Browse Topic: Icing and ice detection

Items (843)
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for the calibration and acceptance of icing wind tunnels to be used in testing of aircraft components and systems and for the development of simulated ice shapes. This document is not directly applicable to air-breathing propulsion test facilities configured for the purposes of engine icing tests, which are covered in AIR6189. This document also does not provide recommended practices for creating Supercooled Large Drop (SLD) or ice crystal conditions, since information on these conditions is not sufficiently mature for a recommended practice document at the time of publication of ARP5905A. Use of facilities as part of an aircraft’s ice protection Certification Plan should be reviewed and accepted by the applicable regulatory agency prior to testing. Following acceptance of a test plan, data generated in these facilities may be submitted to regulatory agencies for use in the certification of aircraft ice
AC-9C Aircraft Icing Technology Committee
Crawler Dozers play a critical role in global construction, mining and industrial sectors, performing essential tasks like pushing the material, grading, leveling and scraping. In the highly competitive dozer market, meeting the growing demand for increased productivity requires strategies to enhance blade capacity and width. Dozer operations involve pushing the material and dozing, where blade capacity significantly influences performance. Factors such as mold board profile, blade height, and width impact the blade capacity which are crucial for productivity in light weight applications such as snow removal and dirt pushing. Blade width is also pivotal for grading and leveling tasks. Traditional blade designs, like straight or fixed U-type blades, constrain operator flexibility, limiting overall productivity. The integration of hydraulic-operated foldable wings on both sides of the blade offers the adaptability to adjust blade capacity which also helps to reduce material spillage
Sahoo, Jyoti PrakashSarma, Neelam Kumar
This SAE Aerospace Standard (AS)/Minimum Operational Performance Specification (MOPS) specifies the minimum performance requirements of remote on-ground ice detection systems (ROGIDS). These systems are ground based. They provide information that indicates whether frozen contamination is present on aircraft surfaces. Section 1 provides information required to understand the need for the ROGIDS, ROGIDS characteristics, and tests that are defined in subsequent sections. It describes typical ROGIDS applications and operational objectives and is the basis for the performance criteria stated in Sections 3 through 5. Section 2 provides reference information, including related documents, definitions, and abbreviations. Section 3 contains general design requirements for the ROGIDS. Section 4 contains the Minimum Operational Performance Requirements for the ROGIDS, which define performance in icing conditions likely to be encountered during ground operations. Section 5 describes environmental
G-12HOT Holdover Time Committee
Ice build-up on aircraft and wind turbines can impact the safety and efficiency of their systems.
Protecting against atmospheric icing conditions is critical for the safety of aircraft during flight. Sensors and probes are often used to indicate the presence of icing conditions, enabling the aircraft to engage their ice protection systems and exit the icing cloud. Supercooled large drop icing conditions, which are defined in Appendix O of 14 CFR Part 25, pose additional aircraft certification challenges and requirements as compared to conventional icing conditions, which are defined in Appendix C of 14 CFR Part 25. For this reason, developing sensors that can not only indicate the presence of ice, but can also differentiate between Appendix O and Appendix C icing conditions, is of particular interest to the aviation industry and to federal agencies. Developing detectors capable of meeting this challenge is the focus of SENS4ICE, a European Union sponsored project. While participating in the SENS4ICE Project, Collins Aerospace has developed an ice detection and differentiation
Hamman, MatthewGelao, GiancarloRidouane, El HassanChabukswar, RohanBotura, Galdemir
Historically, smaller Unmanned Aerial Systems (UAS), such as Class 2 RQ-1B Raven and Class 3 RQ-7Bv2 Shadow, have been restricted to not be approved to fly in icing conditions under the assumption that any ice accretion would cause an unacceptable risk of loss of the aircraft. However, interest exists in better understanding potential icing accretion on UAS to determine if less extreme icing conditions could result in only partial degradation and not total loss of the vehicle for the purpose of expanding approved flight envelopes. Icing accretion can be tested during a flight test, which is considered unacceptable due to lack of controlled conditions and risk to the UAS or in a controlled experiment, by using wind tunnel testing to evaluate a single icing condition. Cryogenic wind tunnel tests, such as those conducted at the National Aeronautical and Space Administration (NASA) Glenn Icing Research Tunnel (IRT), Cleveland, OH, as shown in figures 1 and 2, are prohibitively expensive
