Browse Topic: Safety testing and procedures

Items (5,225)
ABSTRACT Integration risk differentiates from other program risk in that it always involves interfaces between various systems or subsystems. The level of integration required is different depending on the phase of the Acquisition Life Cycle (i.e. Materiel Solution Analysis Phase, Technology Development Phase, Engineering and Manufacturing Development Phase, Production and Deployment Phase and Operation and Support Phase). This paper focuses on the process used to assess the integration risks of integrating various technologies or subsystems into a vehicle platform. The process presented provides a step by step instruction on how to perform an integration risk assessment. A new Integration Readiness Level (IRL) rating system has been developed by the TARDEC System Engineering and Integration Group to help acquisition vehicle programs as well as science and technology teams to evaluate the health of their technology or subsystem integration into their vehicles. The rating system is
Tzau, Jerome
ABSTRACT As the Army focuses to modernize existing ground vehicle fleets and develop new ground vehicle platforms, Program Managers are faced with the challenge of how to best choose a set of technologies for the vehicle that will be mature, be able to be integrated onto the platform, and have the capability to meet defined requirements. To accomplish this, the Tank Automotive Research, Development and Engineering Center (TARDEC) Systems Engineering Group (SEG) has championed the development of a methodology for executing Technical Risk Assessments, one of the components of the overall Risk Assessment. The Technical Risk Assessment activity determines critical technologies, assesses technology maturity, integration and manufacturing readiness, and identifies the associated technical risks of those critical technologies and other technologies of interest. A standardized set of criteria is being utilized by technology subject matter experts to perform the assessments, and has been used
Addis, Rebecca
ABSTRACT A process for donning restraints did not exist as related to Soldier gear encumbrance. For laboratory testing restraint donning was left to the discretion of the technician or test engineer setting up the Anthropomorphic Test Dummy (ATD) and resulted in increased occupant excursion. Therefore the Ground System Survivability (GSS) Blast Mitigation Team (BMT), United States Army Tank Automotive Research, Development and Engineering Center (TARDEC), Warren, MI. conducted studies which were accomplished through restraint system testing. This testing consisted of both Blast and Crash test modes. It was discovered that the ideal testing method couples the occupant to the seat and reduces the amount of restraint to gear interaction. When properly donned the occupant experiences reduced amounts of excursion vs. the improperly restrained occupant. This resulted in a procedure for which restraint systems are to be donned for test events. The routing procedure is included in this
Karwaczynski, Sebastian K.
ABSTRACT Computational models are widely used in the prediction of occupant injury responses and vehicle structural performance of ground vehicles subjected to underbody blasts. Although these physics based computational models incorporate all the material and environment data, the classic models are typically deterministic and do not capture the potential variations in the design, testing and operating parameters. This paper investigates the effect of one such variation in physical tests, namely, variations in the position of occupant setup on the occupant injury responses. To study the effects of occupant position, a series of vertical drop tower tests were performed in a controlled setup. A vertical drop tower test involves an Anthropomorphic Test Device (ATD) dummy positioned on a seat and the setup is dropped on an energy attenuating surface, thus producing a desired shock pulse on the seat structure. The experimental data was analyzed for sensitivity of occupant position and ATD
Ramalingam, JaisankarPrall, Nancy
An innovative new approach is presented that addresses the challenges of design in a constantly changing environment. New solutions that satisfy changing requirements are generated by rapidly reconfiguring ongoing projects and effectively reusing trusted designs. Design is essentially a process of generating knowledge about how to build new systems. Reuse is difficult because this knowledge is amorphous and difficult to access. Hierarchical platform-based engineering is used to structure and categorize this knowledge to make it easily accessible. This approach has three essential components: 1) Hierarchical platform-based design method organizes design projects into a structured library; 2) Transformational systems engineering and concurrent risk assessment are used to capture complex interactions between different CPS elements. These captured interactions help assess reusability and reconfigurability of each element; 3) A new design flow integrates platform-based design methods into
Mehta, SandeepCooper, Stephen
