Browse Topic: Icing and ice detection

Items (846)
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for the calibration and acceptance of icing wind tunnels to be used in testing of aircraft components and systems and for the development of simulated ice shapes. This document is not directly applicable to air-breathing propulsion test facilities configured for the purposes of engine icing tests, which are covered in AIR6189. This document also does not provide recommended practices for creating Supercooled Large Drop (SLD) or ice crystal conditions, since information on these conditions is not sufficiently mature for a recommended practice document at the time of publication of ARP5905A. Use of facilities as part of an aircraft’s ice protection Certification Plan should be reviewed and accepted by the applicable regulatory agency prior to testing. Following acceptance of a test plan, data generated in these facilities may be submitted to regulatory agencies for use in the certification of aircraft ice
AC-9C Aircraft Icing Technology Committee
Crawler Dozers play a critical role in global construction, mining and industrial sectors, performing essential tasks like pushing the material, grading, leveling and scraping. In the highly competitive dozer market, meeting the growing demand for increased productivity requires strategies to enhance blade capacity and width. Dozer operations involve pushing the material and dozing, where blade capacity significantly influences performance. Factors such as mold board profile, blade height, and width impact the blade capacity which are crucial for productivity in light weight applications such as snow removal and dirt pushing. Blade width is also pivotal for grading and leveling tasks. Traditional blade designs, like straight or fixed U-type blades, constrain operator flexibility, limiting overall productivity. The integration of hydraulic-operated foldable wings on both sides of the blade offers the adaptability to adjust blade capacity which also helps to reduce material spillage
Sahoo, Jyoti PrakashSarma, Neelam Kumar
This SAE Aerospace Standard (AS)/Minimum Operational Performance Specification (MOPS) specifies the minimum performance requirements of remote on-ground ice detection systems (ROGIDS). These systems are ground based. They provide information that indicates whether frozen contamination is present on aircraft surfaces. Section 1 provides information required to understand the need for the ROGIDS, ROGIDS characteristics, and tests that are defined in subsequent sections. It describes typical ROGIDS applications and operational objectives and is the basis for the performance criteria stated in Sections 3 through 5. Section 2 provides reference information, including related documents, definitions, and abbreviations. Section 3 contains general design requirements for the ROGIDS. Section 4 contains the Minimum Operational Performance Requirements for the ROGIDS, which define performance in icing conditions likely to be encountered during ground operations. Section 5 describes environmental
G-12HOT Holdover Time Committee
Ice build-up on aircraft and wind turbines can impact the safety and efficiency of their systems.
Protecting against atmospheric icing conditions is critical for the safety of aircraft during flight. Sensors and probes are often used to indicate the presence of icing conditions, enabling the aircraft to engage their ice protection systems and exit the icing cloud. Supercooled large drop icing conditions, which are defined in Appendix O of 14 CFR Part 25, pose additional aircraft certification challenges and requirements as compared to conventional icing conditions, which are defined in Appendix C of 14 CFR Part 25. For this reason, developing sensors that can not only indicate the presence of ice, but can also differentiate between Appendix O and Appendix C icing conditions, is of particular interest to the aviation industry and to federal agencies. Developing detectors capable of meeting this challenge is the focus of SENS4ICE, a European Union sponsored project. While participating in the SENS4ICE Project, Collins Aerospace has developed an ice detection and differentiation
Hamman, MatthewGelao, GiancarloRidouane, El HassanChabukswar, RohanBotura, Galdemir
Ice prediction capabilities for Unmanned Aerial Systems (UAS) is of growing interest as UAS designs and applications become more diverse. This report summarizes the current state-of-the-art in modeling aircraft icing within a computational framework as well as a recent U.S. Army DEVCOM AvMC effort to evaluate ice prediction models for current use and future integration into the Computational Research and Engineering Acquisition Tools and Environments (CREATE) Air Vehicle (AV) framework. U.S. Army Combat Capabilities Development Command, Redstone Arsenal, Alabama Historically, smaller Unmanned Aerial Systems (UAS), such as Class 2 RQ-1B Raven and Class 3 RQ-7Bv2 Shadow, have been restricted to not be approved to fly in icing conditions under the assumption that any ice accretion would cause an unacceptable risk of loss of the aircraft. However, interest exists in better understanding potential icing accretion on UAS to determine if less extreme icing conditions could result in only
