Browse Topic: Anthropomorphic test devices

Items (1,330)
ABSTRACT A process for donning restraints did not exist as related to Soldier gear encumbrance. For laboratory testing restraint donning was left to the discretion of the technician or test engineer setting up the Anthropomorphic Test Dummy (ATD) and resulted in increased occupant excursion. Therefore the Ground System Survivability (GSS) Blast Mitigation Team (BMT), United States Army Tank Automotive Research, Development and Engineering Center (TARDEC), Warren, MI. conducted studies which were accomplished through restraint system testing. This testing consisted of both Blast and Crash test modes. It was discovered that the ideal testing method couples the occupant to the seat and reduces the amount of restraint to gear interaction. When properly donned the occupant experiences reduced amounts of excursion vs. the improperly restrained occupant. This resulted in a procedure for which restraint systems are to be donned for test events. The routing procedure is included in this
Karwaczynski, Sebastian K.
ABSTRACT The Blast Event Simulations sysTem (BEST) is a synthesis tool that provides a seamless and easy-to-use coupling between existing and commercially available LS-DYNA solvers and Anthropomorphic Test Device (ATD) models for a complete sequence of explosive simulations. BEST driven simulations capture the soil/explosive/vehicle/occupant interaction. In this paper a blast simulation analysis conducted by BEST for a generic but representative vehicle is presented. The vehicle is subjected to the blast load created by an explosive buried underneath the vehicle. An ATD model is placed inside the vehicle in order to capture the loads created on the lower legs of an occupant due to the explosion. Technical details with respect to the various models engaged in the simulation are presented first. The results and the physical insight which can be gained by the analysis are discussed. A series of design modifications which add minimal weight are introduced in the vehicle structure, such as
Vlahopoulos, NickolasZhang, Geng
ABSTRACT The CAMEL program focused on force protection and demonstrated the possibility to protect occupants through higher underbelly blast levels than normally or previously observed. This required a holistic vehicle systems engineering approach to mitigate blast injuries that both optimized existing systems as well as developed new technologies. The result was zero injury to all occupants as assessed by 5th, 50th, and 95th percentile encumbered ATDs during survivability blast testing. Twelve full scale objective-level blast tests were performed on over seventy fully-instrumented ATDs without a single lower-extremity injury. The lower limb protection was provided by an isolated floor system. This system was developed from the ground-up and occupant-out during the CAMEL program. This paper chronicles the CAMEL floor system’s creation, design, testing, and development process
Kwiatkowski, KevinWatson, ChristopherKorson, Chantelle
ABSTRACT The primary focus of this effort is to evaluate the roof liner technology’s ability to reduce the head injury criteria (HIC) and head acceleration to mitigate vertical impact related injures to mounted crew injures which may occur during top and bottom threat events. In an effort to reduce the likelihood of head injury during top and bottom threat attacks, an adequate roof liner is needed to reduce the force exerted on the solider. The roof liners were able to pass all system level tests. The successful system level testing confirmed the blast mat technology’s TRL-6 recommendation. Citation: J. Klima, “Developing Performance and Operating Requirements for Energy Attenuating (EA) Roof Liner for all U.S. Army Military Vehicles”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021
Klima, Julie
ABSTRACT Computational models are widely used in the prediction of occupant injury responses and vehicle structural performance of ground vehicles subjected to underbody blasts. Although these physics based computational models incorporate all the material and environment data, the classic models are typically deterministic and do not capture the potential variations in the design, testing and operating parameters. This paper investigates the effect of one such variation in physical tests, namely, variations in the position of occupant setup on the occupant injury responses. To study the effects of occupant position, a series of vertical drop tower tests were performed in a controlled setup. A vertical drop tower test involves an Anthropomorphic Test Device (ATD) dummy positioned on a seat and the setup is dropped on an energy attenuating surface, thus producing a desired shock pulse on the seat structure. The experimental data was analyzed for sensitivity of occupant position and ATD
Ramalingam, JaisankarPrall, Nancy