ABSTRACT The Blast Event Simulations sysTem (BEST) is a synthesis tool that provides a seamless and easy-to-use coupling between existing and commercially available LS-DYNA solvers and Anthropomorphic Test Device (ATD) models for a complete sequence of explosive simulations. BEST driven simulations capture the soil/explosive/vehicle/occupant interaction. In this paper a blast simulation analysis conducted by BEST for a generic but representative vehicle is presented. The vehicle is subjected to the blast load created by an explosive buried underneath the vehicle. An ATD model is placed inside the vehicle in order to capture the loads created on the lower legs of an occupant due to the explosion. Technical details with respect to the various models engaged in the simulation are presented first. The results and the physical insight which can be gained by the analysis are discussed. A series of design modifications which add minimal weight are introduced in the vehicle structure, such as
Vlahopoulos, NickolasZhang, Geng
ABSTRACT Program Executive Office (PEO) Ground Combat Systems (GCS) initiated a Green Belt project in 2007 to develop a risk management process. The Integrated Product Team (IPT) built on Defense Acquisition University (DAU) and Department of Defense (DoD) risk management guidance to create a process for risk analysis, mitigation, and rules for Risk Review Board approval. To automate this process, the IPT eventually created an Army owned, customizable tool (Risk Recon) that matched the PEO GCS process. Risk Recon is used to track risks throughout the acquisition life-cycle. Changing the culture of the PEO has been the most significant challenge. Training and follow-up of risk progress is required to keep the process from becoming stagnant. Partnership with the Original Equipment Manufacturer (OEMs)s is an integral part of all programs and a balance is needed between how the PEO and its OEMs perform risk management and communicate those risks. The software requirements continue to
Rassette, CherylGraf, LisaOlsem, MikeDmoch, Barb
ABSTRACT What does “exposure to risk” mean? How can acquisition programs get early warning of risk exposure? How is risk exposure related to the root causes and causal mechanisms of adverse program outcomes? How does risk early warning inform risk management? How is risk exposure related to the tradeoffs made between risk versus potential rewards? What technical and management contract data reporting requirements provide evidence of risk exposure, and how can risk leading indicators be computed? How can standard technical and management contract data reporting requirements be used to improve visibility into risk exposure? How can the magnitude of risk exposure be estimated? How does risk early warning complement traditional technical, cost and schedule risk assessment? How do risk early warning methods relate to typical proposal requirements and evaluation criteria? How are risk leading indicators related to system development leading indicators? How can risk early warning methods be
Witus, GaryBryzik, WalterUmpfenbach, EdwardAddis, RebeccaTzau, JeromeRizk, Kadry
This SAE Recommended Practice describes the test procedures for conducting free-motion headform testing of heavy truck cab interior surfaces and components. A description of the test setup, instrumentation, impact configuration, target locations, and data reduction is included
Truck Crashworthiness Committee
Background: Road accident severity estimation is a critical aspect of road safety analysis and traffic management. Accurate severity estimation contributes to the formulation of effective road safety policies. Knowledge of the potential consequences of certain behaviors or conditions can contribute to safer driving practices. Identifying patterns of high-severity accidents allows for targeted improvements in terms of overall road safety. Objective: This study focuses on analyzing road accidents by utilizing real data, i.e., US road accidents open database called “CRSS.” It employs advanced machine learning models such as boosting algorithms such as LGBM, XGBoost, and CatBoost to predict accident severity classification based on various parameters. The study also aims to contribute to road safety by providing predictive insights for stakeholders, functional safety engineering community, and policymakers using KABCO classification systems. The article includes sections covering
Babaev, IslamMozolin, IgorGarikapati, Divya
Airflow directionality in a vehicle cabin is one of the concerns of car owners, researchers, and vehicle manufacturers. After exposed/parked in hot ambient condition for a long time, HVAC system normally takes few minutes to cool down and reach an acceptable cabin temperature for the passenger comfort. To ensure proper airflow distribution inside the cabin, the AC duct & vanes ability to direct airflow must be evaluated. Objective of this work is to propose a methodology for developing the vane design of AC system duct using CFD approach. Two different goals are attempted. Firstly, the effect of horizontal and vertical vane angle on airflow directionality is investigated with DoE approach. Then factors influencing the airflow directionality are investigated using factorial study approach. CFD based factorial analysis (L9 orthogonal array) was conducted using three components at three levels. The impact of number of horizontal vanes, number of vertical vanes and distance between them on
Mahesh, ABaskar, SubramaniyanRaju, KumarGopinathan, Nagarajan