Historically, smaller Unmanned Aerial Systems (UAS), such as Class 2 RQ-1B Raven and Class 3 RQ-7Bv2 Shadow, have been restricted to not be approved to fly in icing conditions under the assumption that any ice accretion would cause an unacceptable risk of loss of the aircraft. However, interest exists in better understanding potential icing accretion on UAS to determine if less extreme icing conditions could result in only partial degradation and not total loss of the vehicle for the purpose of expanding approved flight envelopes. Icing accretion can be tested during a flight test, which is considered unacceptable due to lack of controlled conditions and risk to the UAS or in a controlled experiment, by using wind tunnel testing to evaluate a single icing condition. Cryogenic wind tunnel tests, such as those conducted at the National Aeronautical and Space Administration (NASA) Glenn Icing Research Tunnel (IRT), Cleveland, OH, as shown in figures 1 and 2, are prohibitively expensive
Brake squeal is a common phenomenon across all types of vehicles. It becomes prominent in the absence of other noise sources, as in the case of electric vehicles. Earlier simulation attempts date back to late nineties and early 2000s. Identification of unstable modes of the coupled system of brake rotor and pads, and occasionally some caliper components, was the primary goal. Simulating the rotation of the rotor along with squeezing of the pads was attempted in a multi-body dynamics tools with flexible representation of rotor and pads. Though this gave some insights into the dynamics of stopping mechanism, squeal required capturing the nonlinearities of the contact in a more rigorous sense. Also, efforts were made to capture noise from vibrations using boundary- and finite- element methods [1]. In this attempt at digitalizing a brake dynamometer, the author used a nonlinear implicit solver to mimic the dynamics and transient vibro-acoustic solver to convert transient vibrations to
Kappagantu, Ramana
The EU Horizon 2020 project SENS4ICE addresses reliable detection and discrimination of supercooled large droplets (SLD) icing conditions. These conditions are considered as particularly safety-relevant and have been included in airplane certification specifications. The SENS4ICE project comprises technology development, icing wind tunnel upgrading/testing and flight testing. A novel hybrid approach for icing detection combines direct sensing (atmospheric conditions / ice accretion) with an indirect technique based on changing aircraft characteristics. The first part of the project was devoted to the development and maturation of icing detection technologies, with a focus on Appendix O (of 14 CFR Part 25 and CS-25) icing conditions. Furthermore, several icing wind tunnel facilities have improved capabilities to represent Appendix O conditions. Icing wind tunnel testing (including Appendix O) of several icing detection sensors developed in the SENS4ICE project concluded the first part
Schwarz, Carsten
The European Union’s Horizon 2020 programme has funded the SENS4ICE (Sensors for Certifiable Hybrid Architectures for Safer Aviation in Icing Environment) project [1], an innovative approach for the development and testing of new sensors for the detection of supercooled large droplets (SLD). SLD may impinge behind the protected surfaces of aircraft and therefore represents a threat to aviation safety. The newly developed sensors will be tested in combination with an indirect detection method on two aircraft, in two parallel flight programs: One on the Embraer Phenom 300 in the U.S. and one on the ATR-42 in Europe. In this framework the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center) is in charge of the airborne measurements and data evaluation of the microphysical properties of clouds encountered during the SENS4ICE field campaigns in February, March and April 2023. We present the instrumentation that is used in the flight experiments for the characterization of
Jurkat-Witschas, TinaLucke, JohannesSchwarz, CarstenDeiler, ChristophSachs, FalkKirschler, SimonMenekay, DenizVoigt, ChristianeBernstein, BenJaron, OlivierKalinka, FrankZollo, AlessandraLilie, LyleMayer, JohannaPage, Centre Europeen de Recherche et de, ChristianVié, BenoitBourdon, AurelienLima, Rogerio PereiraVieira, Luiz
A new optical array imaging probe, called the 1D2D probe, has been developed by Science Engineering Associates, with features added to improve the real-time and post-analysis measurements of particle spectra, particularly in the Supercooled Large Droplet size range. The probe uses optical fibers and avalanche photodiodes to achieve a very high frequency response, and a Field-Programmable Gate Array that performs real-time particle rejection and processing of accepted particles with negligible inter-particle dead time. The probe records monochromatic two-dimensional images, while also recording the number of individual particle pixels at a second grey scale level. The probe implements flexible features to filter recording of highly out of focus particles to improve the accuracy of particle size determination, or to reject small particles to improve the statistics of measurements of larger particles. A real-time one-dimensional particle spectrum is computed similarly to the original
Lilie, LyleBouley, DanielSivo, ChrisEsposito, BiagioBansemer, AaronHeller, RomyStrapp, J. Walter
To support an industry wide response to an EASA proposed Special Condition regarding the threat of in-flight supercooled liquid water icing conditions at altitudes above FL300, Boeing 777 fleet data were used to estimate the frequency and severity of such icing occurrences. The data were from the calendar year 2019 and included ~ 950,000 airline revenue flights from around the world by multiple operators. The unique architecture of the Primary Ice Detection System (PIDS) on that model, in addition to robust meteorological data that was able to be correlated, afforded an opportunity to conservatively estimate the Total Water Exposure (TWE) and thus the Liquid Water Content (LWC) of the icing encounters captured at FL295 and above. This paper will outline the key methods used and present the findings.
