Browse Topic: Impact tests

Items (2,322)
With the fast development of computational analysis tools and capacities during the past ten years, complex and substantial computer-aided engineering (CAE) simulations are now economically possible. While the cost of crash tests has risen steadily, the fidelity and complexity, which numerical simulations could address, has multiplied keeping the cost of computational analysis more stable. The fundamental goal of CAE is to achieve significant reduction in the number of physical tests conducted during the product development process. However, validating the CAE model with physical tests is essential to ensure accuracy and reliability. Simulations performed using a validated CAE model could be used to make decisions like airbag deployment or high voltage shutdown without an actual physical test being conducted. This paper discusses validating an electric commercial vehicle CAE model during a side impact thus emphasizing the safety of a high voltage battery system. The critical parameters
Upendran, AnoopKnuth, JosephKrishnappa, GiriPunnaiappan, Arunsankar
PU foam shows a excellent energy absorbing dissipation properties during impact load so it commonly used in car seats, cabin and crash protection system. Specifically, in vehicle seats PU foams play a critical role in protecting occupants during crash scenarios by absorbing energy, distributing forces, and improving seatbelt performance, additionally providing countermeasures for head impact protection. The movement of the seat and the direction of the force during crash testing are highly unpredictable. The material behaviour of PU foam is captured using an isotropic, hyper-elasticity-based constitutive model available in LS-DYNA through MAT_083. This model is designed to take into account the foam's compressibility, sensitivity to strain rates, low Poisson's ratio, and hysteresis. The characterization of a PU foam with a nominal density of 65 kg/m3 was performed using quasi-static compressive testing of 0.01/s and dynamic compressive testing of 1/s,13/s, 120/s, as well as a quasi
Gaurav, Ashish KumarKrishnamoorthy, KunjuVaratharajan, Senthilkumaran
Commercial vehicle sector (especially trucks) has a major role in economic growth of a nation. With improving infrastructure, increasing number of trucks on roads, accidents are also increasing. As per RASSI (Road Accident Sampling System India) FY2016-23 database, commercial vehicles are involved in 42% of total accidents on Indian roads. Involvement of trucks (N2 & N3) is over 25% of total accidents. Amongst all accident scenarios of N2 &N3, frontal impacts are the most frequent (26%) and causing severe occupant injuries. Today, truck safety development for frontal impact is based on passive safety regulations (viz. front pendulum – AIS029) and basic safety features like seatbelts. In any truck accident, it is challenging rather impossible to manage comprehensive safety only with passive safety systems due to size and weight. Accident prevention becomes imperative in truck safety development due to extremely high energy involved in front impact scenarios. The paper presents a unique
Joshi, Kedar ShrikantGadekar, GaneshDate, AtulKoralla, Sivaprasad
With increased deterioration of road conditions worldwide, automotive OEMs face significant challenges in ensuring the durability of structural components. The tyre being the primary point of contact with the road is expected to endure harshest of impacts while maintaining the other performance functions such as Ride & Handling, Rolling resistance, Braking. Thus, it is considered as the most challenging component in terms of design optimization for durability. The current development method relies on physical testing of initial samples, followed by iterative construction changes to meet durability requirements, often giving trade-off in Ride & Handling performance. To overcome these challenges, a frugal simulation-based methodology has been developed for predicting tyre curb impact durability before vehicle-level testing so that corrective action can be taken during the design stage.