The electric vehicle (EV) industry is seeing a significant increase in global investments. However, it faces major challenges, especially the shortage and rising costs of key raw materials needed for battery production. This situation creates higher economic risks for investors. This paper evaluates the risks of investing in the EV industry, considering current supply chain issues related to finding raw materials, manufacturing, and selling. The evaluation uses the beta coefficient, which measures how much an individual stock’s price is expected to fluctuate compared to the overall stock market. To examine the beta coefficient’s variability, a Monte Carlo simulation is used to calculate its changes, providing insights into the volatility of assets in the EV industry relative to market conditions. The simulation is repeated multiple times until consistent results are obtained. The main goal of this study is to offer a forward-looking tool to help with investment decisions in the
Gutierrez, MarcosTaco, Diana
We present a data model for performing system and software safety in a way that is compatible with Digital Engineering and Model-Based Systems Engineering. This requires imposing structure into the system/software safety process that allows for interfacing with other data models and for other data models to interface with the system safety model. Doing this allows for high amounts of traceability, and it has allowed for Safety Assessment Reports for small projects to be generated and analyzed in weeks
Czerniak, Gregory P.Proenza, Rodolfo
A critical first step for a robot navigating an obstacle field is to plan a collision-free path through the environment. Historically, solutions for path planning largely use grid-based search methods particularly when guarantees are required that do not permit randomization-based methods. In large operational domains, gridding the search environment necessitates significant memory overhead and corresponding performance loss. To avoid gridded maps, grid-free path planners can achieve significant benefits to performance and memory overhead. These methods utilize visibility graphs with edge costs rather than grids with cell weights to represent possible path choices. This work presents methods to extend known 2D grid-free static environment path planners into higher dimensions to use these same planners for dynamic obstacle path planning via timespace representations. Such extensions to include time trajectories into the visibility graph readily admit path planning through highly dynamic
Harnett, Stephen J.Brennan, SeanPangborn, Herschel C.Pentzer, JesseReichard, Karl
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12
A-10 Aircraft Oxygen Equipment Committee
This study aims to elucidate the impact of A-pillar blind spots on drivers’ visibility of pedestrians during left and right turns at an intersection. An experiment was conducted using a sedan and a truck, with a professional test driver participating. The driver was instructed to maintain sole focus on a designated pedestrian model from the moment it was first sighted during each drive. The experimental results revealed how the blind spots caused by A-pillars occur and clarified the relationship between the pedestrian visible trajectory distance and specific vehicle windows. The results indicated that the shortest trajectory distance over which a pedestrian remained visible in the sedan was 17.6 m for a far-side pedestrian model during a right turn, where visibility was exclusively through the windshield. For the truck, this distance was 20.9 m for a near-side pedestrian model during a left turn, with visibility through the windshield of 9.5 m (45.5% of 20.9 m) and through the
Matsui, YasuhiroOikawa, Shoko
Most humans rely heavily on our visual abilities to function in the world—we are optically oriented. In the broadest sense, “optics” refers to the study of sight and light. At its foundation, Radiant’s business is all about optics: measuring light and the properties of light in relation to the human eye. Photometry is the science of light according to our visual perception. Colorimetry is the science of color: how our eyes interpret different wavelengths of light
The increased use of computational human models in evaluation of safety systems demands greater attention to selected methods in coupling the model to its seated environment. This study assessed the THUMS v4.0.1 in an upright driver posture and a reclined occupant posture. Each posture was gravity settled into an NCAC vehicle model to assess model quality and HBM to seat coupling. HBM to seat contact friction and seat stiffness were varied across a range of potential inputs to evaluate over a range of potential inputs. Gravity settling was also performed with and without constraints on the pelvis to move towards the target H-Point. These combinations resulted in 18 simulations per posture, run for 800 ms. In addition, 5 crash pulse simulations (51.5 km/h delta V) were run to assess the effect of settling time on driver kinematics. HBM mesh quality and HBM to seat coupling metrics were compared at kinetically identical time points during the simulation to an end state where kinetic
Wade von Kleeck, B.Caffrey, JulietteWeaver, Ashley A.Gayzik, F. ScottHallman, Jason
