Browse Topic: Risk assessments
ABSTRACT Program Executive Office (PEO) Ground Combat Systems (GCS) initiated a Green Belt project in 2007 to develop a risk management process. The Integrated Product Team (IPT) built on Defense Acquisition University (DAU) and Department of Defense (DoD) risk management guidance to create a process for risk analysis, mitigation, and rules for Risk Review Board approval. To automate this process, the IPT eventually created an Army owned, customizable tool (Risk Recon) that matched the PEO GCS process. Risk Recon is used to track risks throughout the acquisition life-cycle. Changing the culture of the PEO has been the most significant challenge. Training and follow-up of risk progress is required to keep the process from becoming stagnant. Partnership with the Original Equipment Manufacturer (OEMs)s is an integral part of all programs and a balance is needed between how the PEO and its OEMs perform risk management and communicate those risks. The software requirements continue to
An innovative new approach is presented that addresses the challenges of design in a constantly changing environment. New solutions that satisfy changing requirements are generated by rapidly reconfiguring ongoing projects and effectively reusing trusted designs. Design is essentially a process of generating knowledge about how to build new systems. Reuse is difficult because this knowledge is amorphous and difficult to access. Hierarchical platform-based engineering is used to structure and categorize this knowledge to make it easily accessible. This approach has three essential components: 1) Hierarchical platform-based design method organizes design projects into a structured library; 2) Transformational systems engineering and concurrent risk assessment are used to capture complex interactions between different CPS elements. These captured interactions help assess reusability and reconfigurability of each element; 3) A new design flow integrates platform-based design methods into
ABSTRACT As the Army focuses to modernize existing ground vehicle fleets and develop new ground vehicle platforms, Program Managers are faced with the challenge of how to best choose a set of technologies for the vehicle that will be mature, be able to be integrated onto the platform, and have the capability to meet defined requirements. To accomplish this, the Tank Automotive Research, Development and Engineering Center (TARDEC) Systems Engineering Group (SEG) has championed the development of a methodology for executing Technical Risk Assessments, one of the components of the overall Risk Assessment. The Technical Risk Assessment activity determines critical technologies, assesses technology maturity, integration and manufacturing readiness, and identifies the associated technical risks of those critical technologies and other technologies of interest. A standardized set of criteria is being utilized by technology subject matter experts to perform the assessments, and has been used
ABSTRACT This paper presents Neya’s efforts in developing autonomous depot assembly and parking behaviors for the Ground Vehicle Systems Center’s (GVSC) Autonomous Ground Re-supply (AGR) program. Convoys are a prime target for the enemy, and therefore GVSC is making efforts to remove the human operators and make them autonomous. However, humans still have to manually drive multiple convoy vehicles to and from their depot parking locations before and after autonomous convoy operations – a time-consuming and laborious process. Neya systems was responsible for the design, development, and testing of the autonomous depot assembly and disassembly behaviors, enabling end-to-end autonomy for convoy operations. Our solution to the problem, including the concept of operations, design, as well as approaches towards testing and validation are described in detail
ABSTRACT The objective of this paper is to provide guidance on what to consider to implement Risk Management within an organization including what practices need to be in place to ensure that leadership will continue to support Risk Management over the long term. It also presents techniques to determine risk severity, risk mitigation methods, ideas for ensuring risk management helps achieve a program’s objectives, and techniques for incorporating risk measurement parameters into a program’s daily execution activities
ABSTRACT What does “exposure to risk” mean? How can acquisition programs get early warning of risk exposure? How is risk exposure related to the root causes and causal mechanisms of adverse program outcomes? How does risk early warning inform risk management? How is risk exposure related to the tradeoffs made between risk versus potential rewards? What technical and management contract data reporting requirements provide evidence of risk exposure, and how can risk leading indicators be computed? How can standard technical and management contract data reporting requirements be used to improve visibility into risk exposure? How can the magnitude of risk exposure be estimated? How does risk early warning complement traditional technical, cost and schedule risk assessment? How do risk early warning methods relate to typical proposal requirements and evaluation criteria? How are risk leading indicators related to system development leading indicators? How can risk early warning methods be
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12
This SAE Recommended Practice presents a method and example results for determining the Automotive Safety Integrity Level (ASIL) for automotive motion control electrical and/or electronic (E/E) systems. The ASIL determination activity is required by ISO 26262-3, and it is intended that the process and results herein are consistent with ISO 26262. The technical focus of this document is on vehicle motion control systems. The scope of this SAE Recommended Practice is limited to collision-related hazards associated with motion control systems. This SAE Recommended Practice focuses on motion control systems since the hazards they can create generally have higher ASIL ratings, as compared to the hazards non-motion control systems can create. Because of this, the Functional Safety Committee decided to give motion control systems a higher priority and focus exclusively on them in this SAE Recommended Practice. ISO 26262 has a wider scope than SAE J2980, covering other functions and accidents
This SAE Aerospace Recommended Practice (ARP) is a tool that organizations may use to evaluate a non-authorized supplier’s processes for the prevention, detection, containment, adjudication, and reporting of suspect counterfeit and counterfeit EEE parts. See 3.1.1 and 3.1.2, which reference the use of AS6081 when performing pre-visit self-assessment and on-site assessment of non-authorized suppliers. This ARP is applicable for all organizations that procure EEE parts from suppliers other than authorized sources (e.g., independent distributors