Sanford, JeromeBravin, MelissaClarkson, MatthewNatsui, Edward
This paper presents experimental ice accretion measurements alongside numerical simulations, using the National Research Council Canada’s morphogenetic approach, on a pitot probe geometry at varying icing conditions. In previous publications, the morphogenetic approach for the numerical simulation of ice accretion has shown promise for pitot probe applications, potentially reducing the number of wind tunnel entries, and therefore cost, of the development cycle. An experimental campaign has been completed, providing ice shapes on a representative pitot probe model. Comparison of the experimental and numerical ice shapes indicate that the morphogenetic model is able to generate the complex ice shapes seen experimentally for real-world icing conditions on a fully 3D geometry, closely matching both ice features and total ice thicknesses.
Forsyth, PeterSzilder, Krzysztof
Diagonalized alternating-direction implicit (DADI) method is implemented in the Eulerian hyperbolic droplet solver, ICEPAC, for efficient high-order accurate analysis of aircraft icing. Detailed techniques for implementing the DADI method considering hyperbolicity characteristics are discussed. For the Eulerian droplet equation system to be strictly hyperbolic, additional source terms regarding artificial droplet pressure are included. Validations of the present implicit solver are conducted using two- and three-dimensional steady benchmark tests: NACA0012 airfoil, NACA23012 airfoil, and a swept wing. Also, the oscillating airfoil SC2110 case was analyzed to verify the robustness and efficiency of the proposed solver. In addition, the computational cost of the current implicit solver is considerably lower than that of the explicit multi-stage solver.
Kim, YounghyoHong, YoonpyoShon, SoonhoYee, Kwanjung
The Current Icing Product (CIP; Bernstein et al. 2005) and Forecast Icing Product (FIP; Wolff et al. 2009) were originally developed by the United States’ National Center for Atmospheric Research (NCAR) under sponsorship of the Federal Aviation Administration (FAA) in the mid 2000’s and provide operational icing guidance to users through the NOAA Aviation Weather Center (AWC). The current operational version of FIP uses the Rapid Refresh (RAP; Benjamin et al. 2016) numerical weather prediction (NWP) model to provide hourly forecasts of Icing Probability, Icing Severity, and Supercooled Large Drop (SLD) Potential. Forecasts are provided out to 18 hours over the Contiguous United States (CONUS) at 15 flight levels between 1,000 ft and FL290, inclusive, and at a 13-km horizontal resolution. CIP provides similar hourly output on the same grid, but utilizes geostationary satellite data, ground-based radar data, Meteorological Terminal Air Reports (METARS), lightning data, and voice pilot
Rugg, AllysonHaggerty, JulieAdriaansen, DanielSerke, DavidEllis, Scott
Future compliance to FAA 14 CFR Part 25 and EASA CS-25 Appendix O conditions has required icing wind tunnels to expand their cloud simulation envelope, and demonstrate accurate calibration of liquid water content and droplet particle size distributions under these conditions. This has led to a renewed community interest in the accuracy of these calibrations, and the potential inter-facility bias due to the choice of instrumentation and processing methods. This article provides a comparison of the response of various hot-wire liquid water content instruments under Appendix C and supercooled large droplet conditions, after an independent similar analysis at other wind tunnel facilities. The instruments are being used, or are under consideration for use, by facilities collaborating in the ICE GENESIS program. For droplet median volume diameters (MVDs) between about 15 and 250 μm, cylindrical hot wire LWC sensors were found to consistently and increasingly under-read measurements from
Esposito, Biagio M.Orchard, DavidLucke, JohannesNichman, LeonidBliankinshtein, NataliaLilie, LyleCatalano, PietroD'Aniello, FrancescoStrapp, J. Walter