Sundaramoorthy, RagasruobanLenka, Visweswara
Real-world crashes involve diverse occupants, but traditional restraint systems are designed for a limited range of body types considering the applicable regulations and protocols. While conventional restraints are effective for homogeneous occupant profiles, these systems often underperform in real-world scenarios with diverse demographics, including variations in age, gender, and body morphology. This study addresses this critical gap by evaluating adaptive restraint systems aligned with the forthcoming EURO NCAP 2026 protocols, which emphasize real-world crash diversity and occupant type. Through digital studies of frontal impact scenarios, we analyze biomechanical responses using adaptive restraints across varied occupant demographics, focusing on head and chest injury (e.g., Chest Compression Criterion [CC]). This study used a Design of Experiments (DOE) approach to optimize occupant protection by timing the actuating of these adaptive systems. The results indicate that activating
satija, AnshulSuryawanshi, YuvrajChavan, AvinashRao, Guruprakash
The objective of the present study is to examine trends in occupant kinematics and injuries during side impact tests carried out on vehicle models over the period of time. Head, shoulder, torso, spine, and pelvis kinematic responses are analysed for driver dummy in high speed side impacts for vehicle model years, MY2016-2024. Side impact test data from the tests conducted at The Automotive Research Association of India (ARAI) is examined for MY2016-2024. The test procedure is as specified in AIS099 or UNECE R95, wherein a 950kg moving deformable barrier (MDB) impacts the side of stationary vehicle at 50km/hr. An Instrumented 50th percentile male EUROSID-2 Anthropomorphic Test Device is positioned in the driver seat on the impacting side. Occupant kinematic data, including head accelerations, Head Injury Criterion (HIC15), Torso deflections at thorax and abdominal ribs, spine accelerations at T12 vertebra, and pelvis accelerations are evaluated and compared. The “peak” and “time to
Mishra, SatishBorse, TanmayKulkarni, DileepMahajan, Rahul
The Ministry of Road Transport and Highways (MoRTH), Government of India, has established BHARAT NCAP to provide a fair, meaningful, and objective assessment of the crash safety performance of cars. This program evaluates vehicles across three key areas, including Child Occupant Protection (COP). A critical component of the COP assessment involves dynamic testing using Q-series child dummies representing a 1½-year-old (Q1.5) and a 3-year-old child (Q3). As per the BHARAT NCAP protocol, these dummies are placed in the second-row outboard seating position within Child Restraint Systems (CRSs) and subjected to two primary dynamic impact tests: Offset Deformable Barrier (ODB) conducted at a speed of 64 km/hr. and Mobile Deformable Barrier (MDB) Side Impact tests conducted at 50 km/hr. The dynamic assessment of these child dummies is primarily focused on the head, neck, and chest regions to evaluate the effectiveness of the CRSs and overall vehicle safety system in protecting young
Khopekar, MariaLakshminarayana, ApoorvaMohan, PradeepKurkuri, Mahendra
Curtain airbags are the most effective protective systems to prevent severe/fatal head injuries in side collisions with narrow objects such as poles or trees. One of the important parameters of curtain airbags is the inflated zone i.e. the coverage area of the airbag, which decides the extent of head protection for occupants with different anthropometries in different seating rows. EuroNCAP first introduced the concept of Head Protection Device Assessment (HPDA) in 2015., In addition to the performance requirements in the dynamic test, EuroNCAP started assessing the deployed curtain airbag/s for its area coverage and verification of inflated zones for various anthropometries over occupant rows. In India, there is now a near total adoption of curtain airbags as standard fitment by the OEMs. Further, introduction of Bharat NCAP (BNCAP), a Perpendicular Pole Side Impact test is conducted for assessing the effectiveness of curtain airbags in a dynamic test, but currently, does not perform
Jaju, DivyanKulkarni, DileepMahajan, Rahul
Automotive OEMs can derive significant cost savings by reducing the quantity of physical crash tests and thereby accelerate product development, when they follow the Euro NCAP Virtual Testing procedure. It helps in optimizing the overall vehicle development process via more efficient simulations, as well as facilitates in early adoption of new safety regulations. In this pursuit, companies must comply with strict Euro NCAP requirements, which includes transparency and traceability of virtual tests. A major challenge therein is model validation – which requires highly precise detailing and extensive use of data for accurately replicating real physics of the problem. Deploying these workflows into an existing simulation process can be a complicated and time-consuming task, particularly when integrating various simulation and testing methods. A powerful simulation process and data management system (SPDM) can thereby assist companies to automate their entire simulation process, ensures
Thiele, MarkoSharma, Harsh
