Browse Topic: Safety testing and procedures

Items (5,482)
With the fast development of computational analysis tools and capacities during the past ten years, complex and substantial computer-aided engineering (CAE) simulations are now economically possible. While the cost of crash tests has risen steadily, the fidelity and complexity, which numerical simulations could address, has multiplied keeping the cost of computational analysis more stable. The fundamental goal of CAE is to achieve significant reduction in the number of physical tests conducted during the product development process. However, validating the CAE model with physical tests is essential to ensure accuracy and reliability. Simulations performed using a validated CAE model could be used to make decisions like airbag deployment or high voltage shutdown without an actual physical test being conducted. This paper discusses validating an electric commercial vehicle CAE model during a side impact thus emphasizing the safety of a high voltage battery system. The critical parameters
Upendran, AnoopKnuth, JosephKrishnappa, GiriPunnaiappan, Arunsankar
PU foam shows a excellent energy absorbing dissipation properties during impact load so it commonly used in car seats, cabin and crash protection system. Specifically, in vehicle seats PU foams play a critical role in protecting occupants during crash scenarios by absorbing energy, distributing forces, and improving seatbelt performance, additionally providing countermeasures for head impact protection. The movement of the seat and the direction of the force during crash testing are highly unpredictable. The material behaviour of PU foam is captured using an isotropic, hyper-elasticity-based constitutive model available in LS-DYNA through MAT_083. This model is designed to take into account the foam's compressibility, sensitivity to strain rates, low Poisson's ratio, and hysteresis. The characterization of a PU foam with a nominal density of 65 kg/m3 was performed using quasi-static compressive testing of 0.01/s and dynamic compressive testing of 1/s,13/s, 120/s, as well as a quasi
Gaurav, Ashish KumarKrishnamoorthy, KunjuVaratharajan, Senthilkumaran
Threat Analysis and Risk Assessment (TARA) is a continuous activity, acting as a foundation of cybersecurity analysis for electrical and electronics automotive products. Existing TARA methodologies in the automotive domain exhibits challenges due to redundant and manual processes, particularly in handling recurring common assets across Electronic Control Units (ECUs) and functional domains. Two primary approaches observed for performing TARA are Manual-Asset-Centric TARA and Catalogue-Driven TARA. Manual-Asset Centric TARA is constructed from scratch by manually identifying the assets, calculating risks by likelihood, and impact determination. Catalogue-Driven TARA utilizes the precompiled likelihood and impact against identified assets. Both approaches lack standardized and modular mechanisms for abstraction and reuse. This results in poor scalability, increased efforts, and difficulty in maintaining consistency across vehicle platforms. The proposed method in this research overcomes
Goyal, YogendraSinha, SwatiSutar, SwapnilJaisingh, Sanjay
Commercial vehicle sector (especially trucks) has a major role in economic growth of a nation. With improving infrastructure, increasing number of trucks on roads, accidents are also increasing. As per RASSI (Road Accident Sampling System India) FY2016-23 database, commercial vehicles are involved in 42% of total accidents on Indian roads. Involvement of trucks (N2 & N3) is over 25% of total accidents. Amongst all accident scenarios of N2 &N3, frontal impacts are the most frequent (26%) and causing severe occupant injuries. Today, truck safety development for frontal impact is based on passive safety regulations (viz. front pendulum – AIS029) and basic safety features like seatbelts. In any truck accident, it is challenging rather impossible to manage comprehensive safety only with passive safety systems due to size and weight. Accident prevention becomes imperative in truck safety development due to extremely high energy involved in front impact scenarios. The paper presents a unique
Joshi, Kedar ShrikantGadekar, GaneshDate, AtulKoralla, Sivaprasad
With increased deterioration of road conditions worldwide, automotive OEMs face significant challenges in ensuring the durability of structural components. The tyre being the primary point of contact with the road is expected to endure harshest of impacts while maintaining the other performance functions such as Ride & Handling, Rolling resistance, Braking. Thus, it is considered as the most challenging component in terms of design optimization for durability. The current development method relies on physical testing of initial samples, followed by iterative construction changes to meet durability requirements, often giving trade-off in Ride & Handling performance. To overcome these challenges, a frugal simulation-based methodology has been developed for predicting tyre curb impact durability before vehicle-level testing so that corrective action can be taken during the design stage.