The advent of neck braces for the helmeted motorcycle rider has introduced a pertinent research question: To what extent do they reduce measures related to the major mechanism of neck injury in unrestrained torso accidents, i.e., compression flexion (CF)? This question requires a suitable method of testing and evaluating the measures for a load case resulting in the required mechanism. This study proposes a weighted swinging anvil striking the helmeted head of a supine HIII ATD by means of a near vertex impact with a low degree of anterior head impact eccentricity to induce CF of the neck. The applied impact was chosen for the baseline (no neck brace) so that the upper and lower neck axial forces approached injury assessment reference values (IARV). The head impact point evaluated represents those typically associated with high-energy burst fractures occurring within the first 20 ms, with possible secondary disruption of posterior ligaments. The proposed test can be used to evaluate
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
This SAE Aerospace Standard (AS)/Minimum Operational Performance Specification (MOPS) specifies the minimum performance requirements of remote on-ground ice detection systems (ROGIDS). These systems are ground based. They provide information that indicates whether frozen contamination is present on aircraft surfaces. Section 1 provides information required to understand the need for the ROGIDS, ROGIDS characteristics, and tests that are defined in subsequent sections. It describes typical ROGIDS applications and operational objectives and is the basis for the performance criteria stated in Sections 3 through 5. Section 2 provides reference information, including related documents, definitions, and abbreviations. Section 3 contains general design requirements for the ROGIDS. Section 4 contains the Minimum Operational Performance Requirements for the ROGIDS, which define performance in icing conditions likely to be encountered during ground operations. Section 5 describes environmental
G-12HOT Holdover Time Committee
New tests for a Truck Safe rating scheme aim to emulate real-world collisions and encourage OEMs to fit collision avoidance technologies and improve driver vision. Euro NCAP has revealed the elements it is considering as part of an upcoming Truck Safe rating, and how it intends to test and benchmark truck performance. The announcement was made to an audience of international road safety experts at the NCAP24 World Congress in Munich, Germany, in April. The action is intended to mitigate heavy trucks' impact on road safety. The organization cited data showing that trucks are involved in almost 15% of all EU road fatalities but represent only 3% of vehicles on Europe's roads. Euro NCAP says the future rating scheme is designed to go further and faster than current EU truck safety regulations. The organization's goal is to drive innovation and hasten the adoption of advanced driver-assistance systems (ADAS) such as automatic emergency braking (AEB) and lane support systems (LSS), while
Gehm, Ryan
Verification and validation (V&V) is the cornerstone of safety in the automotive industry. The V&V process ensures that every component in a vehicle functions according to its specifications. Automated driving functionality poses considerable challenges to the V&V process, especially when data-driven AI components are present in the system. The aim of this work is to outline a methodology for V&V of AI-based systems. The backbone of this methodology is bridging the semantic gap between the symbolic level at which the operational design domain and requirements are typically specified, and the sub-symbolic, statistical level at which data-driven AI components function. This is accomplished by combining a probabilistic model of the operational design domain and an FMEA of AI with a fitness-for-purpose model of the system itself. The fitness-for-purpose model allows for reasoning about the behavior of the system in its environment, which we argue is essential to determine whether the
Paardekooper, Jan-PieterBorth, Michael
An essential component in the approval of advanced driver assistance systems (ADAS) and automated driving systems (ADS) is the quantification of residual risk, which demonstrates that hazardous behavior (HB) occurs less frequently than specified by a corresponding acceptance criterion. In the case of HB with high potential impact severity, only very low accepted frequencies of occurrence are tolerated. To avoid uncertainties due to abstractions and simplifications in simulations, the proof of the residual risk in systems such as advanced emergency braking systems (AEBS) is often partially or entirely implemented as system level field test. However, the low rates and high confidence required, common for residual risk demonstrations, result in a significant disadvantage of these field tests: the long driving distance required. In this publication, the prediction divergence principle (PDP) is presented as an approach that has the potential to reduce the testing effort in the future
Betschinske, DanielSchrimpf, MalteLippert, MoritzPeters, Steven
As part of the safety validation of advanced driver assistance systems (ADAS) and automated driving (AD) functions, it is necessary to demonstrate that the frequency at which the system exhibits hazardous behavior (HB) in the field is below an acceptable threshold. This is typically tested by observation of the system behavior in a field operational test (FOT). For situations in which the system under test (SUT) actively intervenes in the dynamic driving behavior of the vehicle, it is assessed whether the SUT exhibits HB. Since the accepted threshold values are generally small, the amount of data required for this strategy is usually very large. This publication proposes an approach to reduce the amount of data required for the evaluation of emergency intervention systems with a state machine based intervention logic by including the time periods between intervention events in the validation process. For this purpose, a proximity measure that indicates how close the system is to an