Ice prediction capabilities for Unmanned Aerial Systems (UAS) is of growing interest as UAS designs and applications become more diverse. This report summarizes the current state-of-the-art in modeling aircraft icing within a computational framework as well as a recent U.S. Army DEVCOM AvMC effort to evaluate ice prediction models for current use and future integration into the Computational Research and Engineering Acquisition Tools and Environments (CREATE) Air Vehicle (AV) framework. U.S. Army Combat Capabilities Development Command, Redstone Arsenal, Alabama Historically, smaller Unmanned Aerial Systems (UAS), such as Class 2 RQ-1B Raven and Class 3 RQ-7Bv2 Shadow, have been restricted to not be approved to fly in icing conditions under the assumption that any ice accretion would cause an unacceptable risk of loss of the aircraft. However, interest exists in better understanding potential icing accretion on UAS to determine if less extreme icing conditions could result in only
Brake squeal is a common phenomenon across all types of vehicles. It becomes prominent in the absence of other noise sources, as in the case of electric vehicles. Earlier simulation attempts date back to late nineties and early 2000s. Identification of unstable modes of the coupled system of brake rotor and pads, and occasionally some caliper components, was the primary goal. Simulating the rotation of the rotor along with squeezing of the pads was attempted in a multi-body dynamics tools with flexible representation of rotor and pads. Though this gave some insights into the dynamics of stopping mechanism, squeal required capturing the nonlinearities of the contact in a more rigorous sense. Also, efforts were made to capture noise from vibrations using boundary- and finite- element methods [1]. In this attempt at digitalizing a brake dynamometer, the author used a nonlinear implicit solver to mimic the dynamics and transient vibro-acoustic solver to convert transient vibrations to
Kappagantu, Ramana
In-flight atmospheric icing is a severe hazard for propeller-driven unmanned aerial vehicles (UAVs) that can lead to issues ranging from reduced flight performance to unacceptable loss of lift and control. To address this challenge, a physics-based first principles model of an electric UAV propulsion system is developed and identified in varying icing conditions. Specifically, a brushless direct current motor (BLDC) based propeller system, typical for UAVs with a wing span of 1-3 meters, is tested in an icing wind tunnel with three accreted ice shapes of increasing size. The results are analyzed to identify the dynamics of the electrical, mechanical, and aerodynamic subsystems of the propulsion system. Moreover, the parameters of the identified models are presented, making it possible to analyze their sensitivity to ice accretion on the propeller blades. The experiment data analysis shows that the propeller power efficiency is highly sensitive to icing, with a 40% reduction in thrust
Løw-Hansen, BogdanMüller, Nicolas C.Coates, Erlend M.Johansen, Tor ArneHann, Richard
If an Unmanned Aerial Systems (UAS) encounters icing conditions during flight, those conditions might result in degraded aerodynamic performance of the overall UAS. If the UAS is not reacting appropriately, safety critical situations can quickly arise. Thereby, the rotors, respectively the propellers of the UAS are especially susceptible due to the increased airflow through their domain and the corresponding higher impingement rate of supercooled water droplets. In many cases, the UAS cannot be properly operated if the rotors are not fully functional, as they are a vital component. The FFG/BMK funded research and development project “All-weather Drone” is investigating the icing phenomenon on UAS rotors for a 25 kg maximum take-off weight (MTOW) multirotor UAS and evaluating the feasibility of possible technical ice detection and anti-/de-icing solutions. This paper presents results from the investigation carried out at the Rail Tec Arsenal (RTA) icing wind tunnel (IWT) in Vienna
Kozomara, DavidAmon, JakobPuffing, ReinhardNeubauer, ThomasSchweighart, SimonDiebald, StefanRapf, AndreasMoser, RichardBreitfuss, Wolfgang
In-flight icing significantly influences the design of large passenger aircraft. Relevant aspects include sizing of the main aerodynamic surfaces, provision of anti-icing systems, and setting of operational restrictions. Empennages of large passenger aircraft are particularly affected due to the small leading edge radius, and the requirement to generate considerable lift for round out and flare, following an extended period of descent often in icing conditions. This paper describes a CFD-based investigation of the effects of sweep on the aerodynamic performance of a novel forward-swept horizontal stabilizer concept in icing conditions. The concept features an unconventional forward sweep, combined with a high lift leading edge extension (LEX) located within a fuselage induced droplet shadow zone, providing passive protection from icing. In-flight ice accretion was calculated, using Ansys FENSAP-ICE, on 10°, 15° and 20° (low, intermediate, and high) sweep horizontal stabilizers, with