Sundaramoorthy, RagasruobanLenka, Visweswara
Real-world crashes involve diverse occupants, but traditional restraint systems are designed for a limited range of body types considering the applicable regulations and protocols. While conventional restraints are effective for homogeneous occupant profiles, these systems often underperform in real-world scenarios with diverse demographics, including variations in age, gender, and body morphology. This study addresses this critical gap by evaluating adaptive restraint systems aligned with the forthcoming EURO NCAP 2026 protocols, which emphasize real-world crash diversity and occupant type. Through digital studies of frontal impact scenarios, we analyze biomechanical responses using adaptive restraints across varied occupant demographics, focusing on head and chest injury (e.g., Chest Compression Criterion [CC]). This study used a Design of Experiments (DOE) approach to optimize occupant protection by timing the actuating of these adaptive systems. The results indicate that activating
satija, AnshulSuryawanshi, YuvrajChavan, AvinashRao, Guruprakash
Vehicle door-related accidents, especially in urban environments, pose a significant safety risk to pedestrians, infrastructure and vehicle occupants. Conventional rear view systems fails to detect obstacles in blind spots directly below the Outside Rear View Mirror (ORVM), leading to unintended collisions during door opening. This paper presents a novel vision-based obstacle detection system integrated into the ORVM assembly. It utilizes the monocular camera and a projection-based reference image technique. The system captures real-time images of the ground surface near the door and compares them with calibrated reference projections to detect deviations caused by obstacles such as pavements, potholes or curbs. Once such an obstacle is detected the vehicle user is alerted in the form of a chime.
Bhuyan, AnuragKhandekar, DhirajJahagirdar, Shweta
The objective of the present study is to examine trends in occupant kinematics and injuries during side impact tests carried out on vehicle models over the period of time. Head, shoulder, torso, spine, and pelvis kinematic responses are analysed for driver dummy in high speed side impacts for vehicle model years, MY2016-2024. Side impact test data from the tests conducted at The Automotive Research Association of India (ARAI) is examined for MY2016-2024. The test procedure is as specified in AIS099 or UNECE R95, wherein a 950kg moving deformable barrier (MDB) impacts the side of stationary vehicle at 50km/hr. An Instrumented 50th percentile male EUROSID-2 Anthropomorphic Test Device is positioned in the driver seat on the impacting side. Occupant kinematic data, including head accelerations, Head Injury Criterion (HIC15), Torso deflections at thorax and abdominal ribs, spine accelerations at T12 vertebra, and pelvis accelerations are evaluated and compared. The “peak” and “time to
Mishra, SatishBorse, TanmayKulkarni, DileepMahajan, Rahul
The number of female drivers in India is increasing alongside the rapid growth of the Indian automotive industry. A driving comfort survey conducted among female drivers revealed that many of them experienced discomfort when wearing safety belts—while driving and as front-seat passengers. This discomfort is primarily due to a phenomenon referred to as “neck cutting.” The root cause of neck cutting is likely related to vehicle design, which is traditionally based on Anthropometric Test Devices (ATD’s) representing the 5th, 50th & 95th percentile (%tile) of the global population. However, a literature review indicated that the anthropometric dimensions of the Indian populations are generally smaller than those of the global for the respective candidate. To validate the neck-cutting issue, various female candidates were asked to sit in the Driver’s seat for physical measurements trials. Accordingly, methodology was developed to quantify neck cutting parameters objectively. A correlation
Kulkarni, Nachiket AChitodkar, Vivek VEknath Chopade, SantoshMahajan, RahulYamgar, Babasaheb S
The Ministry of Road Transport and Highways (MoRTH), Government of India, has established BHARAT NCAP to provide a fair, meaningful, and objective assessment of the crash safety performance of cars. This program evaluates vehicles across three key areas, including Child Occupant Protection (COP). A critical component of the COP assessment involves dynamic testing using Q-series child dummies representing a 1½-year-old (Q1.5) and a 3-year-old child (Q3). As per the BHARAT NCAP protocol, these dummies are placed in the second-row outboard seating position within Child Restraint Systems (CRSs) and subjected to two primary dynamic impact tests: Offset Deformable Barrier (ODB) conducted at a speed of 64 km/hr. and Mobile Deformable Barrier (MDB) Side Impact tests conducted at 50 km/hr. The dynamic assessment of these child dummies is primarily focused on the head, neck, and chest regions to evaluate the effectiveness of the CRSs and overall vehicle safety system in protecting young
Khopekar, MariaLakshminarayana, ApoorvaMohan, PradeepKurkuri, Mahendra
Curtain airbags are the most effective protective systems to prevent severe/fatal head injuries in side collisions with narrow objects such as poles or trees. One of the important parameters of curtain airbags is the inflated zone i.e. the coverage area of the airbag, which decides the extent of head protection for occupants with different anthropometries in different seating rows. EuroNCAP first introduced the concept of Head Protection Device Assessment (HPDA) in 2015., In addition to the performance requirements in the dynamic test, EuroNCAP started assessing the deployed curtain airbag/s for its area coverage and verification of inflated zones for various anthropometries over occupant rows. In India, there is now a near total adoption of curtain airbags as standard fitment by the OEMs. Further, introduction of Bharat NCAP (BNCAP), a Perpendicular Pole Side Impact test is conducted for assessing the effectiveness of curtain airbags in a dynamic test, but currently, does not perform