Schrimpf, MalteBetschinske, DanielPeters, Steven
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment. For this purpose, an ASAM Open Simulation Interface (OSI
Hofrichter, KristofLinnhoff, ClemensElster, LukasPeters, Steven
The UN R155 regulation is the first automotive cybersecurity regulation and has made security a mandatory approval criterion for new vehicle types. This establishes internationally harmonized security requirements for market approval, presenting a challenge for manufacturers and suppliers to demonstrate compliance throughout the product life cycle. An issued type approval is internationally recognized by the member states of the UN 1958 Agreement. International recognition implies that uniform assessment criteria are applied to demonstrate compliance and to decide whether security efforts are sufficient. Independent accredited assessors assess the security engineering results during type approval. Considering the risk-based approach of ISO/SAE 21434 to security engineering, assessing whether threats have been appropriately addressed is a challenge. While there are currently no uniform assessment criteria at product level, the question arises as to which development artifacts serve as
Hellstern, MonaLanghanki, StefanGrün, FlorianKriesten, ReinerSax, Eric
Deep learning algorithms are being widely used in autonomous driving (AD) and advanced driver assistance systems (ADAS) due to their impressive capabilities in visual perception of the environment of a car. However, the reliability of these algorithms is known to be challenging due to their data-driven and black-box nature. This holds especially true when it comes to accurate and reliable perception of objects in edge case scenarios. So far, the focus has been on normal driving situations and there is little research on evaluating these systems in a safety-critical context like pre-crash scenarios. This article describes a project that addresses this problem and provides a publicly available dataset along with key performance indicators (KPIs) for evaluating visual perception systems under pre-crash conditions
Bakker, Jörg
This document provides background information, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and similarity criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP6330 defines multiple test methods used to assess the effect of seat back mounted IFE monitor changes on blunt trauma to the head and post-impact sharp edge generation. The data generated is based on seat and IFE components installed on type A-T (transport airplane) certified aircraft. While not within the scope of ARP6330, generated test data for the possible future development of surrogate target evaluation methods is also included
Aircraft Seat Committee
To enhance the interpretability and coverage of high-risk scenarios in virtual test scenarios for autonomous vehicles, we propose a method for generating virtual test scenarios based on the VI-GAN (vehicle-interactive GAN) game neural network. This method constructs a converging interaction game model by capturing the interaction characteristics of vehicles converging on the ramp and those driving in the main lane. The Nash equilibrium solution of the game strategy and the convergence data are used to obtain the vehicle priority probability, and the game model is embedded in the S-GAN neural network model to propose a game trajectory generation model with the characteristics of a realistic interactive gaming behavior. Meanwhile, in order to obtain high-risk convergence scenarios, CT model is introduced to test the combination of real trajectories of interacting vehicles in the observed area and used in VI-GAN algorithm to generate more high-risk interaction trajectories with realistic
Wang, Jingjing
Ice build-up on aircraft and wind turbines can impact the safety and efficiency of their systems
In order to improve the obstacle avoidance ability of autonomous vehicles in complex traffic environments, speed planning, path planning, and tracking control are integrated into one optimization problem. An integrated vehicle trajectory planning and tracking control method combining a pseudo-time-to-collision (PTC) risk assessment model and model predictive control (MPC) is proposed. First, a risk assessment model with PTC probability is proposed by considering the differentiation of the risk on the relative motion states of the self and front vehicles, and the obstacle vehicles in the lateral and longitudinal directions. Then, a three-degrees-of-freedom vehicle dynamics model is established, and the MPC cost function and constraints are constructed from the perspective of the road environment as well as the stability and comfort of the ego-vehicle, combined with the PTC risk assessment model to optimize the control. Finally, a complex multi-vehicle obstacle avoidance scenario is
Yang, TaoLiu, LiangXu, Zhaoping
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world. Although DAMAGE correlates well with MPS in the human brain model across
Prasad, PriyaBarbat, Saeed D.Kalra, AnilDalmotas, Dainius J.
