Browse Topic: Impact tests

Items (2,297)
The behavior of mechanical structures subjected to impacts is a topic of great relevance, with one of its applications being in the context of collisions on urban roads. According to data obtained from the electric bus monitoring platform E-Bus Radar, the fleet of vehicles with this means of propulsion has grown significantly in the last 6 years. Just from 2022 to 2023, the growth was 51%, jumping from 2669 to 4020 registered vehicles in Latin America. In this context, the present study investigated the behavior of the rear structure of an electric bus - EB in a rear-end collision scenario. The study of this region was motivated by the fact that it houses 4 out of the 12 battery packs and other electrical components. The main objective of this work is to evaluate the efficiency of the anti-intrusion and impact absorption mechanism to ensure the integrity of the batteries. Since damage in a collision can release different types of flammable electrolytes and even trigger a fire, posing a
Menino, Bruno G.Sordi, AlexsandroBraida, Claudio A. B.Biondo, FelipeSpengler, FelipeMagnabosco, Guilherme
In the automotive industry, a good vehicle is one that not only provides comfort and adequate on-road performance but also ensures safety for its users. Therefore, various standards have been created to qualify and ensure that cars meet minimum requirements. Assays include frontal and side impact tests. However, physical tests end up being costly if performed frequently, and thus, increasing the correlation between these and computational simulations has been explored in recent years. Within the computational scope, given the nonlinear nature of the functions involved in such studies, the use of metaheuristics (MH) with constraint handling techniques (CHT) has been employed to obtain better results for such scenarios. In this work, three MH algorithms are used: Archimedean Optimization (AOA), Sine-Cosine Algorithm (SCA), and Dung Beetle Optimization (DBO). They are coupled with CHTs of the penalty methods (PM) type in their most basic character, such as Static Penalty Method (SPM
Souza Silva, PauloDezan, Daniel JonasFerreira, Wallace Gusmão
Safety concerns surrounding new energy vehicles have gained increasing national and social attention. Bottom impacts to power batteries are a leading cause of fires and explosions in new energy vehicles. Focusing on the safety of power battery bottom impacts, this article first proposes applying honeycomb panels to the battery’s bottom guard plate. Through the ball impact test, the effect of honeycomb panel surface material thickness on bottom protection is studied, and the mechanism of the honeycomb panel’s ball impact protection is explored. Second, the honeycomb panel and the aluminum alloy plate are structurally compounded to improve the ball impact protection ability. Finally, the optimized composite bottom guard plate is assembled on the lower box of the power battery, and the whole package ball impact experiment is successfully verified. This study serves as a reference for future research on power battery bottom impact protection and the industrial application of bottom guard
Hongguang, HuangYong, ZengWeiquan, Zeng
There is evidence to suggest that males and females respond differently in motor vehicle collisions, making it important to study how both sexes respond to vehicle safety systems. The THOR 5th-percentile female (THOR-05F) anthropomorphic test device (ATD) was developed to represent a small female occupant better than the Hybrid III 5th-percentile female (HIII-05F) ATD. However, there are few studies in which they have been directly compared. Therefore, the objective of this study was to compare the responses of the two ATDs in matched frontal sled tests simulating a realistic driver seat environment. A 7th-generation Toyota Camry driver seat test buck was used with Camry parts (i.e., 3-point belt, modified seat, steering wheel, airbag, and column). The belt was equipped with a 4-kN load limiter and pretensioner. Rigid foam (65 psi) was used to represent the knee bolster. Thirteen tests were conducted using speeds of 30 and 56 kph. Chest bands were used to measure external chest
Boyle, David M.Albert, Devon L.Hardy, Warren N.Kemper, Andrew R.