ABSTRACT The work presented here comprises preliminary results for calibrating the IMPETUS Afea Hybrid III 50th percentile Male ATD for a blast scenario. The calibration of the ATD model based upon the requirements defined for frontal crash impact are presented followed by a discussion of the blast survivability tests that were performed at General Dynamics Edgefield Test Center in South Carolina. The model setup for the calibration based upon the blast tests are presented which includes a discussion of the seating and blast models. Preliminary numerical results for Lumbar and Lower Tibia forces are compared with the experimental results. The correlation was good and calibration of the remaining critical parameters continues
Jensen, Morten RikardHonaker, MikeBoglaev, Alex
ABSTRACT The study describes the development of a plug-in module of the realistic 3D Digital Human Modeling (DHM) tool RAMSIS that is used to optimize product development of military vehicle systems. The use of DHM in product development has been established for years. DHM for the development of military vehicles requires not only the representation of the vehicle occupants, but also the representation of equipment and simulation of the impact of such equipment on the Warfighter. To simulate occupants in military vehicles, whether land or air based, realistically, equipment must become an integral part of the extended human model. Simply attaching CAD-geometry to one manikin’s element is not sufficient. Equipment size needs to be scalable with respect to anthropometry, impact on joint mobility needs to be considered with respect to anatomy. Those aspects must be integrated in posture prediction algorithms to generate objective, reliable and reproducible results to help design engineers
Kuebler, ThorstenWirsching, HansBarnes, David
ABSTRACT To reduce the hazard for service personnel involved in current field operations, it is necessary to improve the safety and structural integrity of transport vehicles subjected to buried explosive material. Numerical simulation of the detonation effects of an Improvised Explosive Device (IED) on a vehicle and its occupants can provide tremendous value in this effort. Such events involve a range of complex phenomena at various dimensional and temporal scales, and it is not practical to capture all physical phenomena with just one single numerical method. A practical solution to this problem is proposed using a combination of Smoothed Particle Hydrodynamics (SPH) and Finite Elements. Various numerical techniques have been proposed for simulating buried explosive over the past 30 years and this work has been previously described by many authors. However, the ability to define blast input parameters together with a soldier-centric simulation approach that includes human body and
Dooge, DanielDwarampudi, RameshSchaffner, GrantMiller, AdamThyagarajan, RaviVunnam, MadanmohanBabu, Venkatesh
ABSTRACT TARDEC researched head impact protective, energy attenuating materials for use in U.S. Army Ground System Vehicle (GSV) applications. The purpose of the project is to reduce potential head impact related mounted crew injuries and deaths which may occur during underbody blast, crash and rollover events. Commercial-off-the-shelf materials were evaluated for their energy attenuating performance. Exposed surface materials in combination with core material were also researched and evaluated. Baseline vehicle testing was conducted to understand the current head impact criterion. The results of this effort identified solutions which may potentially meet the needs of the Army to reduce head impact related injuries which may occur during crash, rollover and blast events. TARDEC used the knowledge gained from this project to create performance specification requirements for interior head impact protective components and materials for use in U.S. Army vehicles
Klima, JulieMarquardt, Rebecca
ABSTRACT The shapes of Improvised Explosive Devices (IED) used by insurgents in recent conflicts are complex and can take many forms. To model unique shapes that are embedded in the soil, in addition to the actual shape of the High Explosive (HE), adds to the complexity of simulating the mine blast event. By considering an artillery shell as the container, further complicates the analysis because fragmentation of the shell has to be included. Unfortunately, this complex IED is not uncommon and in order to develop protective structures for our soldiers and civilians, finite element techniques are employed. The work presented is an investigation of how to do this modeling using the explicit non-linear transient finite element software, the IMPETUS Afea Solver®. The first step is a large sensitivity study of an explosive driven expansion of a simple cylinder and the outcome influence of nine design variables, leading to hundreds of computational hours. The modeling approach chosen for the
Rasico, James G.Newman, Craig A.Jensen, Morten Rikard
ABSTRACT The successful fielding of occupant protection technologies require understanding their behavior and performance under field-like conditions. To achieve this, the Occupant Protection Laboratory (OPL) at Selfridge Air National Guard Base (SANGB) uses a drop tower, called the Sub-System Drop Tower (SSDT), and a vertical accelerator, called the Crew Compartment Under-Body Blast Simulator (CCUBS). These two systems have the capability to deliver specified acceleration profiles to items, such as blast-mitigating seats under test. To gain confidence that the two systems are producing similar testing conditions for a given system, a series of experiments was designed to determine the existence of a correlation between the two systems. A representative seat and an Anthropomorphic Test Device (ATD) were tested under similar acceleration profiles on both systems. Tests were initially conducted without a payload to determine the testing parameters for each system and to determine the