Occupant Safety systems are usually developed using anthropomorphic test devices (ATDs), such as the Hybrid III, THOR-50M, ES-2, and WorldSID. However, in compliance with NCAP and regulatory guidelines, these ATDs are designed for specific crash scenarios, typically frontal and side impacts involving upright occupants. As vehicles evolve (e.g., autonomous layouts, diverse occupant populations), ATDs are proving increasingly inadequate for capturing real-world injury mechanisms. This has led to the adoption of computational Human Body Models (HBMs), such as the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS), which offer superior anatomical fidelity, variable anthropometry, active muscle behaviour modelling, and improved postural flexibility. HBMs can predict internal injuries that ATDs cannot, making them valuable tools for future vehicle safety development. This study uses a sled CAE simulation environment to analyze the kinematics of the HBMs
Raj, PavanRao, GuruprakashPendurthi, Chaitanya SagarNehe, VaibhavChavan, Avinash
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
This study is conducted to analyse the significance of the Bharat NCAP crash test protocol in real road crashes in India. Accident data from on-the-spot investigation (Road Accident Sampling System India) and Government of India’s, Ministry of Road Transport and Highways official road accident statistics 2023 is used together to understand the real road accidents in India. The current Bharat NCAP crash test protocol is compared against the real road accidents and the frequency of the same in discussed in this paper. A seven-step calculation method is developed to analyse real accidents together with existing crash tests by using similar crash characteristics like impact area, overlap and direction of force. This method makes the real accident comparable with the corresponding crash test by calculating the impact energy during the collision between the real accident and a collision under crash test conditions. Relevant parameters in real accidents that significantly influence the test
Moennich, JoergLich, ThomasKumaresh, Girikumar
Human Body Models (HBMs) are increasingly recognized by consumer protection agencies as essential tools for evaluating vehicle safety, complementing the use of traditional Anthropomorphic Test Devices (ATDs). However, HBMs are new for product development and pose challenges in connecting them with the ATDs. These challenges can be overcome if a link is established for the injury metrics between HBMs and ATDs. The study aims to develop a chest deflection mapping function between the HBM Connect® 50M and three ATD models: Hybrid III 50M, THOR-50M and World SID 50M for thoracic assessment in impact scenarios. Several frontal and lateral thorax loading scenarios were selected from the HBM4VT qualification catalogue (Euro NCAP technical bulletin CP 550), including hub impacts and table-top seatbelt loading tests. Matched-pair LS-DYNA simulations were conducted with HBM Connect® 50M and the ATD models recording peak chest deflections for developing the mapping function. In the HBM Connect
Velmurugan, GopinathKumar, DevendraR, Udhaya KumarKulavi, PradeepSoni, AnuragTejero de la Piedra, RicardoFu, StephenLong, TengArora, TusharJagadish, RenukaShah, Chirag
This paper investigates the current state of road safety for female occupants in India, with a particular focus on road accident statistics and the gaps in safety regulations. According to the Road Accident in India 2022 report by the Ministry of Road Transport and Highways (MoRTH), female occupants constitute 16% of passenger car fatalities. Using a extensive dataset of 596 passenger car accidents involving at least one female occupant from the Road Accident Sampling System – India (RASSI), this study evalu the severity and patterns of injuries sustained by female drivers and passengers. The analysis identifies critical shortcomings in existing safety measures, particularly in addressing anatomical differences and male-centric safety designs. Gender-sorted injury trends reveal heightened vulnerabilities for women in crash scenarios. Current regulatory frameworks bank on crash test dummies developed on average male anthropometry, neglecting female-specific biomechanical needs in
Ayyagari, ChandrashekharG, Santhosh KumarRao, Guruprakash
High energy impact testing using free fall mass is a crucial method for evaluating the structural integrity, and safety performance of automotive components subjected to sudden impact forces. This study focuses on assessing critical parts such as wheel rims, suspension knuckles, commonly exposed to unintentional impacts during vehicle operation, maintenance, or collisions. The test involves dropping a standardized mass from predetermined heights onto the component to simulate real-world impact scenarios. Key performance indicators include deformation, crack propagation, fracture resistance, and energy absorption capacity. Wheel rims and knuckles are evaluated for their ability to maintain structural integrity under localized impact without compromising vehicle handling or safety. Seats and related interior structures are tested to ensure occupant protection during crash-like events. Other components, such as brackets, mounts, or housings, are included based on functional criticality
Roham, PrasadBagade, MohanSinnarkar, NitinPawar, Prashant RShinde, Vikram