Jaju, DivyanKulkarni, DileepMahajan, Rahul
Automotive OEMs can derive significant cost savings by reducing the quantity of physical crash tests and thereby accelerate product development, when they follow the Euro NCAP Virtual Testing procedure. It helps in optimizing the overall vehicle development process via more efficient simulations, as well as facilitates in early adoption of new safety regulations. In this pursuit, companies must comply with strict Euro NCAP requirements, which includes transparency and traceability of virtual tests. A major challenge therein is model validation – which requires highly precise detailing and extensive use of data for accurately replicating real physics of the problem. Deploying these workflows into an existing simulation process can be a complicated and time-consuming task, particularly when integrating various simulation and testing methods. A powerful simulation process and data management system (SPDM) can thereby assist companies to automate their entire simulation process, ensures
Thiele, MarkoSharma, Harsh
Vibration is one of the prominent factors that determine the quality & comfort level of a vehicle. Moreover, if vibration occurs in areas that are almost entirely within customer touchpoints, it could become a critical factor behind vehicle comfort and affects the brand image within the market negatively. The interior rear-view mirror (IRVM) is one of the important components inside passenger cabin, providing drivers with a clear view of the rear traffic. However, vibrations induced by engine operation, road irregularities, and aerodynamic forces can cause the IRVM to oscillate, leading to image blurriness and compromised visibility and safety. This paper investigates the underlying causes of IRVM vibration and its impact on rear visibility. Through experimental analysis we identify key factors contributing to mirror instability. The findings indicate the specific frequencies of vibration, particularly those resonating with the mirror's natural frequency, significantly exacerbating
Khan, Aamir NavedSaraswat, VivekJha, KartikSingh, HemendraSeenivasan, GokulramKhan, Nafees
In the current automotive design and development of the Electrical Distribution System (EDS), at an earlier stage, before the physical prototyping is largely absent. Traditional methods for verification and validation of EDS are performed with HIL, SIL, MIL, prototype testing or physical vehicle trials reveal design errors at later stages in the development cycle, which may lead to redesign, prolonged timelines and increased failure rates at vehicle integration. Hence, there is a critical need for an early-stage simulation methodology that ensures robustness and reliability of E/E architecture with first-time-right readiness at the design stage itself. In this paper, a digital EDS architecture simulation introduces a mode-based structural behavioural approach where specific vehicle functions, failure conditions and malfunction scenarios are set up in a simulation environment with their corresponding electrical circuits for simulation. A function-specific truth table-based analysis
Jaisankar, GokulnathWarke, UmakantChakra, PipunBorole, Akash
Occupant Safety systems are usually developed using anthropomorphic test devices (ATDs), such as the Hybrid III, THOR-50M, ES-2, and WorldSID. However, in compliance with NCAP and regulatory guidelines, these ATDs are designed for specific crash scenarios, typically frontal and side impacts involving upright occupants. As vehicles evolve (e.g., autonomous layouts, diverse occupant populations), ATDs are proving increasingly inadequate for capturing real-world injury mechanisms. This has led to the adoption of computational Human Body Models (HBMs), such as the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS), which offer superior anatomical fidelity, variable anthropometry, active muscle behaviour modelling, and improved postural flexibility. HBMs can predict internal injuries that ATDs cannot, making them valuable tools for future vehicle safety development. This study uses a sled CAE simulation environment to analyze the kinematics of the HBMs
Raj, PavanRao, GuruprakashPendurthi, Chaitanya SagarNehe, VaibhavChavan, Avinash
Effective communication is the key for bringing harmony - be it the communication between humans and humans, or communication between machine and machine. Today’s car is a sophisticated gadget, equipped with the best of technologies running using millions of lines of codes of software. The effective use of these technologies involve communication between car to car and car to infrastructure using Dedicated Short-Range Communication (DSRC), C-V2X (Cellular Vehicle-to-Everything). It is pertinent that any communication using the internet needs to be digitally secure and that the systems are designed to mitigate the perceived threats. The methods used for ensuring cyber safety of automobiles need to be verified before the end product is put to use. Automotive Industry Standards AIS-189 and AIS-190 have been formulated to provide a harmonized verification framework. Both the vehicle manufacturer and the test agency need to equip themselves with necessary skills and tools to ensure
Nayak, PratikTandon, VikramBadusha, AkbarDesai, ManojSathianesan, Rejin
This study investigates the phenomenon of receptacle icing during Compressed Natural Gas (CNG) refueling at filling stations, attributing the issue to excessive moisture content in the gas. The research examines the underlying causes, including the Joule-Thomson effect, filter geometries, and their collective impact on flow interruptions. A comprehensive test methodology is proposed to simulate real-world conditions, evaluating various filter types, seal materials and moisture levels to understand their influence on icing and flow cessation. The findings aim to offer ideas for reducing icing problems. This will improve the reliability and safety of CNG refueling systems.
