, Ronde Klerk, DennisSchütler, WillemMalic, MarioKim, HyeongjunKim, Uije
Tires have a significant impact on vehicle road noise. The noise in 80~160Hz is easily felt when driving on rough roads and has a great relationship with the tire structural design. How to improve the problem through tire simulation has become an important issue. Therefore, this paper puts forward the concept of virtual tire tuning to optimize the noise. An appropriate tire model is crucial for road noise performance, and the CDtire (Comfort and Durability Tire) model was used in the article. After conducting experimental validation to get an accurate tire model, adjust the parameters and structure of the tire model to generate alternative model scenarios. The transfer function of the tire center was analyzed and set as the evaluation condition for tire NVH (Noise, vibration, and harshness) performance. This enabled a comparison among various model scenarios to identify the best-performing tire scenario in focused frequency whose transfer function needed to be lowest. Manufacture the
Zhang, BenYu Sr, JingChen, QimiaoLiu, XianchenGu, Perry
This article reviews the key physical parameters that need to be estimated and identified during vehicle operation, focusing on two key areas: vehicle state estimation and road condition identification. In the vehicle state estimation section, parameters such as longitudinal vehicle speed, sideslip angle, and roll angle are discussed, which are critical for accurately monitoring road conditions and implementing advanced vehicle control systems. On the other hand, the road condition identification section focuses on methods for estimating the tire–road friction coefficient (TRFC), road roughness, and road gradient. The article first reviews a variety of methods for estimating TRFC, ranging from direct sensor measurements to complex models based on vehicle dynamics. Regarding road roughness estimation, the article analyzes traditional methods and emerging data-driven approaches, focusing on their impact on vehicle performance and passenger comfort. In the section on road gradient
Chen, ZixuanDuan, YupengWu, JinglaiZhang, Yunqing
Dedicated lanes provide a simpler operating environment for ADS-equipped vehicles than those shared with other roadway users including human drivers, pedestrians, and bicycles. This final report in the Automation and Infrastructure series discusses how and when various types of lanes whether general purpose, managed, or specialty lanes might be temporarily or permanently reserved for ADS-equipped vehicles. Though simulations and economic analysis suggest that widespread use of dedicated lanes will not be warranted until market penetration is much higher, some US states and cities are developing such dedicated lanes now for limited use cases and other countries are planning more extensive deployment of dedicated lanes. Automated Vehicles and Infrastructure: Dedicated Lanes includes a review of practices across the US as well as case studies from the EU and UK, the Near East, Japan, Singapore, and Canada. Click here to access the full SAE EDGETM Research Report portfolio.
Coyner, KelleyBittner, Jason
With the development of intelligent transportation systems and the increasing demand for transportation, traffic congestion on highways has become more prominent. So accurate short-term traffic flow prediction on these highways is exceedingly crucial. However, because of the complexity, nonlinearity, and randomness of highway traffic flows, short-term prediction of its flows can be difficult to achieve the desired accuracy and robustness. This article presents a novel architectural model that harmoniously fuses bidirectional long–short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), and multi-head attention (MHA) components. Bayesian optimization (BO) is also used to determine the optimal set of hyperparameters. Based on the PeMS04 dataset from California, USA, we evaluated the performance of the proposed model across various prediction intervals and found that it performs best within a 5-min prediction interval. In addition, we have conducted comparison and ablation
Chen, PengWang, TaoMa, ChangxiChen, Jun
There are many riders who drive motorcycles on winding mountain roads and caused single motorcycle traffic accidents on curved roads by lane departure. Driving a motorcycle requires subtle balancing and maneuvering. In this study, in order to clarify the influence of lane departure caused by inadequate driving maneuvers against road alignment, the authors analyzed the required curve initial operation and driving maneuvers in curves depending on the traveling speed using a kinematics simulation for motorcycle dynamics. In addition, it was analyzed how inadequate driving maneuvers for curved roads can easily cause lane departure. As a result, it shows that the steering maneuvers and the lean of motorcycle body during the curves are highly affected by the vehicle speed, and the required maneuvers increases rapidly with increasing speed. The inadequate maneuver in the curves, especially for the lean of motorcycle body and steering torque, even by 10%, may cause failure to follow the
Kuniyuki, HiroshiTakechi, So
Items per page:
1 – 50 of 1290