This study introduces a novel in-cabin health monitoring system leveraging Ultra-Wideband (UWB) radar technology for real-time, contactless detection of occupants' vital signs within automotive environments. By capturing micro-movements associated with cardiac and respiratory activities, the system enables continuous monitoring without physical contact, addressing the need for unobtrusive vehicle health assessment. The system architecture integrates edge computing capabilities within the vehicle's head unit, facilitating immediate data processing and reducing latency. Processed data is securely transmitted via HTTPS to a cloud-based backend through an API Gateway, which orchestrates data validation and routing to a machine learning pipeline. This pipeline employs supervised classifiers, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) to analyze features such as temporal heartbeat variability, respiration rate stability, and heart rate. Empirical
Singh, SamagraPandya, KavitaJituri, Keerti
Severe rear-impact collisions can cause significant intrusion into the occupant compartment when the structural integrity of the rear survival space is insufficient. Intrusion patterns are influenced by impact configuration—underride, in-line, or override—with underride collisions channeling forces below the beltline through the rear wheels as a primary load path. This force concentration rapidly propels the rear seat-pan forward, contacting the rearward-rotating front seatback. The resulting bottoming-out phenomenon produces a forward impulse that amplifies loading on the front occupant’s upper torso, increasing the risk of thoracic injury even when the head is properly supported by the head restraint. This study analyzes a real-world rear-impact collision that resulted in fatal thoracic injuries to the driver, attributed to the interaction between the driver’s seatback and the forward-moving rear seat pan. A vehicle-to-vehicle crash test was conducted to replicate similar intrusion
Thorbole, Chandrashekhar
Crash test plays a very crucial role in determining the passenger safety along with driver safety in most modern vehicles. This has become a prominent factor for many buyers to choose a safe car. During crash test, many components tend to fail. Amongst them, the major safety critical component which hampers the drivability of a vehicle is Wheel and Tyre Assembly. With the introduction of low aspect tyres, the failure rate of these assemblies has increased. A very high importance is given to ensure these parts withstand the subject load as it is directly related to function of vehicle. Many methods are available to test the Wheel and Tyre assembly to ensure they pass the crash criteria. We have developed a novel test method which can simulate the crash pattern in the rig/bench level. The method employs a mechanical actuator which can be operated at designated load application to ensure the assembly undergoes the anticipated failure. The process is repeated with different types of
Medaboyina, HarshaVardhanSingh, Ram KrishnanSundaram, RaghupathiJithendhar, Ashokan
Rear-facing infant seats that are positioned behind front outboard vehicle seats are at risk of being compromised by the rearward yielding of occupied front seat seatbacks during rear-impact collisions. This movement can cause the plastic shell of the infant seat to collapse and deform, increasing the risk of head injuries to the infant. Current designs of rear-facing infant seats typically do not consider the loading effects from the front seatback during rear-impact situations, which results in weak and collapsible shell structures. Moreover, regulatory compliance tests, such as FMVSS 213, do not include assessments of rear-facing infant seats under realistic rear-impact conditions. as the bench used for the regulatory test lacks realistic vehicle interior components. This study emphasizes the need for revised testing methodologies that employ sled tests with realistic seatback intrusion conditions to facilitate the development of improved infant seat designs. Research shows that
Thorbole, Chandrashekhar
The addition of far-side occupants evaluation conditions in C-NCAP2024 version is an important consideration in the development of passive safety in vehicles. This article conducts analysis and research on key points such as test conditions, test results, and influencing factors. Firstly, introduce the test conditions, methods, and protection evaluation of far-side occupants. Secondly, analyze the distribution of factors such as airbag type, armrest height, test waveform, head offset, and dummy damage in the test data. Finally, analyze the influence of five factors, including airbag type, armrest height, test waveform, test conditions, and belt pre-tightening, on the test results. Analysis has found that the WorldSID 50th dummy’s lower neck MX is prone to exceeding high performance limits, compared to single chamber and double chamber airbags, three chamber airbags provide better protection for far-side occupants; For loading waveforms, the probability of the head being in the orange
He, YonglongGu, HaimingGuo, XiaotianWang, Jingchen
In the demanding field of automotive crash testing, imaging systems face a dual challenge: They must survive extreme forces while delivering precise, distortion-free footage for post-test analysis. High-speed cameras, often priced in the tens of thousands of dollars, are essential for documenting the dynamics of impact. But the performance of these systems depends heavily on the optics in front of them.