Virmani, NishantSawant, Shivraj MadhukarC R, Abhijith
The automotive and off-road industries are heavily investing in R&D to improve both physical and virtual verification and validation techniques. Recent software and hardware advancements have extended these techniques from simple component evaluations to complex system assessments such as involving multi-physics scenarios. Despite the benefits of virtual validation tools like structural analysis and CFD, they often come with high development costs, particularly in CFD applications. Virtual verification methodology, especially when combined with data science, offer significant advantages over traditional physical methods by enhancing CAE efficiency and reducing resource consumption which can greatly improve product design and validation efficiency across many industries. The success of machine learning applications depends on effective data processing, adequate computational resources, and the right algorithm selection. Key machine learning techniques impacting the CFD field include
Jadhav, MitaliKumbhar, AppasoTirumala, BhaskarNisha, Kumari
The proliferation of wireless charging technology in electric vehicles (EVs) introduces novel cybersecurity challenges that require comprehensive threat analysis and resilient design strategies. This paper presents a proactive framework for assessing and mitigating cybersecurity risks in wireless charger Electronic Control Units (ECUs), addressing the unique vulnerabilities inherent in electromagnetic power transfer systems. Through systematic threat modeling, vulnerability assessment, and the development of defense-in-depth strategies, this research establishes design principles for creating robust wireless charging ecosystems resistant to cyber threats. The proposed framework integrates hardware security modules, encrypted communication protocols, and adaptive threat detection mechanisms to ensure operational integrity while maintaining charging efficiency. Experimental validation demonstrates the effectiveness of the proposed security measures in preventing unauthorized access, data
Uthaman, SreekumarMulay, Abhijit BGadekar, Pundlik
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
Pendurthi, Chaitanya SagarTHANIGAIVEL RAJA, TKondala, HareeshSudarshan, B.SudarshanNehe, VaibhavRao, Guruprakash
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
This paper presents the design, structural analysis, structural test validation and risk assessment done by Cummins to evaluate the structural integrity of Light Duty engine cylinder head for a Medium Wheelbase (MWB) pick-up truck. Initially, Cummins used the 2.5L and 3.0L (4-cylinder) engines that have standard power ratings based on existing requirements, but rising market demands for more power, fuel efficiency, lower cost and weight, and future emission compliance led to customer requirements for 15% uprate for 2.5L and 22% uprate for 3.0L from the same base engine. The increase in power requirement possesses challenges on critical components, especially cylinder heads in terms of thermal and structural limits. Multiple analysis led design iterations were performed using cutting edge CAE software such as Ansys, Dassault Systems fe-safe, and PTC Creo to ensure the structural integrity of the cylinder head under high thermal and mechanical loads, and to keep design margins within
Pathak, Arun JyotiAdiverekar, VaidehiSingh, RahulBiyani, Mayur
This study is conducted to analyse the significance of the Bharat NCAP crash test protocol in real road crashes in India. Accident data from on-the-spot investigation (Road Accident Sampling System India) and Government of India’s, Ministry of Road Transport and Highways official road accident statistics 2023 is used together to understand the real road accidents in India. The current Bharat NCAP crash test protocol is compared against the real road accidents and the frequency of the same in discussed in this paper. A seven-step calculation method is developed to analyse real accidents together with existing crash tests by using similar crash characteristics like impact area, overlap and direction of force. This method makes the real accident comparable with the corresponding crash test by calculating the impact energy during the collision between the real accident and a collision under crash test conditions. Relevant parameters in real accidents that significantly influence the test
Moennich, JoergLich, ThomasKumaresh, Girikumar
Human Body Models (HBMs) are increasingly recognized by consumer protection agencies as essential tools for evaluating vehicle safety, complementing the use of traditional Anthropomorphic Test Devices (ATDs). However, HBMs are new for product development and pose challenges in connecting them with the ATDs. These challenges can be overcome if a link is established for the injury metrics between HBMs and ATDs. The study aims to develop a chest deflection mapping function between the HBM Connect® 50M and three ATD models: Hybrid III 50M, THOR-50M and World SID 50M for thoracic assessment in impact scenarios. Several frontal and lateral thorax loading scenarios were selected from the HBM4VT qualification catalogue (Euro NCAP technical bulletin CP 550), including hub impacts and table-top seatbelt loading tests. Matched-pair LS-DYNA simulations were conducted with HBM Connect® 50M and the ATD models recording peak chest deflections for developing the mapping function. In the HBM Connect
Velmurugan, GopinathKumar, DevendraR, Udhaya KumarKulavi, PradeepSoni, AnuragTejero de la Piedra, RicardoFu, StephenLong, TengArora, TusharJagadish, RenukaShah, Chirag
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
Patil, Mahendra G.Kirve, JyotiParlikar, Padmakumar