Foster, Craig DRudek, Matthias
With the capability of predicting detailed injury of occupants, the Human Body Model (HBM) was used to identify potential injuries for occupants in car impact events. However, there are few publications on using HBM in the aviation industry. This study aims to investigate and compare the head, neck, lumbar spine and thoracic responses of the Hybrid III and the THUMS (Total Human Model for Safety) model in the horizontal 26g and vertical 19g sled tests required by the General Aviation Aircraft Airworthiness Regulations. The HIC of THUMS and Hybrid III did not exceed the requirements of airworthiness regulations. Still, THUMS had higher intracranial pressures and intracranial stresses, which could result in brain injury to the occupants. In vertical impact, the highest stress of the neck of THUMS appears at the cervical spine C2 and the upper neck is easily injured; in horizontal impact, the cervical spine C7 has the highest load, and the lower neck is easily injured. Due to the low
Shi, XiaopengDing, XiangheGuo, KaiLiu, TianfuXie, Jiang
ABSTRACT A comprehensive analysis of data collected during an evaluation of blast energy–attenuation (EA) seats was conducted to review the performance of commercially available and prototype seat assets. This evaluation included twelve models of seats tested at two separate drop severities with three sizes of anthropomorphic test devices (ATDs) to develop test methodologies and assess the appropriateness of using injury assessment reference values (IARVs) for all occupant sizes
Bosch, KellyHarris, KatrinaClark, DavidScherer, RisaMelotik, Joseph
Pelvic orientation in vehicles is crucial for preventing injuries and creating safer vehicles and restraint systems. A better understanding of pelvic orientation could provide more accurate anthropomorphic test device (ATD) models of underrepresented populations such as obese individuals, children, and small females. Sonomicrometry is the use of piezoelectric transducers that transmit ultrasound signals to each other to measure the distance between them. These signals may be aggregated using triangulation. In this experiment, ultrasound crystals were secured to the surface of a porcine surrogate to evaluate pelvic movement. This data was then processed using Sonometrics software to generate a 3D model of four static positions and three dynamic tests. The test was validated using a camera and a 3D measurement arm (CMM) to validate XYZ positions. This article discusses how this method could be helpful for developing more accurate ATD models, preventing fatalities in vehicle crashes
Mrozek, AllisonSirhan, KaterenaMacDonald, RobertDannaoui, AbdulMazloum, AishaOchocki, Katarzyna‘Dale’ Bass , Cameron R.
Drop tower testing was conducted using 50th percentile male PMHS at 15G peak acceleration in a rigid seat, with a seat pan-to-seatback angle of 90°. Subjects were instrumented with 6DOF motion blocks at T1, T4, T12, L3, and S1 to capture detailed vertebral body kinematics. Pressure sensors were also placed throughout the lumbar spine to estimate force in the intervertebral discs from S1-L2. PMHS were restrained using a pilot torso harness attached to the seat at the shoulders and lap belt, both pretensioned to 89 N. Reaction forces were measured in the seat using six-axis loads under the seat pan. Final positioning of the occupant was documented using a FARO arm point probe and laser scanner. To recreate the experimental setup, CAD models of the experimental fixture were meshed using a commercial FE modeling software (Hypermesh) and imported into LS-Dyna for incorporation with the THUMS model. The belt routing tool in LS-PrePost v4.9.12 was used to develop the torso harness and
DeWitt, Timothy R.Marcallini, Angelo M.Bolte IV, John H.Kang, Yun-Seok
Exploring the mechanical properties of soft tissues under compressive loading is crucial for understanding their role in automobile incidents. Soft tissues, which serve as cushions or padding between bone and vehicle interiors, significantly influence contact duration and forces, thereby altering incident kinematics and injury. In this investigation, muscle and soft connective tissues from post-mortem human subjects (PMHS) forearms were excised and subjected to compression and indentation testing methods at various rates and strains. Specific samples with higher proportions of muscle were compared against samples without muscle tissues to evaluate the role of compositional changes. Anthropomorphic test device (ATD) upper extremity foam and vinyl–foam composite analog tissues underwent similar testing for comparison. High impact rates simulating those in high-speed automotive collisions were achieved using a custom-built drop tower impactor setup. The results revealed significantly
Dennis, Cole J.Quenneville, Cheryl E.