Vehicle Acoustic Prototyping in the mid to high frequency range is challenging with numerical models only. To overcome this challenge, over the past decade, experimental techniques were developed that allow the engineer to incorporate Test-Based models in their (numerical) simulation as well. Using Virtual Point Technology these Test-Based models serve well to describe, for example, the complex dynamics of the vehicle body Noise Transfer Functions. Here the high modal density and damping characteristics are simply measured on a mule or prototype vehicle and coupled to numerical models of the drivetrain using Dynamic Substructuring. As such accurate predictions and/or risk assessments can be made much earlier in the mid and high frequency range during the vehicle development stage. While test-based models serve well to describe the coupled vehicle dynamics, loads to compute actual vehicle responses are needed as well. Here, so-called Equivalent or Blocked Forces are ideal as they are
Contemporary cutting-edge technologies, such as automated driving brought up vital questions about safety and relativized the safety assurance and acceptance criterion on different aspects. New risk assessment, evaluation, and acceptance justifications are required to assure that the assumptions and benchmarking are made on a reasonable basis. While there are some existing risk evaluation methods, most of them are qualitative in nature and are subjective. Moreover, information such as the safety performance indicators (SPIs) of the sensors, algorithms, and actuators are often not utilized well in these methods. To overcome these limitations, in this paper we propose a risk quantification methodology that uses Bayesian Networks to assess if the residual risk is reasonable under a given scenario. Our scenario-based methodology utilizes the SPIs and uncertainty estimates of sensors, algorithms, and actuators as well as their characteristics to quantify risk using the conditional
Recent researches in autonomous driving mainly consider the uncertainty in perception and prediction modules for safety enhancement. However, obstacles which block the field-of-view (FOV) of sensors could generate blind areas and leaves environmental uncertainty a remaining challenge for autonomous vehicles. Current solutions mainly rely on passive obstacles avoidance in path planning instead of active perception to deal with unexplored high-risky areas. In view of the problem, this paper introduces the concept of information entropy, which quantifies uncertain information in the blind area, into the motion planning module of autonomous vehicles. Based on model predictive control (MPC) scheme, the proposed algorithm can plan collision-free trajectories while actively explore unknown areas to minimize environmental uncertainty. Simulation results under various challenging scenarios demonstrate the improvement in safety and comfort with the proposed perception-aware planning scheme
Letter from the Guest Editors
The research described in this article aims to prepare for vehicles equipped with advanced automation technology. To better understand the effects of reclined and rotated seating positions in the full-frontal impact condition, a simulation study was conducted using a validated generic sled model with interior, deformable seat, realistic package, and restraints. Two state-of-the-art anthropomorphic test devices (ATDs), Hybrid 3 and THOR, and two human body models (HBM), Global Human Body Model (GHBM) and Total HUman Model for Safety (THUMS), were used to evaluate differences in occupant kinematics and injury risk for different seatback recline angles and seating orientations. The effect of a 45-degree reclined versus a 23-degree nominal seatback angle at six different seating orientations, i.e., 11:30, 12, and 12:30 clock-face front-facing and 5:30, 6, and 6:30 clock-face rear-facing, was studied. Two approaches were used to assess injury risk: (1) injury risk based on accelerometer
With the rapid development of connected and autonomous vehicles, more sophisticated automotive systems running large portions of software and implementing a variety of communication interfaces are being developed. The ever-expanding codebase increases the risk for software vulnerabilities, while at the same time the large number of communication interfaces make the systems more susceptible to be targeted by attackers. As such, it is of utmost importance for automotive organizations to identify potential vulnerabilities early and continuously in the development lifecycle in an automated manner. In this paper, we suggest a practical approach for integrating fuzz testing into a Continuous Integration (CI) pipeline for automotive systems. As a first step, we have performed a Threat Analysis and Risk Assessment (TARA) of a general E/E architecture to identify high-risk interfaces and functions. Next, we discuss the strategies for continuous fuzz testing and the technical requirements for
Squeak and Rattle (S&R) noise in automotive vehicle components is a direct measure of vehicle build quality. With the recent advances in electric propulsion technology the cabin interior has become even more quieter, but S&R remains one of the main noise issues inside the cabin. Consumer surveys such as by J D Power shows that instrument panel, floor console and glove box latch mechanism are some of the most prominent sources of vehicle interior noise. The commonly used design for console lid latch consists of latch pawl preloaded against the console bin in closed condition. The goal of design is to optimize the preload such that the latch remains in contact with the bin under all operating conditions. But inadequate design, poor manufacturing quality control and material degradation causes the loss of preload. Hence, S&R noise emerges due to friction or impact between the parts which induces undesirable vibration and noise. It is challenging to design systems free of S&R, but
As the connectivity of vehicles increases rapidly, more vehicles have the capability to communicate with each other. Because Vehicular Ad-hoc NETworks (VANETs) have the characteristics of solid mobility and decentralization, traditional security strategies such as authentication, firewall, and access control are difficult to play an influential role. As a soft security method, trust management can ensure the security attributes of VANETs. However, the rapid growth of newly encountered nodes of the trust management system also increases the requirements for trust establishing mechanisms. Without a proper trust establishment mechanism, the trust value of the newly encountered nodes will deviate significantly from its actual performance, and the trust management system will suffer from newcomer attacks. In this article, we propose a trust establishment mechanism based on the Fuzzy Analytic Hierarchy Process (FAHP), which takes into account the historical trust value of the encountered
Items per page:
50
1 – 50 of 384