The growing environmental, economic, and social challenges have spurred a demand for cleaner mobility solutions. In response to the transformative changes in the automotive sector, manufacturers must prioritize digital validation of products, manufacturing processes, and tools prior to mass production. This ensures efficiency, accuracy, and cost-effectiveness. By utilizing 3D modelling of factory layouts, factory planners can digitally validate production line changes, substantially reducing costs when introducing new products. One key innovation involves creating 3D models using point cloud data from factory scans. Traditional factory scanning processes face limitations like blind spots and periodic scanning intervals. This research proposes using drones equipped with LiDAR (Light Detection and Ranging) technology for 3D scanning, enabling real-time mapping, autonomous operation, and efficient data collection. Drones can navigate complex areas, access small spaces, and optimize
Narad, Akshay MarutiC H, AjheyasimhaVijayasekaran, VinothkumarFasge, Abhishek
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical
Muchchandi, VinodAkula, Satya JayanthMahindrakar, PramodG S, Sharath
This paper investigates the current state of road safety for female occupants in India, with a particular focus on road accident statistics and the gaps in safety regulations. According to the Road Accident in India 2022 report by the Ministry of Road Transport and Highways (MoRTH), female occupants constitute 16% of passenger car fatalities. Using a extensive dataset of 596 passenger car accidents involving at least one female occupant from the Road Accident Sampling System – India (RASSI), this study evalu the severity and patterns of injuries sustained by female drivers and passengers. The analysis identifies critical shortcomings in existing safety measures, particularly in addressing anatomical differences and male-centric safety designs. Gender-sorted injury trends reveal heightened vulnerabilities for women in crash scenarios. Current regulatory frameworks bank on crash test dummies developed on average male anthropometry, neglecting female-specific biomechanical needs in
Ayyagari, ChandrashekharG, Santhosh KumarRao, Guruprakash
Modern automotive systems are becoming increasingly complex, comprising tightly integrated hardware and software components with varying safety implications. As the demand for ISO 26262 compliance grows, performing efficient and consistent Hazard Analysis and Risk Assessment (HARA) across these layers presents both methodological and practical challenges. Traditional approaches often involve performing HARA for an item (where item maybe a system or a combination of systems), which can lead to update of HARA for every new feature addition in an item, which in turn may lead to analysis of same functions in multiple HARAs leading to inconsistent risk categorization, redundancy, or even conflicting safety goals. Therefore, this paper proposes a unique HARA methodology which consolidates the list of functions from various systems and performs the HARA for the grouped functions (hereby referred to as Cluster HARAs). For example, Electrical power steering, Electric pump powered hydraulic
Somasundaram, ManickamVijayakumar, Melvin
With rapid advancements in Autonomous Driving (AD) & Advanced Driver Assistance Systems (ADAS), numerous sensors are integrated in vehicles to achieve higher and reliable level of autonomy. Due to the growing number of sensors and its fusion creates complex architecture which causes challenges in calibration, cost, and system reliability. Considering the need for further ADAS advancements and addressing the challenges, this paper evaluates a novel solution called One Radar - a single radar system with a wide field of view enabled by advanced antenna design. Placing the single radar at the rear of the vehicle eliminates the need for corner radars and ultrasonic sensors used for parking assistance. With rigorous real-world testing in different urban and low-speed scenarios, the single radar solution showed comparable accuracy in object detection with warning and parking assistance to the conventional combination of corner radars and ultrasonic sensors. The simple single sensor-based
Anandan, RamSharma, Akash
The automotive industry is rapidly advancing towards autonomous vehicles, making sensors such as Cameras, LiDAR, and RADAR critical components for ensuring constant information exchange between the vehicle and its surrounding environment. However, these sensors are vulnerable to harsh environmental conditions like rain, dirt, snow, and bird droppings, which can impair their functionality and disrupt accurate vehicle maneuvers. To ensure all sensors operate effectively, dedicated cleaning is implemented, particularly for Level 3 and higher autonomous vehicles. It is important to test sensor cleaning mechanisms across different weather conditions and vehicle operating scenarios to ensure reliability and performance. One crucial aspect of testing is tracking the trajectory of the cleaning fluid to ensure it does not cause self-soiling of vehicles and affects the field of view or visibility zones of other components like the windshield. While wind tunnel tests are valuable, digitalizing
Mane, SuvidyaMakam, Sri Lalith MadhavVarghese, RixsonDesu, Harsha
High energy impact testing using free fall mass is a crucial method for evaluating the structural integrity, and safety performance of automotive components subjected to sudden impact forces. This study focuses on assessing critical parts such as wheel rims, suspension knuckles, commonly exposed to unintentional impacts during vehicle operation, maintenance, or collisions. The test involves dropping a standardized mass from predetermined heights onto the component to simulate real-world impact scenarios. Key performance indicators include deformation, crack propagation, fracture resistance, and energy absorption capacity. Wheel rims and knuckles are evaluated for their ability to maintain structural integrity under localized impact without compromising vehicle handling or safety. Seats and related interior structures are tested to ensure occupant protection during crash-like events. Other components, such as brackets, mounts, or housings, are included based on functional criticality
Roham, PrasadBagade, MohanSinnarkar, NitinPawar, Prashant RShinde, Vikram