Perception radar company Arbe was at IAA Mobility in Munich this year to press the case that customers can and should trust automated vehicles. One reason is the global trend of stricter regulations from the NHTSA, Euro NCAP, and in China, which now require automated vehicles to safely meet demanding use cases that are not covered by current sensors, according to Arbe co-founder and CTO Noam Arkind. Arkind told SAE Media that one such category is detecting vulnerable road users (VRU) in poor weather and lighting conditions. “We know from recent tests that a lot of Chinese cars, for example, failed VRU detections in the dark,” he said. “Camera alone doesn't really have reliable pedestrian detection in a dark situation. Radar is a great sensor. It's very sensitive. It's not dependent on weather conditions or lighting conditions, but it's noisy, it's low resolution, and it's hard to use.”
Blanco, Sebastian
This study aims at examining the effect of tool rotational speed on the microstructural and mechanical properties of friction stir welded joints of AA6061 aluminum alloy, both pre- and post-heat treatment. The quality of the joints was assessed initially through tensile, hardness, and charpy impact tests, as well as microscopic observations. During the second stage, solid solution heat treatments were conducted at 535°C, followed by aging on additional specimens welded at identical speeds. The latter underwent hardness tensile tests and microscopic examinations. A comprehensive assessment of the outcomes from various tests validated the influence of metallurgical phenomena, including recrystallization, precipitation, and structural defects on overall resistance. The results showed an improvement in strength, ductility, and impact energy was observed in the case of welding at high rotation speed (1400 rpm). At the same speed, ductility almost doubled after post-weld heat treatment
Bouchelouche, FatimaDebih, AliOuakdi, Elhadj
This SAE Recommended Practice defines the minimum performance specifications for sensors used within anthropomorphic test devices (ATDs) when performing impact tests per SAE J211. It is intended that any agency proposing to conduct tests in accordance with SAE J211 shall be able to demonstrate that the transducers they use would meet the performance requirements specified in this document.
Safety Test Instrumentation Standards Committee
This study presents an analysis of 364 motorcycle helmet impact tests, including standard certified full-face, open-face, and half-helmets, as well as non-certified (novelty) helmet designs. Two advanced motorcycle helmet designs that incorporate technologies intended to mitigate the risk of rotational brain injuries (rTBI) were included in this study. Results were compared to 80 unprotected tests using an instrumented 50th percentile Hybrid III head form and neck at impact speeds ranging from 6 to 18 m/s (13 to 40 mph). Results show that, on average, the Head Injury Criterion (HIC) was reduced by 92 percent across certified helmets, compared to the unhelmeted condition, indicating substantial protection against focal head and brain injuries. However, findings indicate that standard motorcycle helmets increase the risk of AIS 2 to 5 rotational brain injuries (rTBI) by an average of 30 percent compared to the unprotected condition, due to the increased rotational inertia generated by
Lloyd, John
Researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) previously conducted a full-scale crash test of a Fokker F28 MK1000 aircraft to study occupant injury risks. The goal of the current study was to investigate the injury predictions of the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS) occupant models in the tested aircraft crash condition and explore possible utilization of both human body models (HBMs) in this context. Eight crash conditions were simulated utilizing each of the models. The HBMs were positioned in two postures, a neutral upright posture with hands resting on the legs and feet contacting the floor and a braced posture with head and hand contact with the forward seat back. Head and neck injury metrics and lumbar vertebra axial force were calculated and compared for all simulations. Both HBMs reported similar kinematic responses in the simulated impact conditions. However, the GHBMC
Jones, NathanielPutnam, JacobUntaroiu, Costin Daniel
Current voluntary standards for wheelchair crashworthiness only test under frontal and rear impact conditions. To help provide an equitable level of safety for occupants seated in wheelchairs under side impact, we developed a sled test procedure simulating nearside impact loading using a fixed staggered loading wall. Publicly available side impact crash data from vehicles that could be modified for wheelchair use were analyzed to specify a relevant crash pulse. Finite element modeling was used to approximate the side impact loading of a wheelchair during an FMVSS No. 214 due to vehicle intrusion. Validation sled tests were conducted using commercial manual and power wheelchairs and a surrogate wheelchair base fixture. Test procedures include methods to position the wheelchair to provide consistent loading for wheelchairs of different dimensions. The fixture and procedures can be used to evaluate the integrity of wheelchairs under side impact loading conditions.