Page, JamesOzcer, IsikZanon, AlessandroDe Gennaro, Michele
This paper is focused on the numerical analysis of the impingement and water catch rate of snow particles on the engine air intake of the Next Generation Civil Tilt Rotor (NGCTR). This NGCTR is developed by Leonardo Helicopters. The collection efficiency and water catch rate for the intake geometry are obtained for the test cases that have been defined for the relevant snow conditions. These conditions are related to the flight envelope of the NGCTR, existing EASA/FAA certification specifications, and the snow characterization. The analyses have been performed for the baseline air intake geometry. A range of particle diameters has been simulated with a particle density equal to the density of ice and with a particle drag relation that disregards the particle shape. Based on the results for the water catch rate on the basic nacelle configuration in snow conditions it is concluded that the ‘cheeks’ of the duct are more susceptible to impingement of larger snow crystals (>75 μm), whereas
Kool, NinaVan der Weide, EdwinSpek, Ferdinandvan der Ven, Harmenvan 't Hoff, Stefan
This paper focuses on the design of the thermoelectric ice protection system (IPS) for the engine air intake of the Next Generation Civil Tiltrotor (NGCTR), a demonstrator under development in Leonardo Helicopters. A specific IPS design strategy for the novel intake configuration is proposed. The main constraint which driven the design strategy is a maximum power of 10.6 kW available for the full intake IPS system. The IPS was designed for safe aircraft operations within the Appendix-C icing envelope. The numerical approach adopted to perform the design and the resulting IPS concept are presented. Calculations of the required IPS heat fluxes revealed that maintaining running wet conditions on the entire intake surface is not feasible due to the limitation to the maximum IPS power demand. Therefore, a de-icing IPS design strategy is proposed. The anti-icing mode is adopted only on the lip region to avoid formation of ice caps whereas de-icing zones are defined within the intake duct
Tormen, DamianoZanon, AlessandroDe Gennaro, Michele
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant. Another series of tests explored cloud MVD
Broeren, AndyLee, SamTsao, Jen-Ching
A research program was conducted to evaluate the effectiveness of icing tunnel hybrid model design. A hybrid design is where the full-scale leading edge of a wing section is maintained only to a certain percentage of the local chord, while the aft section of the model is redesigned into a shortened or truncated planform. An initial study was conducted in 2020 where the ice shape geometries on a full-chord length version of the swept CRM65 wing model were compared to those from the hybrid version of CRM65 that were obtained in the NASA Icing Research Tunnel in 2015. The results were reported in a 2021 paper. For most test conditions, the overall size and shape of the ice shapes compared well. However, the ice shapes from the full-chord model were generally slightly smaller than those from the hybrid model. A follow-on test was conducted in 2022 and obtained ice shapes on both full-chord and hybrid wing models during the same test campaign to eliminate the differences in the tunnel spray
Lee, SamBroeren, Andy
The process for certifying an existing aircraft for flight into known icing is well defined and must follow specific guidelines and meet specific milestones. As UAVs are still a relatively recent development, guidelines for icing flight certification of a UAV have not yet been developed by the FAA, and no UAVs have yet been certified for FIKI under the FAA. As part of a research program, engineers at the Battelle Memorial Institute in Columbus, OH USA worked with partners to integrate its ice protection system, HeatCoatTM, onto an existing UAV platform as a retrofit with the ultimate goal of flying in icing conditions. This research program was funded by the US Government with intent to integrate HeatCoat on the TigerShark-XP UAV. The integration on the TigerShark was demonstrated to present challenges specific to the nature of this UAV that had to be overcome. This research program required simulation of icing accretion using multiple software packages, ground based icing tunnel
Yugulis, KevinChase, DavidKenney, Brian
The paper describes the upgrade and validation of a Cartesian solver able of estimating the mass deposition of super-cooled large droplets (SLD) on aerodynamic surfaces. A decoupled approach is applied in which the air-flow field is first computed by using a RANS method and then passed to an Eulerian solver for obtaining the water-field. Both tools are based on a finite-volume (FV) approach based on locally refined Cartesian meshes and immersed boundaries. The use of semi-empirical models allow to take into account the primary effects due to splashing and bouncing of large droplets on aerodynamic surfaces. Here, we discuss the results of a numerical campaign with the aim of estimating the accuracy of two mass-deposition models on benchmarks from different experimental databases. Besides, for some cases we compare the present results with the ones obtained by using a body-conforming method.