The paper aimed to improve the accurate quantification of driver drowsiness and to provide comprehensive, evidence-based validation for a Vision-Based Driver Drowsiness and Alertness Warning System. Advanced quantification of driver drowsiness is designed to enhance distinction of true positive events from False Positive and False Negative events. Methodology to pursue this included assessing inputs such as facial features, driver visibility, dynamic driving tasks, driving patterns, driving course time and vehicle speed. The system is programmed to actively learn Eye Aspect Ratio (EAR) reference and adapt personalised EAR threshold value to process EAR frames against the learnt threshold value. This method optimized the data frames to enhance the evaluation and processing of essential frames, thereby reducing delays in the processor and the Human-Machine Interface (HMI) warning module. Comprehensive validation is systematically conducted within a controlled test track environment to
Balasubrahmanyan, ChappagaddaAkbar Badusha, A
This study introduces a novel in-cabin health monitoring system leveraging Ultra-Wideband (UWB) radar technology for real-time, contactless detection of occupants' vital signs within automotive environments. By capturing micro-movements associated with cardiac and respiratory activities, the system enables continuous monitoring without physical contact, addressing the need for unobtrusive vehicle health assessment. The system architecture integrates edge computing capabilities within the vehicle's head unit, facilitating immediate data processing and reducing latency. Processed data is securely transmitted via HTTPS to a cloud-based backend through an API Gateway, which orchestrates data validation and routing to a machine learning pipeline. This pipeline employs supervised classifiers, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) to analyze features such as temporal heartbeat variability, respiration rate stability, and heart rate. Empirical
Singh, SamagraPandya, KavitaJituri, Keerti
Severe rear-impact collisions can cause significant intrusion into the occupant compartment when the structural integrity of the rear survival space is insufficient. Intrusion patterns are influenced by impact configuration—underride, in-line, or override—with underride collisions channeling forces below the beltline through the rear wheels as a primary load path. This force concentration rapidly propels the rear seat-pan forward, contacting the rearward-rotating front seatback. The resulting bottoming-out phenomenon produces a forward impulse that amplifies loading on the front occupant’s upper torso, increasing the risk of thoracic injury even when the head is properly supported by the head restraint. This study analyzes a real-world rear-impact collision that resulted in fatal thoracic injuries to the driver, attributed to the interaction between the driver’s seatback and the forward-moving rear seat pan. A vehicle-to-vehicle crash test was conducted to replicate similar intrusion
Thorbole, Chandrashekhar
The light and light signaling devices installation test as per as per IS/ ISO 12509:2004 & IS/ISO 12509:2023 for Earth Moving Machinery / Construction Equipment Vehicles is a mandatory test to ensure the safety and comfort of both road users and operators. Considering the shape and size of construction equipment vehicles, accurate measurement of lighting installation requirements is crucial for ensuring safety and regulatory compliance. The international standard IS/ISO 12509:2004 & IS/ISO 12509:2023 outlines specific criteria for these installation requirements of lighting components, including the precise measurement of various dimensions to ensure optimal visibility and safety. Among these dimensional requirements, the dimension 'E' i.e., the “distance between the outer edges of the machine and the illuminating surface of the lighting device” plays a critical role in the performance of vehicle lighting systems. Traditional methods of measuring this dimension, such as using a
Ghodke, Dhananjay SunilBelavadi Venkataramaiah, ShamsundaraTambolkar, Sonali Ameya
Crash test plays a very crucial role in determining the passenger safety along with driver safety in most modern vehicles. This has become a prominent factor for many buyers to choose a safe car. During crash test, many components tend to fail. Amongst them, the major safety critical component which hampers the drivability of a vehicle is Wheel and Tyre Assembly. With the introduction of low aspect tyres, the failure rate of these assemblies has increased. A very high importance is given to ensure these parts withstand the subject load as it is directly related to function of vehicle. Many methods are available to test the Wheel and Tyre assembly to ensure they pass the crash criteria. We have developed a novel test method which can simulate the crash pattern in the rig/bench level. The method employs a mechanical actuator which can be operated at designated load application to ensure the assembly undergoes the anticipated failure. The process is repeated with different types of
Medaboyina, HarshaVardhanSingh, Ram KrishnanSundaram, RaghupathiJithendhar, Ashokan
In today's dynamic driving environments, reliable rear wiping functionality is essential for maintaining safe rearward visibility. This study sharing the next-generation rear wiper motor assembly that seamlessly integrates the washer nozzle, delivering improved performance alongside key benefits such as better Buzz, Squeak, and Rattle (BSR) characteristics, reduced system complexity, cost savings, and enhanced perceived quality. This integrated design simplifies the hose routing which improves the compactness and the efficiency of the design. This also enhances the spray coverage and minimizes the dry wiping unlike the traditional systems that position the washer nozzle separately. A non-return valve (NRV) is incorporated to eliminate spray delays ass it maintains consistent water flow giving cleaning effectiveness. Since this makes the nonfunctional parts completely leak proof due to the advanced sealing, it increases the durability and reliability in long run. As this proposal offers
Dhage, PrashantK, NagarajanG, Sabari Rajan