THOR-AV 5F, a modified THOR-5F dummy, was designed to represent both upright and reclined occupants in vehicle crashworthiness studies. The dummy was evaluated in four test conditions: a) 25° seatback, 15 km/h, b) 25° seatback, 32 km/h, c) 45° seatback, 15 km/h, d) 45° seatback, 32 km/h. The dummy’s biomechanical responses were compared against those of postmortem human subjects (PMHS) tested in the same test conditions. The latest National Highway Traffic Safety Administration (NHTSA) BioRank method was used to provide a biofidelity ranking score (BRS) for each data channel in the tests to assess the dummy’s biofidelity objectively. The evaluation was categorized into two groups: restraint system and dummy. In the four test conditions, the restraint system showed good biofidelity with BRS scores of 1.49, 1.47, 1.15, and 1.79, respectively. The THOR-AV 5F demonstrated excellent biofidelity in three test conditions: 25° seatback, 15 km/h (BRS = 0.76); 25° seatback, 32 km/h (BRS = 0.89
Wang, Z. JerryHumm, JohnHauschild, Hans W.
Understanding left-turn vehicle-pedestrian accident mechanisms is critical for developing accident-prevention systems. This study aims to clarify the features of driver behavior focusing on drivers’ gaze, vehicle speed, and time to collision (TTC) during left turns at intersections on left-hand traffic roads. Herein, experiments with a sedan and light-duty truck (< 7.5 tons GVW) are conducted under four conditions: no pedestrian dummy (No-P), near-side pedestrian dummy (Near-P), far-side pedestrian dummy (Far-P) and near-and-far side pedestrian dummies (NF-P). For NF-P, sedans have a significantly shorter gaze time for left-side mirrors compared with light-duty trucks. The light-duty truck’s average speed at the initial line to the intersection (L1) and pedestrian crossing line (L0) is significantly lower than the sedan’s under No-P, Near-P, and NF-P conditions, without any significant difference between any two conditions. The TTC for sedans is significantly shorter than that for
Matsui, YasuhiroNarita, MasashiOikawa, Shoko
Frontal-crash sled tests were conducted to assess submarining protection and abdominal injury risk for midsized male occupants in the rear seat of modern vehicles. Twelve sled tests were conducted in four rear-seat vehicle-bucks with twelve post-mortem human surrogates (PMHS). Select kinematic responses and submarining incidence were compared to previously observed performance of the Hybrid III 50th-percentile male and THOR-50M ATDs (Anthropomorphic Test Devices) in matched sled tests conducted as part of a previous study. Abdominal pressure was measured in the PMHS near each ASIS (Anterior Superior Iliac Spine), in the inferior vena cava, and in the abdominal aorta. Damage to the abdomen, pelvis, and lumbar spine of the PMHS was also identified. In total, five PMHS underwent submarining. Four PMHS, none of which submarined, sustained pelvis fractures and represented the heaviest of the PMHS tested. Submarining of the PMHS occurred in two out of four vehicles. In the matched tests, the
Guettler, Allison J.Bianco, Samuel T.Albert, Devon L.Boyle, David M.Kemper, Andrew R.Hardy, Warren N.
The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test. The Accelerative Loading Fixture (ALF) version 2, located at APG’s Bear Point range
Pietsch, HollieCristino, DanielleDanelson, KerryBolte, JohnMason, MatthewKemper, AndrewCavanaugh, JohnHardy, Warren
In this paper, experimental studies were conducted to examine the mechanical behavior of a polymer composite material called polyamide with glass fiber (PA6-GF), which was fabricated using the three-dimensional (3D) fusion deposition modeling (FDM) technique. FDM is one of the most well-liked low-cost 3D printing techniques for facilitating the adhesion and hot melting of thermoplastic materials. PA6 exhibits an exceptionally significant overall performance in the families of engineering thermoplastic polymer materials. By using twin-screw extrusion, a PA6-GF mixed particles made of PA6 and 20% glass fiber was produced as filament. Based on literature review, the samples have been fabricated for tensile, hardness, and flexural with different layer thickness of 0.08 mm, 0.16 mm, and 0.24 mm, respectively. The composite PA6-GF behavior is characterized through an experimental test employing a variety of test samples made in the x and z axes. The mechanical and physical characteristics of
Sivanesh, A. R.Soundararajan, R.Natrayan, M.Nallasivam, J. D.Santhosh, R.