Capizzano, Francescode Rosa, Donato
This paper presents impingement analysis on a nacelle inlet, multibody airfoil, and swept tail under Supercooled Large Droplet (SLD) conditions in icing tunnels. Impingement and collection efficiency calculations are crucial for ice shape and protection analyses. The aerospace icing community selected three cases for simulation, focusing on SLD conditions, which require specific mathematical models for accurate representation. The present authors used a Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD) tool to evaluate pressure coefficients and collection efficiency, comparing them with experimental data. CFD simulations incorporated fully turbulent flow using various turbulence models and Eulerian droplet transport, considering experimental droplet distribution. The results showed acceptable deviations despite SLD simulation challenges and experimental data problems. A secondary conclusion suggests simplifying a 27-bin distribution to a 10-bin distribution to take
Da Silva, GuilhermePio, DiogoRafael, CaioVillela, PedroRezende, SabrinaTeixeira Da Silva, Jayme
Ice accretion on helicopter rotor blades when flying through supercooled droplet clouds can severely affect aerodynamic properties and pose a significant threat to flight safety. In the design phase, manufacturers commonly use 2D or quasi-3D simulations to predict potential ice accretion, which are more economical than fully 3D approaches. However, these methods frequently encounter accuracy issues when predicting the precise amount of ice accretion because the 3D flow field significantly influences droplet trajectories and, as a result, impingement and accreted mass. For this study the Eulerian particle solver of the icing software DICEPS was upgraded from 2D to 3D using second-order schemes, ensuring numerical stability on unstructured mesh configurations. Validation of the 3D modifications was performed by comparing numerical results of the collection efficiency on a sphere with experimental data. Droplet trajectory calculations were then conducted on a NACA0012 rotor in hover
Buchen, PhilippSotomayor-Zakharov, DenisKnop, Inken
In response to safety regulations regarding aircraft icing, Collins Aerospace has developed and tested a new generation of optical ice detectors (OID Lite) intended to discriminate among icing conditions described by Appendix C and Appendix O of 14 CFR Part 25 and Appendix D of Part 33. The OID Lite is a flush-mounted, short-range, polarimetric optical sensor that samples the airstream up to two meters beyond the skin of the aircraft. The intensity and polarization of the backscatter light correlate with bulk properties of the cloud, such as cloud density and phase. Drizzle-sized droplets, mixed within a small droplet cloud, appear as scintillation spikes in the lidar signal when it is processed pulse-by-pulse. Scintillation in the backscatter (in combination with the outside air temperature monitored by another probe) signals the presence of supercooled large droplets (SLD) within the cloud—a capability incorporated into the OID Lite to meet the requirements of Appendix O. Recent
Ray, MarkAnderson, KaareRamthun, Kent
Aircraft icing remains a significant threat to aviation safety. Software that predicts the impingement and ice accretion on full aircraft geometries and aircraft components are in demand and NASA Glenn is committed to produce software that meets this need. One of the key parameters affecting an accurate prediction of iced geometry is the effect of ice roughness on the heat transfer coefficient. While many efforts have been made to implement the roughness in the flow solver, this report takes a correlation for roughness height distribution that is based on experimental measurements and demonstrates how to relate those measurements to an augmentation to the heat transfer coefficient provided by the flow solution. The outcome of this effort was the callibration of defaults for user supplied parameters to this correlation through comparison with 95 large glaze conditions from experiment by adjusting user-supplied parameters in the roughness augmentation equation.
Wright, WilliamRigby, DavidOzoroski, Thomas
During icing wind tunnel experiments, the calibration process of the spray nozzle and aerothermal systems introduces experimental uncertainty that can potentially compromise the reliability of the test results. Therefore, performing sensitivity analysis (SA) or uncertainty quantification (UQ) studies is not only essential to determine the influence of uncertainties on the ice shape and aerodynamic performance but also crucial to identify the most significant icing parameter uncertainty. However, given the wide range of icing envelopes, it is not practical to conduct SA and UQ by experimental method because a lot of evaluations are required for SA and UQ study. In this study, we addressed these challenges by using a deep learning-based reduced-order modeling technique. First, a dataset covering a wide range of icing envelopes was obtained through icing CFD simulations, and then reduced-order modeling was trained on this dataset to build a model that can efficiently predict the ice shape
Kang, Yu-EopYee, Kwanjung
This study presents the results of the ICE GENESIS 2021 Swiss Jura Flight Campaign in a way that is readily usable for ice accretion modelling and aims at improving the description of snow particles for model inputs. 2D images from two OAP probes, namely 2D-S and PIP, have been used to extract 3D shape parameters in the oblate spheroid assumption, as there are the diameter of the sphere of equivalent volume as ellipsoid, sphericity, orthogonal sphericity, and an estimation of bulk density of individual ice crystals through a mass-geometry parametrization. Innovative shape recognition algorithm, based on Convolutional Neural Network, has been used to identify ice crystal shapes based on these images and produce shape-specific mass particle size distributions to describe cloud ice content quantitatively in details. 3D shape descriptors and bulk density have been extracted for all the data collected in cloud environments described in the regulation as icing conditions. They are presented
JAFFEUX, LouisCoutris, PierreSchwarzenboeck, AlfonsDezitter, Fabien
Distinct atmospheric conditions containing supercooled large droplets (SLD) have been identified as cause of severe accidents over the last decades as existing countermeasures even on modern aircraft are not necessarily effective against SLD-ice. Therefore, the detection of such conditions is crucial and required for future transport aircraft certification. However, the reliable detection is a very challenging task. The EU funded Horizon 2020 project SENS4ICE targets this gap with new ice detection approaches and innovative sensor hybridization. The indirect ice detection methodology presented herein is key to this approach and based on the changes of airplane flight characteristics under icing influence. A performance-based approach is chosen detecting an abnormal flight performance throughout the normal operational flight. It is solely based on a priori knowledge about the aircraft characteristic and the current measurable flight state. This paper provides a proof of concept for the
Deiler, ChristophSachs, Falk
Ice and snow accretion on aircraft surfaces imposes operational and safety challenges, severely impacting aerodynamic performance of critical aircraft structures and equipment. For optimized location-based ice sensing and integrated ‘smart’ de-icing systems of the future, microwave resonant-based planar sensors are presented for their high sensitivity and versatility in implementation and integration. Here, a conformal, planar complementary split ring resonator (CSRR) based microwave sensor is presented for robust detection of localized ice and snow accretion. The sensor has a modified thick aluminum-plate design and is coated with epoxy for greater durability. The fabricated sensor operates at a resonant frequency of 1.18 GHz and a resonant amplitude of -33 dB. Monitoring the resonant frequency response of the sensor, the freezing and thawing process of a 0.1 ml droplet of water is monitored, and a 60 MHz downshift is observed for the frozen droplet. Using an artificial snow chamber
Shah, AaryamanNiksan, OmidZarifi, Mohammad H.