As vehicles evolve toward increased automation and comfort, Power Operated Tailgate (POT) have become a common feature, especially in premium and mid-segment vehicles. These systems, although user-friendly on the surface, involve complex interactions between electronic control units (ECUs), sensors, actuators, and mechanical systems. Ensuring the reliability, safety, and robustness of these features under diverse operating conditions presents a significant validation challenge. Traditional testing methods, which rely heavily on physical prototypes and manual interaction, are often time-consuming, expensive, and prone to human error. Moreover, testing certain safety [3] features, such as anti-pinch or stall protection, under real physical conditions poses inherent risks and limitations. This paper presents a Hardware-in-Loop (HiL)[1] based testing approach for POT [2] systems, offering a safer, faster, and more comprehensive alternative to conventional validation methods. The HiL
More, ShwetaGhanwat, HemantShetti, SurajJape, AkshayKulkarni, ShraddhaJagdale, Nitin
Modal analysis is performed to determine the natural frequencies and mode shapes of a structure or system. It helps engineers understand how a system vibrates and how external forces, such as mechanical loads, might excite unwanted resonances. To check the stresses due to vibration inputs, certain G levels are assumed, and stresses are scaled to those vibration levels. This gives an understanding of the stresses of components with respect to its EFR limit and design margins are calculated. But, assumed acceleration levels in pre-prototype stage level can over predict or under predict the design margins. A quick modal analysis correlation technique can be used by using test measured accelerations conducted at prototype stage of the program. In this work, a modal analysis correlation technique is used to perform risk assessment of intake manifold. The intake manifold failed due to high vibration levels which were not captured from high cycle fatigue analysis with assumed G-level. In the
Bale, Shrikant BhaskarBawache, Krushna
There is rapidly increasing advancement in Connectivity, Autonomous, Subscription and Electrification features in vehicles which are being developed. These trends have resulted in an increase in attack surface and security risks on vehicles. To handle these growing risks, it has become important to include passive security systems such as Intrusion detection systems (IDS) which can detect successful or possible attempts of intrusion into vehicle systems compromising their security. In vehicles based on Zonal Architecture, two types of IDS can be implemented, Network based IDS (NIDS) and Host Based IDS (HIDS). The NIDS is implemented in Gateway Electronic Control Unit (ECU) and can monitor multiple networks connected to Gateway, whereas the HIDS usually monitors one single host ECU. Extensive research material is available on NIDS for CAN Networks. For example, the CAN Network in a vehicle is monitored for various abnormal behaviours such as increased busload and invalid signal values
E L, Nanda KumarMutagi, MeghaSonnad, PreetiSharma, Dhiraj
Passenger cars are subjected to extensive conditions ranging from driving through wet roads, water puddles, icy roads, and rain. This can affect the performance of different parts over time, one such aspect is the vehicle corrosion, whose impact is felt on a wide spectrum from aesthetics to safety due to loss of material. The general condition for corrosion mainly requires electrolyte to be present on the metal surface, which is transported through self-soiling and foreign soiling. Vehicle soiling is an important aspect for vehicle design. Amongst the many aspects of vehicle soiling, one important aspect is the prediction of water accumulation that enables prediction of corrosion sensitive regions in the vehicle. Power train components like Engine, transmission and corresponding wiring harness are at highest risk of water-wetting, As the vehicle drives through the water puddle the components are not just wet by the direct inflow of water but also by water being splashed by moving
Shukrey, SarthakPattankar, RohanYenugu, Srinivasa
Rear-facing infant seats that are positioned behind front outboard vehicle seats are at risk of being compromised by the rearward yielding of occupied front seat seatbacks during rear-impact collisions. This movement can cause the plastic shell of the infant seat to collapse and deform, increasing the risk of head injuries to the infant. Current designs of rear-facing infant seats typically do not consider the loading effects from the front seatback during rear-impact situations, which results in weak and collapsible shell structures. Moreover, regulatory compliance tests, such as FMVSS 213, do not include assessments of rear-facing infant seats under realistic rear-impact conditions. as the bench used for the regulatory test lacks realistic vehicle interior components. This study emphasizes the need for revised testing methodologies that employ sled tests with realistic seatback intrusion conditions to facilitate the development of improved infant seat designs. Research shows that
Thorbole, Chandrashekhar
Existing ICE Mid and Heavy commercial vehicles in the Indian and international market are recording a large number of mishaps due to blind spots and non-accessibility of the driver to the opposite side mirror in real-time driving. Non-driver side rear view mirror adjustment creates the need for the driver to get down and adjust the mirror manually/get support from the co-passenger. The paper proposes a solution for a Microcontroller-based compact mirror adjustment system, which will run with minimal economy and highest efficiency. This will assist drivers in aesthetically and safely monitoring of mirror to check on specific blind spots in day conditions This will reduce the prone accidents due to non-visibility by approximately 30%, ensuring enhanced road safety and driver comfort. The Indian commercial vehicle segment needs this solution to be implemented when we look at the rate of increasing demand and also accident rates.