Human body models have been used for decades to inform efforts in promoting automobile occupant and pedestrian safety. However, many of these models fail to capture the intricacies of individual variability. Cadaveric subjects typically exceed representative age ranges and hence mechanics. Animal subjects typically require specific setups that stray from that which is representative of human crash scenarios. Computational models can only consider so many practical real-world variables. Artificial surrogates, dummies being popular among them, are very popular for reusability and robust data collection. However, even the biomechanically accurate skeletal surrogates available commercially are limited in that they do not consider human variability and skeletal microstructure local variability. The objective of the work herein is to assess computational methods of metastructural variability mimicry by fabrication material. We implement mimicry approaches focusing on bulk isotropic
Hezrony, Benjamin S.C. F. Lopes, PedroBrown, Philip J.
Airflow directionality in a vehicle cabin is one of the concerns of car owners, researchers, and vehicle manufacturers. After exposed/parked in hot ambient condition for a long time, HVAC system normally takes few minutes to cool down and reach an acceptable cabin temperature for the passenger comfort. To ensure proper airflow distribution inside the cabin, the AC duct & vanes ability to direct airflow must be evaluated. Objective of this work is to propose a methodology for developing the vane design of AC system duct using CFD approach. Two different goals are attempted. Firstly, the effect of horizontal and vertical vane angle on airflow directionality is investigated with DoE approach. Then factors influencing the airflow directionality are investigated using factorial study approach. CFD based factorial analysis (L9 orthogonal array) was conducted using three components at three levels. The impact of number of horizontal vanes, number of vertical vanes and distance between them on
Mahesh, ABaskar, SubramaniyanRaju, KumarGopinathan, Nagarajan
Understanding left-turn vehicle-pedestrian accident mechanisms is critical for developing accident-prevention systems. This study aims to clarify the features of driver behavior focusing on drivers’ gaze, vehicle speed, and time to collision (TTC) during left turns at intersections on left-hand traffic roads. Herein, experiments with a sedan and light-duty truck (< 7.5 tons GVW) are conducted under four conditions: no pedestrian dummy (No-P), near-side pedestrian dummy (Near-P), far-side pedestrian dummy (Far-P) and near-and-far side pedestrian dummies (NF-P). For NF-P, sedans have a significantly shorter gaze time for left-side mirrors compared with light-duty trucks. The light-duty truck’s average speed at the initial line to the intersection (L1) and pedestrian crossing line (L0) is significantly lower than the sedan’s under No-P, Near-P, and NF-P conditions, without any significant difference between any two conditions. The TTC for sedans is significantly shorter than that for
Matsui, YasuhiroNarita, MasashiOikawa, Shoko
Frontal-crash sled tests were conducted to assess submarining protection and abdominal injury risk for midsized male occupants in the rear seat of modern vehicles. Twelve sled tests were conducted in four rear-seat vehicle-bucks with twelve post-mortem human surrogates (PMHS). Select kinematic responses and submarining incidence were compared to previously observed performance of the Hybrid III 50th-percentile male and THOR-50M ATDs (Anthropomorphic Test Devices) in matched sled tests conducted as part of a previous study. Abdominal pressure was measured in the PMHS near each ASIS (Anterior Superior Iliac Spine), in the inferior vena cava, and in the abdominal aorta. Damage to the abdomen, pelvis, and lumbar spine of the PMHS was also identified. In total, five PMHS underwent submarining. Four PMHS, none of which submarined, sustained pelvis fractures and represented the heaviest of the PMHS tested. Submarining of the PMHS occurred in two out of four vehicles. In the matched tests, the
Guettler, Allison J.Bianco, Samuel T.Albert, Devon L.Boyle, David M.Kemper, Andrew R.Hardy, Warren N.