The in-flight ice accretion simulations are typically performed using a quasi-steady formulation through a multi-step approach. As the ice grows, the geometry changes, and an adaptation of the fluid volume mesh used by the airflow and droplet-trajectory solver is required. Re-meshing or mesh deformation are generally employed to do that. The geometries formed are often complex ice shapes increasing the difficulty of the re-meshing process, especially in three-dimensional simulations. Consequently, difficulties are encountered when trying to automate the process. Contrary to the usual body-fitted mesh approach, the use of immersed boundary methods (IBMs) allows solving, or greatly reducing, this problem by removing the mesh update, facilitating the global automation of the simulation. In the following paper, an approach to perform the airflow and droplet trajectory calculations for three-dimensional simulations is presented. This framework utilizes only immersed boundary methods. In
Elices Paz, PabloRadenac, EmmanuelPéron, StéphanieBlanchard, GhislainLaurendeau, EricVilledieu, Philippe
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved
Gallia, MariachiaraRausa, AndreaMartuffo, AlessandroGuardone, Alberto
In-flight icing can result in severe aerodynamic performance penalties for unmanned aerial vehicles. It is therefore important to understand to which extent ice will build up on fixed-wing unmanned aerial vehicles wings and empennages, namely rudder and elevator, and how this ice will impact the aerodynamic performance and limits the flight envelope. This work investigates numerically icing effects on wing and empennage over a wide range of icing parameters. This is conducted using the icing CFD code FENSAP-ICE on the Maritime Robotics PX-31 Falk UAV. Therefore, the 2D profiles of these airfoils, which are RG-15 for the wing and SD8020 for rudder and elevator, are investigated. The investigated angles of attack are between –5° and 14° in 0.5° increments. Furthermore, the icing conditions are chosen according to the FAA CS 25 Appendix C for continuous maximum and intermittent maximum icing. A broad range of temperatures, droplet median volumetric diameters, and the corresponding liquid
Lindner, MarkusWallisch, JoachimHann, Richard
When conducting experiments in icing wind tunnels (IWTs), a significant question is to what extent the temperature of the water droplets generated by the spray system has converged to the static air temperature when the droplets impinge on the test object. This is a particularly important issue for large droplets, since the cooling rate of droplets decreases sharply with increasing diameter. In this paper, on the one hand, realistic droplet temperature distributions in the measurement section of the Rail Tec Arsenal IWT (located in Vienna) are computed by means of a numerical code which tracks the paths of the droplets from the spraying nozzle to the measurement section and simultaneously calculates their cooling rates. On the other hand, numerical icing simulations are performed to investigate to what extent the deviation of the droplet temperature from static air temperature influences icing and thermal anti-icing processes. For this purpose, three selected cases are analyzed – two
Hassler, WolfgangBreitfuß, WolfgangRapf, AndreasFallast, ArnoMoser, RichardTramposch, AndreasFerschitz, HermannPuffing, ReinhardNeubauer, Thomas
Icing wind tunnel testing was performed as part of the Republic of Korea certification of the Light Civil Helicopter (LCH) for inadvertent flight in icing conditions. The test was aimed at the compliance demonstration of the engine and air intake with dry-media Inlet Barrier Filter (IBF) and was performed with an Arriel 2C2 engine in turbojet configuration. Testing took place at the sea level ambient pressure Large Climatic Wind Tunnel (CWT) at Rail Tec Arsenal (RTA) in Vienna, Austria, by an integrated test team comprising engineers from the Royal Netherlands Aerospace Centre (NLR), Korea Aerospace Industries (KAI), and Safran Helicopter Engines. The test matrix covered the AC29-2C Appendix C 10,000 ft icing envelope, as well as simulated ground icing conditions, considering both a clean and artificially contaminated IBF. Beyond the aforementioned certification conditions, exploratory testing was performed in conditions with Supercooled Large Droplets (SLD) and rain. The test set-up
van 't Hoff, StefanLammers, KarelJung, Joo HyunKim, Hyung SikRessejac, Sandy
Icing is a severe hazard to aircraft and in particular to unmanned aerial vehicles (UAVs). One important activity to understand icing risks is the prediction of ice shapes with simulation tools. Nowadays, several icing computational fluid dynamic (CFD) models exist. Most of these methods have been originally developed for manned aircraft purposes at relatively high Reynolds numbers. In contrast, typical UAV applications experience Reynolds numbers an order of magnitude lower, due to the smaller airframe size and lower airspeeds. This work proposes a set of experimental ice shapes that can serve as validation data for ice prediction methods at low Reynolds numbers. Three ice shapes have been collected at different temperatures during an experimental icing wind tunnel campaign. The obtained ice shapes represent wet (glaze ice, −2 °C), mixed (−4 °C), and dry (rime ice, −10 °C) ice growth regimes. The Reynolds number is between Re=5.6…6.0×105, depending on the temperature. The ice shapes