Jambagi, Vaibhavi VyankateshGangvekar, OnkarBhandari, Kiran Kamlakar
This article provides an overview of how the determination of absence of unreasonable risk can be operationalized. It complements previous theoretical work published by existing developers of automated driving systems (ADS) on the overall engineering practices and methodologies for readiness determination. Readiness determination is, at its core, a risk assessment process. It is aimed at evaluating the residual risk associated with a new ADS deployment. The article proposes methodological criteria to ground the readiness review process for an ADS release. Specifically, it lists 12 readiness criteria connected with system safety, cybersecurity, verification and validation, collision avoidance testing, predicted collision risks, impeded progress, rules of the road compliance, vulnerable road users interactions, high-severity assessment, conservative estimate of severity, risk management, and field safety. The criteria presented are agnostic of any specific ADS technological solution and
Favaro, Francesca MargheritaSchnelle, ScottFraade-Blanar, LauraVictor, TrentPeña, MauricioWebb, NickBroce, HollandPaterson, CraigSmith, Daniel
This article presents a system to incorporate crash risk into navigation routing algorithms, enabling safety-aware path optimization for autonomous and human-driven vehicles alike. Current navigation systems optimize travel time or distance, while our approach adds crash probability as a routing criterion, allowing users to balance efficiency with safety. We transform disparate data sources, including traffic counts, crash reports, and road network data, into standardized risk metrics. Because traffic volume data only exist for a small subset of road segments, we develop a solution to project average daily traffic estimates to an entire road inventory using machine learning, achieving sufficient coverage for practical implementation. The framework computes exposure-normalized crash rates weighted by severity and integrates these metrics into routing cost functions compatible with existing navigation algorithms. The key strength of our solution is its scalability. In addition to the
Skaug, LarsNojoumian, Mehrdad
Currently, we face the challenge that ensuring ADS safety remains the primary bottleneck to large-scale commercial deployment—while benchmarks such as the CARLA Leaderboard have spurred progress, their coarse evaluation granularity, inability to quantify procedural risks, and lack of differentiation among algorithms in complex scenarios make in-depth diagnostics and functional safety validation exceedingly difficult. To address these challenges, we propose EvalDrive, a framework that seems to offer a more comprehensive approach to multi-scenario performance evaluation for modular autonomous driving systems. Within this broader analytical framework, EvalDrive appears to provide what seems to be three key contributions. (1) It constructs what appears to represent a structured and extensible scenario library, comprising a majority of 44 interactive scenarios, 23 weather conditions, and 12 town environments, which are then systematically expanded through parameterized variations. (2) Our
Jia, ChunyuKong, YanMa, YaoPei, Xiaofei
In low-light driving scenarios, in-vehicle camera images encounter technical challenges, including severe brightness degradation and short exposure times. Conventional driving image enhancement algorithms are susceptible to issues such as the loss of image features and significant color distortion. The proposed solution to this problem is a multi-scale attention fusion network (MAF-NET) for the enhancement of images captured during low-light driving conditions. The network’s structural design is uncomplicated. The model incorporates a meticulously designed multi-scale attention fusion module (MAFB), along with all essential components for network connectivity. The MAF is predicated on a heavy parameter residual feature block design and incorporates a multi-scale channel attention mechanism to capture richer global/local features. A substantial body of experimental evidence has demonstrated that, in comparison with prevailing algorithms, MAF-NET exhibits superior performance in low
Pan, DengChen, YuhanShi, YicuiLi, JieLi, Guofa
Goswami, ParthaGenter, David PaulAbdul Hamid, Umar ZakirRazdan, RahulKhan, Samir
Items per page:
1 – 50 of 5482