The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test. The Accelerative Loading Fixture (ALF) version 2, located at APG’s Bear Point range
Pietsch, HollieCristino, DanielleDanelson, KerryBolte, JohnMason, MatthewKemper, AndrewCavanaugh, JohnHardy, Warren
There are established federal requirements and industry standards for frontal crash testing of motor vehicles. Consistently applied methods support reliability, repeatability, and comparability of performance metrics between tests and platforms. However, real world collisions are rarely identical to standard test protocols. This study examined the effects of occupant anthropometry and passive restraint deployment timing on occupant kinematics and biomechanical loading in a moderate-severity (approximately 30 kph delta-V) offset frontal crash scenario. An offset, front-to-rear vehicle-to-vehicle crash test was performed, and the dynamics of the vehicle experiencing the frontal collision were replicated in a series of three sled tests. Crash test and sled test vehicle kinematics were comparable. A standard or reduced-weight 50th percentile male Hybrid III ATD (H3-50M) or a standard 5th percentile female Hybrid III ATD (H3-5F) was belted in the driver’s seating position. In the crash test
Courtney, AmyCrosby, CharlesMiller, BruceOsterhout, AaronWalker, JamesGondek, Jonathon
Alongside advancements in automated vehicle technologies, occupants within vehicle compartments are enjoying increased freedom to relax and enjoy their journeys. For instance, reclined seating postures have become more prevalent and comfortable compared to upright seating when Highly Automated Vehicles (HAVs) are introduced. Unfortunately, most Anthropomorphic Testing Devices (ATD) do not support reclined postures. THOR-AV 50M is a specially designed dummy for reclined postures. As a crucial tool for developing safety restraint systems to protect reclined occupants, the first question is how to position it correctly on a reclined seat before impact testing. In this study, classical zero gravity seats were selected. H-point coordinators of selected seat at 25°, 40° and 60° seatback angle were measured and compared by using H-point machine (HPM) even though current HPM was not designed for reclined seat. THOR-AV 50M with loosened joints, served to simulate human relaxation fully when
Liu, ChongqingWang, Zhenwen
A research program has been launched in Iran to develop an evaluation method for comparing the safety performance of vehicles in real-world collisions with crash test results. The goal of this research program is to flag vehicle models whose safety performance in real-world accidents does not match their crash test results. As part of this research program, a metric is needed to evaluate the severity of side impacts in crash tests and real-world accidents. In this work, several vehicle-based metrics were analyzed and calculated for a dataset of more than 500 side impact tests from the NHTSA crash test database. The correlation between the metric values and the dummy injury criteria was studied to find the most appropriate metric with the strongest correlation coefficient values with the dummy injury criteria. Delta-V and a newly created metric T K 200 Y , which is an indicator of the kinetic energy transferred to occupants in a 200 ms time interval and in the lateral direction, were
Sadeghipour, Emad
Letter from the Special Issue Editors
Mueller, BeckyBautsch, BrianMansfield, Julie
Field data has shown that belt-positioning boosters help reduce the risk of injury to children in a crash. This study builds on prior submarining work (Slusher et al. 2022) and aims to analyze kinetic metrics (which can be easily recorded from anthropomorphic test devices in crash tests) in submarining and non-submarining conditions for a 6-year-old pediatric human occupant in frontal crashes
Williams, BethanyMaheshwari, Jalaj
In this study, a parametric thoracic spine (T-spine) model was developed to account for morphological variations among the adult population. A total of 84 CT scans were collected, and the subjects were evenly distributed among age groups and both sexes. CT segmentation, landmarking, and mesh morphing were performed to map a template mesh onto the T-spine vertebrae for each sampled subject. Generalized procrustes analysis (GPA), principal component analysis (PCA), and linear regression analysis were then performed to investigate the morphological variations and develop prediction models. A total of 13 statistical models, including 12 T-spine vertebrae and a spinal curvature model, were combined to predict a full T-spine 3D geometry with any combination of age, sex, stature, and body mass index (BMI). A leave-one-out root mean square error (RMSE) analysis was conducted for each node of the mesh predicted by the statistical model for every T-spine vertebra. Most of the RMSEs were less
Lian, LihanBaek, MichelleMa, SunwooJones, MonicaHu, Jingwen
Bilateral knee impacts were conducted on Hybrid III and THOR 5th percentile female anthropomorphic test devices (ATDs), and the results were compared to previously reported female PMHS data. Each ATD was impacted at velocities of 2.5, 3.5, and 4.9 m/s. Knee–thigh–hip (KTH) loading data, obtained either via direct measurement or through exercising a one-dimensional lumped parameter model (LPM), was analyzed for differences in loading characteristics including the maximum force, time to maximum force, loading rate, and loading duration. In general, the Hybrid III had the highest loading rate and maximum force, and the lowest loading duration and time to peak force for each point along KTH. Conversely, the PMHS generally had the lowest loading rate and maximum force, and the highest loading duration and time to peak force for each point along KTH. The force transfer from the knee to the femur was 79.2 ± 0.3% for the Hybrid III 5th female, 82.7 ± 0.4% for the THOR-05F, and 70.6 ± 1.7% for
Carpenter, Randolff L.Berthelson, Parker R.Donlon, John-PaulForman, Jason L.