Vehicles equipped with automated driving systems (ADS) may have non-traditional seating configurations, such as rear-facing for front-row occupants. The objectives of this study are (1) to generate biomechanical corridors from kinematic data obtained from postmortem human subjects (PMHS) sled tests and (2) to assess the biofidelity of the Global Human Body Models Consortium (GHBMC) 50th male (M50-O) v6.0 seated in an upright (25-deg recline) Honda Accord seat with a fixed D-ring (FDR) in a 56 km/h rear-facing frontal impact. A phase optimization technique was applied to mass-normalized PMHS data for generating corridors. After replicating the experimental boundary conditions in the computational finite element (FE) environment, the performance of the rigidized FE seat model obtained was validated using LSTC Hybrid III FE model simulations and comparison with experiments. The most recent National Highway Traffic Safety Administration (NHTSA) Biofidelity Ranking System (BRS) method was
Pradhan, VikramRamachandra, RakshitStammen, JasonKracht, CoreyMoorhouse, KevinBolte, John H.Kang, Yun-Seok
The structural integrity of the steering wheel is important for vehicle operations. It is subjected to various load conditions during the vehicle motion. It thus becomes important to understand various aspects of the same which include stiffness, natural frequency, and regulatory requirements i.e. body block test, head form impact test, etc. Simulation plays an important role in understanding the structural integrity and validation requirements of products at the design stage itself. This paper discusses the modeling and simulation of the steering wheel at both the armature level and the complete steering wheel level. As armature is critical from a structural strength and stiffness point of view, certain simulations like modal analysis are performed first at the armature level, and design iterations were done to achieve the natural frequency target. The list of simulations performed includes modal analysis, bending rigidity, static compression, bending stiffness, body block test and
Rathore, Gopal SinghKumar, AnkitChauhan, Adesh KumarDas, A.P.Sahu, Hemanta Kumar
In the realm of commercial vehicle design, enhancing the durability of bumpers and headlamps is paramount for ensuring safety and reducing maintenance costs. This study explores the development of a lightweight bumper design with optimized resonance frequency to improve the durability of these critical components. The research focuses on innovative design techniques to achieve a balance between weight reduction and structural integrity. The primary objective is to minimize the impact forces transmitted to the bumper and headlamp assemblies during vibrations. By employing finite element analysis (FEA) and experimental validation, the study identifies the optimal resonance frequency that mitigates the risk of resonance-induced damage. Additionally, the study examines the influence of geometric modifications on the bumper’s performance. Various design iterations are analyzed to determine the most effective configuration for enhancing durability while maintaining compliance with industry
Pandey, SudheerGanesan, Balaji
Head injuries from interior impacts during vehicle accidents are a significant cause of fatalities in India. Data from the National Crime Records Bureau (NCRB) for 2023 reveals that approximately 15% of the total 150,000 road fatalities were due to head impacts on vehicle interiors, resulting in about 22,500 deaths. Thus, head impact protection in a car crash is key during the design of vehicle interiors. IS 15223 and ECE-R21 provide specific guidelines for head impact testing of instrument panels and consoles in vehicles to ensure compliance with safety standards and minimize the risk of head injury during collisions. By systematically addressing each aspect of IS 15223 and ECE- R21 in the design, testing, and documentation phases, manufacturers can ensure that console armrests are optimized for safety. This approach not only helps meet regulatory standards but also enhances overall occupant protection in vehicles during collisions. The objective of this paper is to design a console
Malhotra, DeepakVaishnav, SureshSureshkumar Presannakumari, RajasilpiMangal, GautamKeshri, Amit
In order to compare test results obtained from different crash test facilities, standardized coordinate systems need to be defined for crash test dummies, vehicle structures, and laboratory fixtures. In addition, recorded polarities for various transducer outputs need to be defined relative to positive directions of the appropriate coordinate systems. This SAE Information Report describes the standardized sign convention and recorded output polarities for various transducers used in crash testing
