Browse Topic: Visibility
This document is a tool for the certifying authority, flight deck crew station designers, instrument suppliers, lighting suppliers, and component suppliers. It is an aid to understanding and meeting relevant regulatory requirements, particularly those relating to pilot compartment view (refer to 14 CFR § 25.773[a][2]) and instrument lights (refer to 14 CFR § 25.1381[a][2]) for glare arising from visible electromagnetic radiation.
This document establishes the minimum curriculum requirements for training, practical assessments, and certifying composite structure repair personnel and metalbond repair personnel. It establishes criteria for the certification of personnel requiring appropriate knowledge of the technical principles underlying the composite structural repairs and/or metalbond they perform. Persons certified under this document may be eligible for licensing/certification/qualification by an appropriate authority, in addition to this industry-accepted technician certification. Teaching levels have been assigned to the curriculum to define the knowledge, skills, and abilities graduates will need to make repairs to composite or metalbond structure. Minimum hours of instruction have been provided to ensure adequate coverage of all subject matter, including lecture and laboratory. These minimums may be exceeded and may include an increase in the total number of training hours and/or increase in the teaching
The Science and Technology Directorate's (S&T) National Urban Security Technology Laboratory (NUSTL) recently brought together emergency responders from across the nation to test unmanned aircraft systems (UAS) from the Blue UAS Cleared List. By providing an aerial vantage point, and creating standoff distance between responders and potential threats, UAS can significantly mitigate safety risks to responders by allowing them to assess and monitor incidents remotely. U.S. Department of Homeland Security, Washington, D.C. In November 2024, the U.S. Department of Homeland Security's (DHS) National Urban Security Technology Laboratory (NUSTL) teamed up with Mississippi State University's (MSU) Raspet Flight Research Laboratory, and DAGER Technology LLC, to conduct an assessment on selected models of cybersecure “Blue UAS.” The drones, including models from Ascent AeroSystems, Freefly Systems, Parrot Drones, Skydio, and Teal Drones, are cybersecure and commercially available to assist
Headlight glare remains a persistent problem to the U.S. driving public. Over the past 30 years, vehicle forward lighting and signaling systems have evolved dramatically in terms of styling and lighting technologies used. Importantly, vehicles driven in the U.S. have increased in size during this time as the proportion of pickup trucks and sport-utility vehicles (SUVs) has increased relative to passenger sedans and other lower-height vehicles. Accordingly, estimates of typical driver eye height and the height of lighting and signaling equipment on vehicles from one or two decades ago are unlikely to represent the characteristics of current vehicles in the U.S. automotive market. In the present study we surveyed the most popular vehicles sold in the U.S. and carried out evaluations of the heights of lighting and signaling systems, as well as typical driver eye heights based on male and female drivers. These data may be of use to those interested in understanding how exposure to vehicle
This research explores the use of salt gradient solar ponds (SGSPs) as an environmentally friendly and efficient method for thermal energy storage. The study focuses on the design, construction, and performance evaluation of SGSP systems integrated with reflectors, comparing their effectiveness against conventional SGSP setups without reflectors. Both experimental and numerical methods are employed to thoroughly assess the thermal behavior and energy efficiency of these systems. The findings reveal that the SGSP with reflectors (SGSP-R) achieves significantly higher temperatures across all three zones—Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ)—with recorded temperatures of 40.56°C, 54.2°C, and 63.1°C, respectively. These values represent an increase of 6.33%, 11.12%, and 14.26% over the temperatures observed in the conventional SGSP (SGSP-C). Furthermore, the energy efficiency improvements in the UCZ, NCZ, and LCZ for the SGSP-R are
This research aimed to explore the integration of Virtual reality technology in ergonomically testing automotive interior designs. This objective was aimed at ensuring that such technology could be used to ameliorate user comfort through controlled simulations. Existing ergonomic testing methods are often limited when it comes to recreating actual driving situations and quickly repeating design improvements. VR could be used as a solution because its ergonomically tested simulation can be used to provide users with the real experience of driving. The users can be observed while they experience it and asked for their feedback. For this research, an interactive VR environment imitating a 10-minute-long trip through traffic and changing road conditions was created. It was populated by ten users, concatenated equally in men and women, both aged 20-35, representing approximate demographics of workers in the automotive production industry. Participants of the research were asked to use
Letter from the Guest Editors
This SAE Recommended Practice establishes three alternate methods for describing and evaluating the truck driver's viewing environment: the Target Evaluation, the Polar Plot and the Horizontal Planar Projection. The Target Evaluation describes the field of view volume around a vehicle, allowing for ray projections, or other geometrically accurate simulations, that demonstrate areas visible or non-visible to the driver. The Target Evaluation method may also be conducted manually, with appropriate physical layouts, in lieu of CAD methods. The Polar Plot presents the entire available field of view in an angular format, onto which items of interest may be plotted, whereas the Horizontal Planar Projection presents the field of view at a given elevation chosen for evaluation. These methods are based on the Three Dimensional Reference System described in SAE J182a. This document relates to the driver's exterior visibility environment and was developed for the heavy truck industry (Class B
Sensata Technologies' booth at this year's IAA Transportation tradeshow included two of the company's Precor radar sensors. The PreView STA79 is a heavy-duty vehicle side-monitoring system launched in May 2024 and designed to comply with Europe-wide blind spot monitoring legislation introduced in June 2024. The PreView Sentry 79 is a front- and rear-monitoring system. Both systems operate on the 79-GHz band as the nomenclature suggests. PreView STA79 can cover up to three vehicle zones: a configurable center zone, which can monitor the length of the vehicle, and two further zones that can be independently set to align with individual customer needs. The system offers a 180-degree field of view to eliminate blind spots along the vehicle sides and a built-in measurement unit that will increase the alert level when turning toward an object even when the turn indicator is not used. The system also features trailer mitigation to reduce false positive alerts on the trailer when turning. The
Most humans rely heavily on our visual abilities to function in the world—we are optically oriented. In the broadest sense, “optics” refers to the study of sight and light. At its foundation, Radiant’s business is all about optics: measuring light and the properties of light in relation to the human eye. Photometry is the science of light according to our visual perception. Colorimetry is the science of color: how our eyes interpret different wavelengths of light.
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances. While developing the vehicle architecture in the early design phase, it is customary to specify targets for various ergonomic attributes and arrive at the above-mentioned
Items per page:
50
1 – 50 of 841