Boyle, KyleHu, JingwenManary, MiriamOrton, Nichole R.Klinich, Kathleen D.
Composite materials are increasingly utilized in industries such as automotive and aerospace due to their lightweight nature and high strength-to-weight ratio. Understanding how strain rate affects the mechanical and crashworthiness properties of CFRP composites is essential for accurate impact simulations and improved safety performance. This study examines the strain rate sensitivity of CFRP composites through mechanical testing and finite element analysis (FEA). Experimental results confirm that compressive strength increases by 100%–200% under dynamic loading, while stiffness decreases by up to 22% at a strain rate of 50 s−1, consistent with trends observed in previous studies. A sled test simulation using LS-Dyna demonstrated that the CFRP crash box sustained an average strain rate of 46.5 s−1, aligning with realistic impact conditions. Incorporating strain rate–dependent material properties into the FEA model significantly improved correlation with experimental crashworthiness
Badri, HesamJayasree, Nithin AmirthLoukodimou, VasilikiOmairey, SadikBradbury, AidanLidgett, MarkPage, ChrisKazilas, Mihalis
Electric vehicles (EVs) differ from internal combustion engine (ICE) vehicles in that they lack a conventional engine and feature an electric drive unit, leading to distinct dynamic behaviours in the powertrain. Additionally, the arrangement of auxiliary components in EVs often differs from that in traditional ICE vehicles, which can sometimes significantly impact safety ratings. This paper examines a case study of a critical failure during a crash test, where displacement of an engine mount arm caused substantial structural intrusion and reduced the vehicle’s safety rating. To address this issue and enhance crashworthiness, a “crash plate” was designed and integrated into the mount system. This solution effectively constrained the mount arm’s movement during impact, preventing the intrusion observed in previous tests. The paper provides a detailed analysis of the crash plate’s dimensions and its relationship to the engine mount, demonstrating its potential for broader application in
Hazra, SandipKhan, ArkadipMohare, Gourishkumar
The New Car Assessment Program (e.g., US NCAP and EuroNCAP) frontal crash tests are an essential part of vehicle safety evaluations, which are mandatory for the certification of civil means of transport prior to normal road exploitation. The presented research is focused on the behavior of a tubular low-entry bus frame during a frontal impact test at speeds of 32 and 56 km/h, perpendicular to a rigid wall surface. The deformation zones in the bus front and roof parts were estimated using Ansys LS-DYNA and considered such factors as the additional mass (1630 kg) of electric batteries following the replacement of a diesel engine with an electric one. This caused stabilization of the electric bus body along the transverse axis, with deviations decreased by 19.9%. Speed drop from 56 to 32 km/h showed a reduction of the front window sill deformations from 172 to 132 mm, and provided a twofold margin (159.4 m/s2) according to the 30g ThAC criterion of R80. This leads to the conclusion about
Holenko, KostyantynDykha, AleksandrKoda, EugeniuszKernytskyy, IvanRoyko, YuriyHorbay, OrestBerezovetska, OksanaRys, VasylHumeniuk, RuslanBerezovetskyi, SerhiiChalecki, Marek
The rapid growth of electric vehicles (EVs) has led to a significant increase in vehicle mass due to the integration of large and heavy battery systems. This increase in mass has raised concerns about collision energy and the associated risks, particularly in high-speed impacts. As a consequence, crashworthiness evaluations, especially front-impact regulations, have become increasingly stringent. Crash speed between the vehicle and the Mobile Progressive Deformable Barrier (MPDB) is increasing, reflecting the growing emphasis on safety in the automotive industry. Moreover, a new frontal pole crash scenario is under consideration for future regulatory standards, highlighting the continuous evolution of crash testing protocols. To ensure occupant protection and battery safety, manufacturers have traditionally used Hot Blow Forming technology for producing closed-loop dash lower cross member components. However, this process is both costly and energy-intensive, necessitating more