Safety Test Instrumentation Standards Committee
ABSTRACT In order to reduce the frequency and severity of warfighter head, neck, and spine injuries associated with military vehicle underbody IED and AVL blasts, crash, and rollover, Hy-Tek Manufacturing Co. Inc. (HMC) has designed, fabricated, tested, and optimized its Vehicle Roof Inflatable Impact Bladder (VRIIB). Comprised of two (2) thin and impermeable airbags separated by semi-rigid force distribution plates; the VRIIB is designed to be mounted on the interior roof panel of military combat vehicles in a deflated state. During IED or AVL detonation, the VRIIB inflates by means of a COTS airbag inflator to provide a significant reduction in the rate at which a warfighter’s head or neck decelerates against the rigid vehicle roof panel. The VRIIB is designed to remain inflated and functional for a protracted period of time after its initial actuation in order to protect vehicle mounted warfighters from follow-on blast related roof impacts, subsequent vehicle rollover and/or vehicle
Middlebrook, DonaldJude, JohnPeck, Jason
ABSTRACT The shapes of Improvised Explosive Devices (IED) used by insurgents in recent conflicts are complex and can take many forms. To model unique shapes that are embedded in the soil, in addition to the actual shape of the High Explosive (HE), adds to the complexity of simulating the mine blast event. By considering an artillery shell as the container, further complicates the analysis because fragmentation of the shell has to be included. Unfortunately, this complex IED is not uncommon and in order to develop protective structures for our soldiers and civilians, finite element techniques are employed. The work presented is an investigation of how to do this modeling using the explicit non-linear transient finite element software, the IMPETUS Afea Solver®. The first step is a large sensitivity study of an explosive driven expansion of a simple cylinder and the outcome influence of nine design variables, leading to hundreds of computational hours. The modeling approach chosen for the
Rasico, James G.Newman, Craig A.Jensen, Morten Rikard
ABSTRACT The successful fielding of occupant protection technologies require understanding their behavior and performance under field-like conditions. To achieve this, the Occupant Protection Laboratory (OPL) at Selfridge Air National Guard Base (SANGB) uses a drop tower, called the Sub-System Drop Tower (SSDT), and a vertical accelerator, called the Crew Compartment Under-Body Blast Simulator (CCUBS). These two systems have the capability to deliver specified acceleration profiles to items, such as blast-mitigating seats under test. To gain confidence that the two systems are producing similar testing conditions for a given system, a series of experiments was designed to determine the existence of a correlation between the two systems. A representative seat and an Anthropomorphic Test Device (ATD) were tested under similar acceleration profiles on both systems. Tests were initially conducted without a payload to determine the testing parameters for each system and to determine the
Foster, Craig DRudek, Matthias
ABSTRACT The foundation of the theory of functionally graded plates with simply supported edges, under a Friedlander explosive air-blast, are developed within the classical plate theory (CPT). Within the development of the theory, the two constituent phases, ceramic and metal, vary across the wall thickness according to a prescribed power law. The theory includes the geometrical nonlinearities, the dynamic effects, compressive tensile edge loadings, the damping effects, and thermal effects. The static and dynamic solutions are developed leveraging the use of a stress potential with the Extended-Galerkin method and the Runge-Kutta method. Validations with simpler cases within the specialized literature are shown. The analysis focuses on how to alleviate the effects of large deformations through proper material selection and the proper gradation of the constituent phases or materials
Hause, Terry