The objective of this study was to compare head, neck, and chest injury risks between front and rear-seated Hybrid III 50th-percentile male anthropomorphic test devices (ATDs) during matched frontal impacts. Seven vehicles were converted to rear seat test bucks (two sedans, three mid-size SUVs, one subcompact SUV, and one minivan) and then used to perform sled testing with vehicle-specific frontal NCAP acceleration pulses and a rear seated (i.e., second row) Hybrid III 50th male ATD. Matched front seat Hybrid III 50th male ATD data were obtained from the NHTSA Vehicle Crash Test Database for each vehicle. HIC15, Nij, maximum chest acceleration, and maximum chest deflection were compared between the front and rear seat tests, as well as between vehicles with conventional and advanced three-point belt restraint systems in the rear seat. Additionally, a modified version of the NCAP frontal star rating was calculated for the front and rear seat tests. All injury metrics, except for chest
Bianco, Samuel T.Albert, Devon L.Guettler, Allison J.Hardy, Warren N.Kemper, Andrew R.
Oblique motor vehicle crashes can cause serious head or brain injuries due to contact with interior vehicle structures even with the deployment of air bags, as they are not yet completely successful in preventing traumatic brain injury. Rotational head velocity is strongly correlated to the risk of brain injury, and this head motion is potentially related to the tangential friction force developed during contact between the head and air bags. Although crash test dummy head skins are designed with appropriate mass properties and anthropometry to simulate the normal direction impact response of the human head, it is not known whether they accurately represent the frictional properties of human skin during air bag interaction. This study experimentally characterized the dynamic friction coefficient between human/dummy skins and air bag fabrics using a pin-on-disc tribometer. Human skin samples were harvested from five locations (left and right forehead, left and right cheek, and chin
Noll, ScottDong, ShengKang, Yun-SeokBolte, JohnStammen, JasonMoorhouse, Kevin
The materials included in this SAE Information Report are not intended to represent a complete summary of pedestrian safety research activities, but are rather a collection of materials which can be helpful to users of SAE J2782
Human Biomechanics and Simulations Standards Committee
Blind spots created by the driver-side B-pillar impair the ability of the driver to assess their surroundings accurately, significantly contributing to the frequency and severity of vehicular accidents. Vehicle manufacturers cannot readily eliminate the B-pillar due to regulatory guidelines intended to protect vehicular occupants in the event of side collisions and rollover incidents. Furthermore, assistance implements utilized to counteract the adverse effects of blind spots remain ineffective due to technological limitations and optical impediments. This paper introduces mechanisms to quantify the obstruction caused by the B-pillar when the head of the driver is facing forward and turning 90°, typical of an over-the-shoulder blind spot check. It uses the metrics developed to demonstrate the relationship between B-pillar width and the obstruction angle. The paper then creates a methodology to determine the movement required of the driver to eliminate blind spots. Ultimately, this
Baysal, Dilara N.
This user’s manual covers the Hybrid III 6-year-old child test dummy, including changes specified in 49 CFR Part 572, Subpart N in the final rule dated December 9, 2010. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. Appendix A contains guidelines for safe handling of instrumented dummies. Appendix B contains instructions for repairing dummy flesh. Appendix C includes procedures for adjusting the joints throughout the dummy
Dummy Testing and Equipment Committee
This SAE Surface Vehicle Information Report identifies and defines the assembly/disassembly and certification procedures relating to the use of the Hybrid III Large Male Test Dummy
Dummy Testing and Equipment Committee
The reality of the autonomous vehicle in a near future is growing and is expected to induce significant change in the occupant posture with respect to a standard driving posture. The delegated driving would allow sleeping and/or resting in a seat with a reclined posture. However, the data in the literature are rare on the body kinematics, human tolerance, and injury types in such reclined postures. The current study aims at increasing the knowledge in the domain and providing useful data to assess the relevance of the standard injury assessment tools such as anthropomorphic test devices or finite element human body models. For that purpose, a test series of three male Post-Mortem Human Subjects (PMHS) were performed in frontal impact at a 13.4 m/s delta V. The backseat inclination was 58 degrees with respect to the vertical axis. The semi-rigid seat developed by Uriot et al. (2015) was used with a stiffer seat ramp. The restraint was composed of a lap belt equipped with two 3.5 kN load
Baudrit, PascalUriot, JérômeRichard, OlivierDebray, Matthieu
The American population is getting heavier and automated vehicles will accommodate unconventional postures. While studies replicating mid-size and upright fore-aft seated occupants are numerous, experiments with post-mortem human subjects (PMHS) with obese and reclined occupants are sparse. The objective of this study was to compare the kinematics of the head-neck, torso and pelvis, and document injuries and injury patterns in frontal impacts. Six PMHS with a mean body mass index of 38.2 ± 5.3 kg/m2 were equally divided between upright and reclined groups (seatback: 23°, 45°), restrained by a three-point integrated belt, positioned on a semi-rigid seat, and exposed to low and moderate velocities (15, 32 km/h). Data included belt loads, spinal accelerations, kinematics, and injuries from x-rays, computed tomography, and necropsy. At 15 km/h speed, no significant difference in the occupant kinematics and evidence of orthopedic failure was observed. At 32 km/h speed, the primary
Somasundaram, KarthikHumm, John R.Yoganandan, NarayanHauschild, HansDriesslein, KlausPintar, Frank A.