In the course of the Horizon 2020 project ICE GENESIS of the European Union, an experimental database was developed to host documentation of icing experiments. The database serves as a source of information for numerical code development and validation as well as future test matrix design, IPS layout and development and wing design. Several legacy data icing cases have been included into the database, which are partly publicly available. Furthermore, the database will serve as the main platform for dissemination of public results of icing cases after and during the project ICE GENESIS. The database itself provides detailed information about the test configurations and the icing wind tunnel. More specifically, CAD data, ice protection system characteristics if applicable, installation in the test facility, instrumentation, test matrix, generated aero-icing conditions and test results are included. Within the ICE GENESIS project, the documentation of the resulting ice accretion is done
Neubauer, ThomasPuffing, Reinhard
The Collins Aerospace Optical Ice Detector is a short-range polarimetric cloud lidar designed to detect and discriminate among all types of icing conditions with the use of a single sensor. Recent flight tests of the Optical Ice Detector (OID) aboard a fully instrumented atmospheric research aircraft have allowed comparisons of measurements made by the OID with those of standard cloud research probes. The tests included some icing conditions appropriate to the most recent updates to the icing regulations. Cloud detection, discrimination of mixed phase, and quantification of cloud liquid water content for a cloud within the realm of Appendix C were all demonstrated. The duration of the tests (eight hours total) has allowed the compilation of data from the OID and cloud probes for a more comprehensive comparison. The OID measurements and those of the research probes agree favorably given the uncertainties inherent in these instruments.
Anderson, KaareRay, MarkJackson, Darren
Urban air mobility (UAM) is a fast-growing industry that utilizes electric vertical take-off and landing (eVTOL) technologies to operate in densely populated urban areas with limited space. However, atmospheric icing serves as a limitation to its operational envelope as in-flight icing can happen all year round anywhere around the globe. Since icing in smaller aviation systems is still an emerging topic, there is a necessity to study icing of eVTOL rotors specifically. Two rotor geometries were chosen for this study. A small 15-inch rotor was selected to illustrate a multirotor UAV drone, while a large 80-inch rotor was chosen to represent a UAM passenger aircraft. The ice accretion experiments were conducted in an icing wind tunnel on the small 15-inch rotor. The icing simulations were performed using FENSAP-ICE. The ice accretion simulations of the 15-inch rotor sections at –5 °C show a large, rather streamlined ice shape instead of the expected glaze ice characteristics. At –15 °C
Heramarwan, HenidyaMüller, NicolasHann, RichardLutz, Thorsten
This work presents the anti-icing simulation results from a pressure sensing probe. This study used various turbulence models to understand their influence in surface temperature prediction. A fully turbulence model and a transition turbulence model are considered in this work. Both dry air and icing conditions are considered for this study. The results show that at low Angle of Attack (AOA) both turbulence model results compared well and at higher AOA the results deviated. Overall, as AOA increases, the k-ꞷ SST model predicted the surface temperature colder than the Transition SST model result.
Thangavel, SathishBajpai, Shivanshu
The paper describes the upgrade and validation of a Cartesian solver able of estimating the mass deposition of super-cooled large droplets (SLD) on aerodynamic surfaces. A decoupled approach is applied in which the air-flow field is first computed by using a RANS method and then passed to an Eulerian solver for obtaining the water-field. Both tools are based on a finite-volume (FV) approach based on locally refined Cartesian meshes and immersed boundaries. The use of semi-empirical models allow to take into account the primary effects due to splashing and bouncing of large droplets on aerodynamic surfaces. Here, we discuss the results of a numerical campaign with the aim of estimating the accuracy of two mass-deposition models on benchmarks from different experimental databases. Besides, for some cases we compare the present results with the ones obtained by using a body-conforming method.