ABSTRACT The AirLift is a novel device that enables rapid stabilized extraction of injured personnel from a ground vehicle. When deployed from its pre-installed position as a seat cover, the AirLift rigidizes for stabilizing the occupant’s spine by pressurizing an inflatable panel. After extraction from the vehicle with the occupant stabilized in the seated position, the AirLift can convert to a backboard so that the occupant can be safely transported in the supine position. The inflatable panel was designed and tested to provide stiffness while also being durable and manufacturable at volume. Pressure mapping tests were also performed to demonstrate that the AirLift did not change seat comfort compared to the standard seat. Citation: A. Purekar, G. Hiemenz, P. Gillis, “AirLift: Enabling Blast Protection and Rapid, Stabilized Vehicle Extraction”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020
Purekar, AshishHiemenz, GregoryGillis, Paula
Summary Combat vehicle designers have made great progress in improving crew survivability against large blast mines and improvised explosive devices. Current vehicles are very resistant to hull failure from large blasts, protecting the crew from overpressure and behind armor debris. However, the crew is still vulnerable to shock injuries arising from the blast and its after-effects. One of these injury modes is spinal compression resulting from the shock loading of the crew seat. This can be ameliorated by installing energy-absorbing seats which reduce the intensity of the spinal loading, while spreading it out over a longer time. The key question associated with energy-absorbing seats has to do with the effect of various factors associated with the design on spinal compression and injury. These include the stiffness and stroking distance of the seat’s energy absorption mechanism, the size of the blast, the vehicle shape and mass, and the weight of the seat occupant. All of these
Eridon, James
ABSTRACT Design for structural topology optimization is a method of distributing material within a design domain of prescribed dimensions. This domain is discretized into a large number of elements in which the optimization algorithm removes, adds, or maintains the amount of material. The resulting structure maximizes a prescribed mechanical performance while satisfying functional and geometric constraints. Among different topology optimization algorithms, the hybrid cellular automaton (HCA) method has proven to be efficient and robust in problems involving large, plastic deformations. The HCA method has been used to design energy absorbing structures subject to crash impact. The goal of this investigation is to extend the use of the HCA algorithm to the design of an advanced composite armor (ACA) system subject to a blast load. The ACA model utilized consists of two phases: ceramic and metallic. In this work, the proposed algorithm drives the optimal distribution of a metallic phase
Goetz, John C.Tan, HuadeRenaud, John E.Tovar, Andrés
ABSTRACT A comprehensive analysis of data collected during an evaluation of blast energy–attenuation (EA) seats was conducted to review the performance of commercially available and prototype seat assets. This evaluation included twelve models of seats tested at two separate drop severities with three sizes of anthropomorphic test devices (ATDs) to develop test methodologies and assess the appropriateness of using injury assessment reference values (IARVs) for all occupant sizes
Bosch, KellyHarris, KatrinaClark, DavidScherer, RisaMelotik, Joseph
Full-vehicle, End-to-End Underbody Blast (UB) simulations with LS-DYNA ALE (Arbitrary Lagrange-Eulerian) method have been common practice at the Tank Automotive Research, Development and Engineering Center (TARDEC) for the last several years to support Program Managers in the Army Acquisition and Science & Technology (S&T) Community of military ground vehicles. Although the method has been applied extensively and successfully, the demand for reducing the simulation time has been very high. Very recently a new method, Structured ALE (S-ALE), was developed in LS-DYNA by taking advantage of structured mesh to speed up the calculation time. In this paper several case studies for underbody mine blast simulations were analyzed by both ALE and S-ALE methods. The comparative results show the new method is very promising in improving the simulation time as well as the Massively Parallel Processing (MPP) scalability
Hsieh, ChingVunnam, MadanBhalsod, DilipChen, Hao