Hann, RichardMüller, NicolasLindner, MarkusWallisch, Joachim
As part of the complete solution to deal with atmospheric in-flight icing on unmanned aerial vehicles (UAV), a path planner is a valuable tool for finding an optimal path for accomplishing UAV missions. When considering icing conditions, the planner manages areas with icing risk. Together with an electro-thermal ice protection system (IPS), the path planner can optimize energy consumption by comparing energy consumed flying through the cloud or around it, as the UAV can now more safely pass through the ice. The UAV’s aerodynamic stability is also considered by meeting lift requirements, producing enough thrust, and having battery capacity left. These are constraints in the planner to ensure that the UAV can complete its mission. Benchmark icing cases are constructed to validate that the path planner performs as intended. A particle swarm optimization (PSO) is used as a method in the planner due to its ability to handle highly nonlinear problems and to be able to explore the solution
Cheung, MichaelHann, RichardJohansen, Tor
This paper proposes an extension to curved surfaces of a design method of piezoelectric ice protection systems established for planar surfaces. The method is based on a finite element analysis which enables the fast computation of the resonant modes of interest to de-ice surfaces as leading edges. The performance of the modes of interest is assessed according to their deicing capacity estimated from the electro-mechanical coupling between the electric charge of the piezoelectric actuators and the strain energy in the structure. The method is illustrated on a NACA 0024 airfoil. Several experimental tests are conducted in an icing wind tunnel to verify the numerical predictions of the ice shedding and the operation of the system.
Palanque, ValerianPothin, JasonBudinger, MarcPommier-Budinger, ValérieYaich, Ahmed
This paper studies the level of confidence and applicability of CFD simulations using steady-state Reynolds-Averaged Navier-Stokes (RANS) in predicting aerodynamic performance losses on swept-wings due to contamination with ice accreted in-flight. The wing geometry selected for the study is the 65%-scale Common Research Model (CRM65) main wing, for which NASA Glenn Research Center’s Icing Research Tunnel has generated experimental ice shapes for the inboard, mid-span, and outboard sections. The reproductions at various levels of fidelity from detailed 3D scans of these ice shapes have been used in recent aerodynamic testing at the Office National d’Etudes et Recherches Aérospatiales (ONERA) and Wichita State University (WSU) wind tunnels. The ONERA tests were at higher Reynolds number range in the order of 10 million, while the WSU tests were in the order of 1 million. RANS CFD results for the lower-Reynolds 8.9% WSU model up to α = 10° were previously generated by University of
Ozcer, IsikPueyo, AlbertoMenter, FlorianHafid, SabrinaYang, Hong
This work presents the implementation and validation efforts of a 3D ice accretion solver for aeronautical applications, MESS3D, based on the advanced Messinger model. The solver is designed to deal with both liquid phase and ice crystal cloud conditions. In order to extend the Messinger model to 3D applications, an algorithm for the water run-back distribution on the surface was implemented, in place of an air flow stagnation line search algorithm, which is straightforward in 2D applications, but more complicated in 3D. The developed algorithm aims to distribute the run-back water in directions determined by air pressure gradients or shear forces. The data structure chosen for MESS3D allows high flexibility since it can manage the necessary input solutions on surface grids coming from both structured and unstructured solvers, regardless the number of edges per surface cells. The aim of the work is to present a validation of the model by examining the robustness of the solutions when
Cinquegrana, DavideD'Aniello, Francescode Rosa, DonatoCarozza, AntonioCatalano, PietroMingione, Giuseppe
In 2017 the National Research Council of Canada developed an evaporation model for controlling engine icing tunnels in real time. The model included simplifications to allow it to update the control system once per second, including the assumption of sea level pressure in some calculations. Recently the engine icing system was required in an altitude facility requiring operation down to static temperatures of -40°C, and up to an altitude of 9.1 km (30 kft) or 30 kPa. To accommodate the larger temperature and pressure range the model was modified by removing the assumption of sea level operation and expanding the temperature range. In addition, due to the higher concentration of water vapor that can be held by the atmosphere at lower pressures, the significance of the effect of humidity on the air properties and the effect on the model was investigated. The effect of humidity on the density, specific heat, viscosity, thermal conductivity and Prandtl number of air compared to assuming