For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions. The causal chain that maximizes
Tian, YanfeiQiao, HuiHua, LinAi, Wanzheng
Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration. Furthermore, a lower-level PID-based controller is designed to track the desired acceleration
Guo, ShaozhongGuo, JunZhang, YunqingWu, Jinglai
For safe driving function, signs must be visible. Sign visibility is function of its luminance intensity. During day, due to ambient light conditions sign luminance is not a major concern. But during night, due to absence of sun light sign board retro-reflectivity plays a crucial role in sign visibility. The vehicle headlamp color, beam pattern, lamp installation position, the relative seating position of driver and moon light conditions are important factors. Virtual simulation approach is used for analyzing the sign board visibility. Among various factors for example the headlamp installation position from ground, distance between two lamps and eye position of driver are considered for analyzing the sign board visibility in this paper. Many automotive organizations have widely varying requirements and established testing guidelines to ensure visibility of signs in head lamp physical testing but there are no guidelines during design stage for headlamp for sign visibility. In this
Yadav, Prashant Maruti
ISO 26262-1:2018 defines the fault tolerant time interval (FTTI) as the minimum time span from the occurrence of a fault within an electrical / electronic system to a possible occurrence of a hazardous event. FTTI provides a time limit within which compliant vehicle safety mechanisms must detect and react to faults capable of posing risk of harm to persons. This makes FTTI a vital safety characteristic for system design. Common automotive industry practice accommodates recording fault times of occurrence definitively. However, current practice for defining the time of hazardous event onset relies upon subjective judgements. This paper presents a novel method to define hazardous event onset more objectively. The method introduces the Streetscope Collision Hazard Measure (SHMTM) and a refined approach to hazardous event classification. SHM inputs kinematic factors such as proximity, relative speed, and acceleration as well as environmental characteristics like traffic patterns
Jones, DarrenGangadhar, PavankumarMcGrail, RandallPati, SudiptaAntonsson, ErikPatel, Ravi
Reconstruction of inline crashes between vehicles with a low closing speed, so-called “low speed” crashes, continues to be a class of vehicle collisions that reconstructionists require specific methods to handle. In general, these collisions tend to be difficult to reconstruct due primarily to the lack of, or limited amount of, physical evidence available after the crash. Traditional reconstruction methods such as impulse-momentum (non-residual damage based) and CRASH3 (residual damage based) both are formulated without considering tire forces of the vehicles. These forces can be important in this class of collisions. Additionally, the CRASH3 method depends on the use of stiffness coefficients for the vehicles obtained from high-speed crash tests. The question of the applicability of these (high-speed) stiffness coefficients to collisions producing significantly less deformation than experimental crashes on which they are generated, raises questions of the applicability. An alternative
Brach, MatthewStegemann, JacobManuel, Emmanuel JayCivitanova, Nicholas
Recent advancements towards autonomous heavy-duty vehicles are directly associated with increased interconnectivity and software driven features. Consequently, rise of this technological trend is bringing forth safety and cybersecurity challenges in form of new threats, hazards and vulnerabilities. As per the recent UN vehicle regulation 155, several risk-based security models and assessment frameworks have been proposed to counter the growing cybersecurity issues, however, the high budgetary cost to develop the tool and train personnel along with high risk of leakage of trade secrets, hinders the automotive manufacturers from adapting these third party solutions. This paper proposes an automated Threat Assessment & Risk Analysis (TARA) framework aligned with the standard requirements, offering an easy to use and fully customizable framework. The proposed framework is tailored specifically for heavy-duty vehicular networks and it demonstrates its effectiveness on a case study. The
Mairaj ud din, QaziAhmed, Qadeer
Items per page:
1 – 50 of 5225