ABSTRACT Seatbelt-mounted airbag is a new type of occupant restraint system, in which the airbag is integrated into the seatbelt and hence can be easily and quickly implemented into the current tactical vehicles without significant vehicle structure or interior changes. The objective of this study was to develop, optimize, and demonstrate seatbelt-mounted airbag designs for reducing occupant injury risks in a light tactical vehicle under frontal crashes. A total of 19 sled tests and over 30 FE simulations were performed to find the optimal seatbelt-mounted airbag designs for protecting occupants represented by three sizes of ATDs and two military gear configurations. Various lap-belt-mounted airbag and shoulder-belt-mounted airbag designs were evaluated for driver, front-seat passenger, and rear-seat passenger locations in a tactical vehicle. The test and simulation results showed that the optimized designs substantially reduced the occupant injury risks to the head, neck, and chest
Hu, JingwenOrton, NicholeBoyle, KyleAshok, NikhilKlima, JulieStaniak, CeliaScherer, RisaReed, Matthew
ABSTRACT Modeling and Simulation (M&S) of underbody blast to vehicles can take a significant amount of time, often days to months, to run. This significant run time is due to the need for coupled Eulerian-Lagrangian computational algorithms to be used in order to accurately represent the effect of an underbody blast to a vehicle and its occupants. Several techniques exist which can significantly reduce the time it takes to complete such a simulation without affecting its accuracy, two of which will be emphasized here. These techniques are 2-D to 3-D mapping of the Eulerian domains and Early-Deletion of the Eulerian elements. For detailed vehicle simulations, simulation rates have been demonstrated to be 4-6 times faster along with a theoretical increase in accuracy and a decrease in troubleshooting time
O’Bruba, Joseph
ABSTRACT The objective of this study was to optimize the occupant restraint systems (including both seatbelt and airbag) in a light tactical vehicle under frontal crash conditions through a combination of sled testing and computational modeling. Two iterations of computational modeling and sled testing were performed to find the optimal restraint design solutions for protecting occupants represented by three size of ATDs (namely Hybrid-III 5th percentile female ATD, 50th percentile male ATD, and 95th male ATD) and two military gear configurations, namely improved outer tactical vest (IOTV) and SAW Gunner configuration using a tactical assault panel (TAP). The sled tests with the optimized seatbelt and airbag designs provided significant improvement on the head, neck, chest, and femur injury risks compared to the baseline tests. This study demonstrated the benefit of adding a properly designed airbag and advanced seatbelt to improve the occupant protection in frontal crashes for a light
Hu, JingwenOrton, NicholeChen, CongRupp, Jonathan D.Reed, Matthew P.Gruber, RebekahScherer, Risa
ABSTRACT The CAMEL program focused on force protection and demonstrated the possibility to protect occupants through higher underbelly blast levels than normally or previously observed. This required a holistic vehicle systems engineering approach to mitigate blast injuries that both optimized existing systems as well as developed new technologies. The result was zero injury to all occupants as assessed by 5th, 50th, and 95th percentile encumbered ATDs during survivability blast testing. Twelve full scale objective-level blast tests were performed on over seventy fully-instrumented ATDs without a single lower-extremity injury. The lower limb protection was provided by an isolated floor system. This system was developed from the ground-up and occupant-out during the CAMEL program. This paper chronicles the CAMEL floor system’s creation, design, testing, and development process
Kwiatkowski, KevinWatson, ChristopherKorson, Chantelle
ABSTRACT Southwest Research Institute® (SwRI®), under contract to US Army CCDC-GVSC, went through an extensive design, analysis, manufacturing, and testing project for the development of energy absorbing dampers and lightweight floor systems to provide protection to the warfighter inside vehicles that are exposed to underbelly blasts or similar threats. The dampers have been designed to remain locked during a wide variety of road vibration and shock loads, but to release and absorb energy through elongation, providing protection to occupants when the blast threats are encountered. This range of input criteria was challenging to satisfy in a passive system that is lightweight, relatively inexpensive, easy to install, and effective over a wide range of blast loads and occupant weights (5% through 95%). The SwRI work concentrated on designing two subsystem sizes – the individual dampers themselves in component tests, and ½ scale coupon level tests that include the dampers, floor systems
Mathis, J.Grimm, M.Mullin, S.Burguess, V.