In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated. This study showed that the belted THOR-50M injury responses were higher than the H3-50M by 25%-180%, in all reported ATD responses
O’Connor, ChrisKim, AgnesBarrette, TimDix, Jeff
Some anthropomorphic test devices (ATDs) currently being developed are equipped with abdominal pressure twin sensors (APTS) for the assessment of abdominal injuries and as an indicator of the occurrence of the submarining of an occupant during a crash event. The APTS is comprised of a fluid-filled polyurethane elastomeric bladder which is sealed by an aluminum cap with an implanted pressure transducer. It is integrated into ATD abdomens, and fluid pressure is increased due to the abdomen/bladder compression due to interactions with the seatbelt or other structures. In this article, a nonlinear dynamic finite element (FE) model is constructed of an APTS using LS-PrePost and converted to the LS-Dyna solver input format. The polyurethane bladder and the internal fluid are represented with viscoelastic and isotropic hypoelastic material models, respectively. The aluminum cap was considered a rigid part since it is significantly stiffer than the bladder and the fluid. To characterize the
Yang, PeiyuKatangoori, DivyaNoll, ScottStammen, JasonSuntay, BrianCarlson, MichaelMoorhouse, Kevin
This user's manual covers the Hybrid III 10-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy
Dummy Testing and Equipment Committee
Child occupants have not been studied in far-side impacts as thoroughly as frontal or near side crash modes. The objective is to determine whether the installation method of child restraint systems (CRS) affects far-side crash performance. Twenty far-side impact sled tests were conducted with rear-facing (RF) CRS, forward-facing (FF) CRS, high-back boosters, and belt only. Each was installed on second row captain’s chairs from a recent model year minivan. Common CRS installation errors were tested, including using the seat belt in Emergency Locking Mode (ELR) instead of Automatic Locking Mode (ALR), not attaching the top tether, and using both the lower anchors (LA) and seat belt together. Correct installations were also tested as a baseline comparison. Q3s and Hybrid III 6-year-old (6yo) anthropomorphic test devices (ATDs) were used. Lateral displacements of the CRS and head were examined as well as injury metrics in the head, spine, and torso. For RF CRS, the ELR belt installation
Mansfield, Julie
Injury assessment by using a whole-body pedestrian dummy is one of the ways to investigate pedestrian safety performance of vehicles. The authors’ group has improved the biofidelity of the lower limb and the pelvis of the mid-sized male pedestrian dummy (POLAR III) by modifying those components. This study aims to evaluate the biofidelity of the whole-body response of the modified dummy in full-scale impact tests. The pelvis, the thigh and the leg of POLAR III have been modified in a past study by optimizing their compliance by means of the installation of plastic and rubber parts, which were used for the tests. The generic buck developed for the assessment of pedestrian dummy whole-body impact response and specified in SAE J3093 was used for this study. The buck representing the geometry of a small family car is comprised of six parts: lower bumper, bumper, grille, hood edge, hood and windshield. Tests were performed by conforming to SAE J2782 that specifies test conditions to
Asanuma, HiroyukiBae, HyejinNakamura, HidetoshiGunji, YasuakiNagashima, AkikoMori, Fumie
Enhanced protection against high speed crashes requires more aggressive passive safety countermeasures as compared to what are provided in vehicle structures today. Apart from such collision-related scenarios, high energy explosions, accidentally caused or otherwise, require superior energy-absorbing capability of vehicle body subsystems. A case in point is a passenger vehicle subjected to an underbody blast emanating shock wave energy of military standards. In the current study, assessment of the behavior of a “hollow” countermeasure in the form of a depressed steel false floor panel attached with spot-welds along flanges to a typical predominantly flat floor panel of a car is initially carried out with an explicit LS-DYNA solver. This is followed up with the evaluation of PU (polyurethane) foam-filled and liquid-filled false floor countermeasures. In all cases, a charge is detonated under the false floor subjecting it to a high-energy shock pressure loading. For the case of the