Lee, JongminKim, DonghyunJang, MinhoKim, GeunhoSeongho, YooKim, Kyu-Rae
Real-world data show that abdominal loading due to a poor pelvis-belt restraint interaction is one of the primary causes of injury in belted rear-seat occupants, highlighting the importance of being able to assess it in crash tests. This study analyzes the phenomenon of submarining using video, time histories, and statistical analysis of data from a Hybrid III 5th female dummy seated in the rear seat of passenger vehicles in moderate overlap frontal crash tests. This study also proposes different metrics that can be used for detecting submarining in full-scale crash tests. The results show that apart from the high-speed videos, when comparing time-series graphs of various metrics, using a combination of iliac and lap belt loads was the most reliable method for detecting submarining. Five metrics from the dynamic sensors (the maximum iliac moment, maximum iliac force drop in 1 ms, time for 80% drop from peak iliac force, maximum pelvis rotation, and lumbar shear force) were all
Jagtap, Sushant RJermakian, Jessica SEdwards, Marcy A
The proliferation of the electric vehicle (EVs) in the US market led to an increase in the average vehicle weight due to the assembly of the larger high-voltage (HV) batteries. To comply with this weight increase and to meet stringent US regulations and Consumer Ratings requirements, Vehicle front-end rigidity (stiffness) has increased substantially. This increased stiffness in the larger vehicles (Large EV pickups/SUVs) may have a significant impact during collision with smaller vehicles. To address this issue, it is necessary to consider adopting a vehicle compatibility test like Euro NCAP MPDB (European New Car Assessment Program Moving Progressive Deformable Barrier) for the North American market as well. This study examines the influence of mass across vehicle classes and compares the structural variations for each impact class. The Euro NCAP MPDB (European New Car Assessment Program Moving Progressive Deformable Barrier) protocol referenced for this analysis. Our evaluation
Kusnoorkar, HarshaKoraddi, BasavarajGuerrero, MichaelSripada, Venu VinodTangirala, Ravi
As Automatic Emergency Braking (AEB) systems become standard equipment in more light duty vehicles, the ability to evaluate these systems efficiently is becoming critical to regulatory agencies and manufacturers. A key driver of the practicality of evaluating these systems’ performance is the potential collision between the subject vehicle and test target. AEB performance can depend on vehicle-to-vehicle closing speeds, crash scenarios, and nuanced differences between various situational and environmental factors. Consequently, high speed impacts that may occur while evaluating the performance of an AEB system, as a result of partial or incomplete mitigation by an AEB activation, can cause significant damage to both the test vehicle and equipment, which may be impractical. For tests in which impact with the test target is not acceptable, or as a means of increasing test count, an alternative test termination methodology may be used. One such method constitutes the application of a late
Kuykendal, MichelleEaster, CaseyKoszegi, GiacomoAlexander, RossParadiso, MarcScally, Sean
The National Highway Traffic Safety Administration (NHTSA) published an Advance Notice of Proposed Rulemaking (ANPRM) to update the Federal Motor Vehicle Safety Standard (FMVSS) 207. Part of the ANPRM is to assess the merit of conducting quasi static body block seat pull tests and conducting FMVSS 301 rear crash tests at 80 km/h or higher with a 95th percentile ATD lap-shoulder belted in the front seats and limiting seatback deflection to 15 to 25 degrees. Prior to updating regulations, it is important to understand the seating design history and implications. This study was conducted to provide a historical background on seat design and performance using literature and test data. One objective was to first define the terminology used to describe occupant kinematics in rear crashes. Secondly, seat design evolution is then discussed. Third, test methods and test results were summarized, and fourth, the field performance are synopsized and discussed with respect to 2nd row occupant
Parenteau, ChantalBurnett, RogerDavidson, Russell
Items per page:
1 – 50 of 2322