ABSTRACT Through Army SBIR funding, NanoSonic has designed a next-generation multipurpose Spall Protective, Energy Absorbing (SPEA™) HybridSil® material that has the potential to provide vehicle occupants with pioneering combinatorial protection from 1) fragmentation behind-armor debris (BAD), 2) high velocity head / neck impact, and 3) fire during underbody blast, crash, and rollover events. This innovative multilayered ensemble consists of highly flame resistant, energy absorbing polyorganosiloxane foams, molded ultrahigh molecular weight polyethylene panels, and carbon fiber reinforced polymer derived ceramic composites. The technical foundation for this effort was provided through independent 1) MIL-STD-662 FSP ballistic testing with The Ballistics and Explosive Group at Southwest Research Institute (SwRI); 2) FMVSS 201U head impact testing with MGA Research Incorporation; and 3) ASTM E1354 fire resistance testing with the Fire Technology group at SwRI. Fragment simulating
Baranauskas, VinceKlima, Julie
Abstract: An idealized concept of a v-hull vehicle design for blast analysis has been studied in two different commercial software packages and results are compared to one another. The two software packages are different in nature: one code is an Eulerian Computational Fluid Dynamics (CFD) Finite Volume Solver while the other code is a Lagrangian Finite Element Analysis (FEA) Solver with the ability to couple structures to fluids through a special technique called Arbitrary Lagrangian Eulerian (ALE). The simulation models in this paper have been set up for both CFD and FEA using a commercial pre-processing tool to study the effect of an idealized blast on the vehicle configuration: A pressure blast charge has been placed under the center of the vehicle at the symmetry line. The charge is composed of a prescribed pressure and a temperature pulse in a medium with the properties of air. In the CFD solver, an explicit unsteady solver has been chosen for analysis purposes. This was done
Khatib-Shahidi, BijanSmith, Rob E.
ABSTRACT V-shaped hulls for vehicles, to mitigate buried blast loads, are typically formed by bending plate. Such an approach was carried out in fabricating small test articles and testing them with buried-explosive blast load in Southwest Research Institute’s (SwRI) Landmine Test Fixture. During the experiments, detailed time dependent deflections were recorded over a wide area of the test article surface using the Dynamic Deformation Instrumentation System (DDIS). This information allowed detailed comparison with numerical simulations that were performed with LS-DYNA. Though in general there is good agreement on the deflection, in the specific location of the bends in the steel the agreement decreases in the lateral cross section. Computations performed with empirical blast loads developed by SwRI and by more computationally intensive ALE methods in LS-DYNA produced the same results. Computations performed in EPIC showed the same result. The metal plate was then bent numerically so
Walker, James D.Chocron, SidneyMoore, Thomas Z.Bradley, Joseph H.Carpenter, Alexander J.Weiss, CarlGerlach, Charles A.Grosch, Donald J.Grimm, MattBurguess, Victor W.
ABSTRACT The objective of this study is to understand the occupant kinematics and injury risks in a light tactical vehicle under frontal crash conditions using a combination of physical tests and computer simulations. A total of 20 sled tests were conducted in a representative environment to understand occupant kinematics, and quantify the effects from occupant body size (5th/50th/95th), military gear (helmet/vest/varying gear configurations), seatbelt type (5point/3point), and advanced seatbelt features (pre-tensioner/load limiter) on occupant kinematics and injury risks in frontal crashes. These tests have been used to validate a set of finite element (FE) models of occupants, gear, and restraints. Kinematics exhibited often included submarining due to the lack of knee bolster and the added weight from the military gear. Body size, seatbelt type, and advanced belt features also showed significant effects on occupant kinematics
Hu, JingwenWood, LaurenOrton, NicholeChen, CongRupp, JonathanReed, MatthewGruber, RebekahScherer, Risa
ABSTRACT The work presented here comprises preliminary results for calibrating the IMPETUS Afea Hybrid III 50th percentile Male ATD for a blast scenario. The calibration of the ATD model based upon the requirements defined for frontal crash impact are presented followed by a discussion of the blast survivability tests that were performed at General Dynamics Edgefield Test Center in South Carolina. The model setup for the calibration based upon the blast tests are presented which includes a discussion of the seating and blast models. Preliminary numerical results for Lumbar and Lower Tibia forces are compared with the experimental results. The correlation was good and calibration of the remaining critical parameters continues
Jensen, Morten RikardHonaker, MikeBoglaev, Alex
Items per page:
1 – 50 of 2297