Capizzano, Francescode Rosa, Donato
The numerical simulation of ice accretion on aircraft is a complex problem that is difficult to simulate robustly, especially in 3D. The process, which combines multiple different solvers, is prone to fail whenever the geometry deformation due to ice is too complex. Thus, the more ice layers, the more fragile is the simulation. This paper aims at studying, and possibly reducing, the dependency on the number of layers by considering i) the impact of the deforming surface on the impingement and ii) a local roughness modeling that can better position the ice horns. The method called Impact Angle Correction (IAC) method in the literature is implemented and consists in setting in an additional loop the components solved on the surface, namely the thermodynamic exchanges and the geometry update, to consider the change in the surface normal vectors. For each of these ice sub-layers, the impingement water mass is recomputed by considering all droplet bins after each deformation of the surface
Blanchet, MaximeBourgault-Côté, SimonLaurendeau, Eric
Computational icing analysis results were compared to experimental icing tunnel data including aerothermal (e.g., dry air) and supercooled water droplet rime-ice conditions from tests conducted in early 2022 at the NASA Icing Research Tunnel (IRT). The Simulated Inter-compressor Duct Research Model (SIDRM) test article was used in this study, and its geometry represents the inter-compressor duct region of a turbofan engine. The test article’s purpose is to study the physics of supercooled water icing and ice crystal icing. This study compared three different icing codes: FENSAP-ICE (Eulerian approach), LEWICE3D (Lagrangian approach), and GlennICE (Lagrangian approach). All three icing codes were conducted on SIDRM’s complex body flow-field and compared to different experimental supercooled water rime runs. The test article instrumentation (pressure taps, thermocouples, etc.) and 3D laser scans of final ice shapes were used to compare against the different icing code simulations. The
Stewart, EricBartkus, Tadas
Accurate simulation of icing is important for the assessment of several potential icing scenarios and complex icing regulations. However, performing all possible icing scenarios is a demanding process in terms of computational cost, especially when modification of the geometry due to ice accretion is required. Additionally, aircraft icing safety assessment necessitates an evaluation of the accumulated ice. Thus, numerical representation of the non-linear and complex geometries is essential for the parametrization of this ice. Indeed, surrogate models have the capability of predicting these complex, non-linear shapes. For this purpose, a method for ice accretion prediction on a selected airfoil, NACA 22112, is proposed in this study with different surrogate models that will later be used for fast prediction in 6DOF simulations to directly evaluate its effects on aerodynamic performance during flight. The required datasets in order to train for clean and iced airfoils are based on
Akbal, OmerAyan, ErdemMurat, CanibekOzgen, Serkan
This paper introduces the Lagrangian particle tracking technology readily available in Ansys Fluent in the in-flight icing simulation workflow, which normally uses the Eulerian approach for droplet flows. The Lagrangian solver is incorporated in the Fluent Icing workspace which is to become the next-gen in-flight icing simulation tool provided by Ansys. Lagrangian tracking will eventually be used for SLD and ice crystal rebound and re-impingement calculations in the Ansys workflow. Here we introduce some preliminary results with the current state of its implementation as of Fluent Icing release 2023R2. Example cases include several selections from the 1st Ice prediction workshop with experimental comparisons as well as results obtained earlier with the Eulerian droplet solution strategy. Collection efficiency comparisons on clean geometries show good agreement between Eulerian and Lagrangian methods when the particle seeds are in the millions range. Shadow zones are resolved with more
Moula, GuillaumeOzcer, Isik
Modifications have been implemented in the GlennICE software to accommodate a non-inertial reference frame. GlennICE accepts a flow solution from an external flow solver. It then introduces particles and tracks them through the flow field in a Lagrangian manner. Centrifugal and Coriolis terms were added to the GlennICE software to account for relative frame simulations. The objective of the present paper is twofold. First, to check that the new terms are implemented correctly and that the code still behaves as expected with respect to convergence. And second, to provide some initial insight into an upcoming propeller experiment in the NASA Icing Research Tunnel. The paper presents a description of the code modifications. In addition, results are presented for two operating conditions, and three particle sizes. Each case was simulated with four different grid densities to assess grid dependence.