Davison, Craig
The paper describes a tools’ suite able of analyzing numerically 3D ice-accretion problems of aeronautical interest. The methodology consists of linking different modules each of them performing a specific function inside the ice-simulation chain. It has been specifically designed from the beginning with multi-step capability in mind. Such a feature plays a key role when studying the dynamic evolution of the icing process. Indeed, the latter has the character of a multi-physic and time-dependent phenomenon which foresees a strong interaction of the air- and water fields with the wall thermodynamics. Our multi-layer approach assumes that the physical problem can be discretized by a series of pseudo-steady conditions. The simulation process starts with the automatic generation of a Cartesian three-dimensional mesh which represents the input for the immersed boundary (IB) RANS solver. Once obtained, the air-phase is used by the Eulerian tool to solve the transport of the water-phase on
de Rosa, DonatoCapizzano, FrancescoCinquegrana, Davide
The formation of ice can be very detrimental to flight safety, since the ice accumulated on the surfaces of the aircraft can alter both the aerodynamics and the weight, leading in some cases to catastrophic lift reductions. Traditional active Ice Protection Systems (IPS) require high energy to work, add on weight to the aircraft and complexity to the manufacturing. On the other hand, the use of passive IPS, such as superhydrophobic/icephobic coatings, cannot be successful in harsh environmental conditions or for prolongated icing expositions. So, a valuable solution could be the combination of active and passive IPS with the aim to combine the advantage of both of them and mitigate their drawbacks. In this context, the present work proposes two innovative Hybrid IPS, based on an ultrasound piezoelectric system and on a thermoelectric system manufactured using carbon fibers as heater elements, both combined with a superhydrophobic coating with the aim to study the effect of the surface
Piscitelli, FilomenaAmeduri, SalvatoreVolponi, RuggeroPellone, LorenzoDe Nicola, FeliceConcilio, AntonioAlbano, FlorianaElia, GianpaoloNotarnicola, Lorenzo
Predicting the aerodynamic performance of an aircraft in icing conditions is critical as failures in an aircraft’s ice protection system can compromise flight safety. Aerodynamic effects of icing have typically relied on RANS modeling, which usually struggles to predict stall behavior, including those induced by surface roughness. Encouraged by recent studies using LES that demonstrate the ability to predict stall characteristics on full aircraft with smooth wings at an affordable cost [1], this study seeks to apply this methodology to icing conditions. Measurements of lift, drag, and pitching moments of a NACA23012 airfoil under clean and iced conditions are collected at Re = 1.8M. Using laser scanned, detailed representations of the icing geometries, LES calculations are conducted to compare integrated loads against experimental measurements in both clean and iced conditions at various angles of attack through the onset of stall [2]. This study will explore several critical ice
Bornhoft, BrettJain, SuhasGoc, KonradBose, SanjeebMoin, Parviz
The performance of low-adhesion surfaces in a realistic, in-flight icing environment with supercooled liquid droplets is evaluated using a NACA 0018 airfoil in the National Research Council of Canada Altitude Icing Wind Tunnel. This project was completed in collaboration with McGill University, the University of Toronto and the NRC Aerospace Manufacturing Technologies Centre in March 2022. Each collaborator used significantly different methods to produce low-adhesion surface treatments. The goal of the research program was to demonstrate if the low-adhesion surfaces reduced the energy required to de-ice or anti-ice an airfoil in an in-flight icing environment. Each collaborator had been developing their own low-adhesion surfaces, using bench tests in cold rooms and a spin rig in the wind tunnel to evaluate their performance. The most promising surface treatments were selected for testing on the airfoil. The de-icing and anti-icing performance of the low-adhesion surfaces was compared
Clark, CatherineKietzig, Anne-MarieGolovin, KevinSong, Naiheng
This paper provides an overview of the state-of-art multiscale “Icing Simulation Framework” capability developed at Raytheon Technologies Research Center. Specifically, the application of this framework to simulate droplet runback and runback icing will be presented. In summary, this high-fidelity framework tracks the physical mechanisms associated with droplet dynamics, ice nucleation, growth and interaction with the environment (e.g. adhesion, crystal growth, evaporation, sublimation, etc.) across all relevant scales (including nucleation at <10-7m to ~10-6m of coating/environment interaction to 10-2m of the component) which allows a rigorous investigation of how different environmental (e.g. LWC, MVD, pressure, velocity and temperature) and substrate (e.g. coating molecular and macroscopic specifications) characteristics affect the icing behavior.