Ramachandra, SankethDeb, AnindyaChou, Clifford
The concept of a seat with an active adjustable seatback stiffness for enhanced safety during a rear impact was published previously. Static testing of a demonstrative prototype is supplemented with repeated dynamic tests at various velocity / acceleration levels. These tests were performed with a Hybrid III Anthropomorphic Test Device (ATD) and demonstrate that the occupant response can be modified by engagement of the device based on the severity of the crash pulse and other factors. A mathematical model for the dynamic response of the seat and the correlated occupant response is in development. Refinement of this technology is complemented by results of the dynamic testing
Warner, WyattWarner, Mark
Airbag and seat belt pretensioner deployment characteristics depend on multiple factors, such as the magnitude, direction, and rate of vehicle deceleration as detected by vehicle crash sensors and evaluated by vehicle-specific algorithms. Frontal airbag and pretensioner deployments are likely to be commanded during frontal crash events with high initial vehicle deceleration typically associated with high vehicle change in velocity (delta-V). However, within a range of moderate changes in vehicle speeds, referred to as the “gray zone,” a vehicle-specific algorithm may or may not command deployment depending on crash pulse parameters and occupant sensing, among other items. Publicly available testing in the moderate-speed range is lacking and would be useful to evaluate the effects of airbag and pretensioner deployment on occupant kinematics and loading. In this study, sled tests were performed using a standard passenger vehicle buck simulating frontal deceleration impact events in a
Sharpe, Sarah S.Grijalva, SandraAllin, LeighCourtney, AmyToney-Bolger, MeganPokutta-Paskaleva, AnastassiaCrosby, Charles L.Carhart, Michael
The National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) Anthropomorphic Test Device (ATD) to improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) ATD. The improvements of the LODC over the HIII-10C include changes in sub-assemblies such as the head and neck, where the LODC head is a redesigned HIII-10C head with pediatric mass properties and the neck has a modified atlanto-occipital joint to replicate observations made from human specimens. The current study focuses on developing a dynamic, nonlinear finite element (FE) model of the LODC ATD head and neck complex. The FE mesh is generated using HyperMesh based on the three-dimensional CAD model. The material data, contact definitions and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The initial and boundary conditions are defined to replicate the neck flexion experimental tests. Next, an inverse method is
Yang, PeiyuKatangoori, Divya ReddyNoll, Scott
An analysis of peak lumbar load data collected from the existing peer-reviewed literature on rear impact crash tests was performed. Values for peak lumbar tension/compression, peak lumbar sagittal forces, and peak lumbar flexion/extension moments were aggregated from each study. The trends in the accumulated data were analyzed as functions of the changes in velocity (delta-Vs) measured during the crash tests. The data were further analyzed to identify differences in trends found across variations in the testing conditions used across studies. These testing conditions included type of anthropometric test device (ATD) used, type of ATD pelvis used, ATD seating position, production year of seat used, type of seat used, and type of seat restraint used. Data were also aggregated from peer-reviewed research quantifying peak lumbar compression in human subjects performing various tasks, including activities of daily living (ADLs), tasks related to sports and exercise, and industrial tasks
Kashdan, AryehUmale, SagarKazmierczak, AlexKasselik, JosephRandles, BryanFurbish, ChristopherWelcher, Judson
This procedure establishes a recommended practice for performing a lumbar flexion test to the Hybrid III 50th male anthropomorphic test device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past, there have not been any tests to evaluate the performance of Hybrid III 50th lumbar
Dummy Testing and Equipment Committee
This SAE Surface Vehicle Information Report identifies and defines the drawings and parts relating to the use of the Hybrid III Large Male Test Dummy
Dummy Testing and Equipment Committee
Tobolski, Sue
Items per page:
1 – 50 of 1330