Yazdani, MiadHu, CharleneMacDonald, Malcolm
For nearly a century, ice build-up on aircraft surfaces has presented a safety concern for the aviation industry. Pilot observations of visible moisture and temperature has been used a primary means to detect conditions conducive to ice accretion on aircraft critical surfaces. To help relieve flight crew workload and improve aircraft safety, various ice detection systems have been developed. Some ice detection systems have been successfully certified as the primary means of detecting ice, negating the need for the flight crew to actively monitor for icing conditions. To achieve certification as a Primary ice detection system requires detailed substantiation of ice detector performance over the full range of icing conditions and aircraft flight conditions. Some notable events in the aviation industry have highlighted certain areas of the icing envelope that require special attention. Following the CRJ accident in Fredericton, New Brunswick, Canada, in December 1997, industry interest
Jackson, DarrenAnderson, KaareHeuer, Weston
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included. The mockup was investigated in the Icing Wind Tunnel of Rail Tec Arsenal in Vienna, Austria under various Appendix C and Appendix O icing conditions with and without activated
Puffing, ReinhardNeubauer, ThomasMoser, RichardHassler, WolfgangSchweighart, SimonFerschitz, HermannDiebald, StefanBreitfuss, WolfgangKozomara, David
Wind tunnel tests were performed on an 8.9-percent scale semispan wing in the Wichita State University 7x10-foot wind tunnel with simulated ice accretion shapes. Simulated ice shapes from large-droplet clouds, simple-geometry ice horn shapes, and simple-geometry spanwise ridge shapes typical of runback icing were tested. Three Reynolds number and Mach number combinations were tested over a range of angles of attack. Aerodynamic forces and moments were acquired from the tunnel balance and surface pressures and oil flow visualizations were acquired. This research supplements the Swept Wing Icing Program recently concluded by NASA, FAA, ONERA, and their partners by testing new ice shapes on the same wind tunnel model. Additional surface roughness was added to simulate large-droplet ice accretion aft of the highly three-dimensional primary ice shape, and it had little effect on the wing aerodynamic performance. Spanwise ridge simulations produced large increases in drag and small increases
Woodard, BrianBragg, MichaelSmith, Timothy G.
A model for the computation of the secondary trajectories of droplets has been implemented in the CIRA code Imp3d and validated with literature data. Aim of the paper is to present the model of secondary trajectories and to discuss the test cases performed.
Catalano, PietroMele, Benedetto
Ice accretions on aircraft flight surfaces can degrade lift, increase drag, and reduce controllability. Anti-icing systems can remove or prevent ice growth. To predict the ice shrinkage or accretion using models such as LEWICE, the convective heat transfer behavior at the ice surface must be quantified. The work here is focused on understanding the convective heat transfer for several laser-scanned ice shapes by using commercial computational fluid dynamics (CFD) heat transfer simulations. The leading edge ice shape from a NACA 0012 airfoil and its geometrically unwrapped simplification are studied. Limitations encountered with a semi-automated unstructured mesh generation tool are presented. Thin boundary layer mesh thicknesses (i.e. much thinner than the flow’s viscous or thermal boundary layers) are found to be necessary in order to capture the surface curvature features and preserve good mesh quality near the geometric surface. To better model a prior experiment, the unwrapped
Feier, Ioan
Under contract to Transport Canada (TC) and with joint funding support from the Federal Aviation Administration (FAA), a vertical stabilizer common research model (VS-CRM) has been designed and built by the National Research Council of Canada (NRC). This model is a realistic, scaled representation of modern vertical stabilizer designs without being specific to a particular aircraft. The model was installed and tested in the NRC 3 m × 6 m Icing Wind Tunnel in late 2021/early 2022. Testing was led by APS Aviation Inc., with support from NRC and NASA, in order to observe the anti-icing fluids flow-off behavior with and without freezing or frozen precipitation during simulated take-off velocity profiles. The model dry-air aerodynamic properties were characterized using flow visualization tufts and boundary layer rakes. Using this data, a target baseline configuration was selected with a yaw angle equal to 0° and rudder deflection angle equal to -10°. Testing with fluids and precipitation
Clark, CatherineRuggi, Marco
Items per page:
1 – 50 of 843