Rigby, Davidvon Hardenberg, Paul
Ice accretion on helicopter rotor blades when flying through supercooled droplet clouds can severely affect aerodynamic properties and pose a significant threat to flight safety. In the design phase, manufacturers commonly use 2D or quasi-3D simulations to predict potential ice accretion, which are more economical than fully 3D approaches. However, these methods frequently encounter accuracy issues when predicting the precise amount of ice accretion because the 3D flow field significantly influences droplet trajectories and, as a result, impingement and accreted mass. For this study the Eulerian particle solver of the icing software DICEPS was upgraded from 2D to 3D using second-order schemes, ensuring numerical stability on unstructured mesh configurations. Validation of the 3D modifications was performed by comparing numerical results of the collection efficiency on a sphere with experimental data. Droplet trajectory calculations were then conducted on a NACA0012 rotor in hover
Buchen, PhilippSotomayor-Zakharov, DenisKnop, Inken
The Glenn Icing Computational Environment (GlennICE) is a computational tool designed to calculate ice growth on complex three-dimensional geometries using the input from a user-supplied computational fluid dynamics (CFD) solution for the geometry of interest. The most significant developments in the advancement of GlennICE have been investigating the convergence of the collection efficiency, efficiently finding trajectories, and improving the refinement methodology. Such developments have increased the efficiency of GlennICE for practical engineering application. With the increasing demand for applying GlennICE for more memory-intensive problems, the scalability of GlennICE has yet to be investigated. This paper is aimed at presenting a method to benchmark the scalability of GlennICE utilizing a relevant engineering problem within a parallel environment. This leads to the final goal of investigating whether an increase in the number of processors utilized results in a linear speedup
Sabri, ZaidPorter, Christopher
In the last decades there have been many temporary engine failures, engine-related events and erroneous airspeed indication measurements that occurred by a phenomenon known as Ice Crystal Icing (ICI). This type of icing mainly occurs in high altitudes close to tropical convection in areas with a high concentration of ice crystals. Direct measurements or in-situ pilot observations of ICI that could be used as a warning to other air-traffic are rare to nearly non-existent. To detect those dangerous high Ice Water Content (IWC) areas with already existing airborne measurement instruments, Lufthansa analyzed observed Total Air Temperature (TAT) anomalies and used a self-developed search algorithm, depicting those TAT anomalies that are related to ice crystal icing events. To optimize the flight route for dispatchers several hours before the flight, e.g. for long distance flights through the intertropical convergence zone (ITCZ), reliable forecasts to identify hazardous high IWC regions are
Kalinka, FrankButter, MaxJurkat, TinaDe La Torre Castro, ElenaVoigt, Christiane
High altitude ice crystals have led to instances of ice accretion on stationary compressor surfaces in aeroengines. Rollback, surge and stall events are known to have been instigated through such accretions due to aerodynamic losses related to ice growth, damage and flameout due to ice shedding. The prevalence of these events has led to a change in certification requirements for icing conditions. Development of accurate numerical models allows the costs of certification and testing to be minimised. An in-house computational code was developed at the Oxford Thermofluids Institute to model glaciated and mixed-phase ice crystal icing. The Ice Crystal Icing ComputationaL Environment (ICICLE) code, comprises a frozen 2D flowfield solution, Lagrangian particle tracking, particle heat transfer and phase change and particle surface interaction modelling. In this paper the ICICLE code is developed into a 3D modelling environment, including 3D particle tracking and modelling of particle wall
Parker, LiamMcGilvray, MatthewGillespie, David
In-flight icing is a major weather hazard to aviation; therefore, the remote detection of meteorological conditions leading to icing is a very aspired goal for the scientific community. In 2017, the Meteorological Laboratory of CIRA has developed a satellite-based tool for in-flight icing detection in collaboration with Italian Air Force Meteorological Service. Then, in the framework of the European project SENS4ICE, a further maturation of the previously developed algorithm has been achieved, in order to consider also Supercooled Large Drop (SLD) Icing Conditions. The tool relies on high-resolution satellite products based on Meteosat Second Generation (MSG) data. The aim of this product is to identify areas potentially affected by in-flight icing hazard, using information about the properties of clouds, remotely inferred from satellite, and the set of experimental curves and envelopes describing the interrelationship of icing-related cloud variables, that represent the icing
Zollo, Alessandra LuciaBucchignani, Edoardo
Protecting against atmospheric icing conditions is critical for the safety of aircraft during flight. Sensors and probes are often used to indicate the presence of icing conditions, enabling the aircraft to exit the icing cloud and engage their ice protection systems. Supercooled large drop (SLD) icing conditions, which are defined in Appendix O of 14 CFR Part 25, pose additional risk to aircraft safety as compared to conventional icing conditions, which are defined in Appendix C of 14 CFR Part 25. For this reason, developing sensors that can not only indicate the presence of ice, but can also differentiate between Appendix O (App O) and Appendix C (App C) icing conditions, is of particular interest to the aviation industry and to federal agencies. Developing a detector capable of meeting this challenge is the focus of SENS4ICE, a European Union sponsored project. This paper summarizes the work that was done to develop the Collins Ice Differentiator System, an ice detection and
Hamman, MatthewRidouane, El HassanGelao, GiancarloChabukswar, RohanBotura, Galdemir
In response to safety regulations regarding aircraft icing, Collins Aerospace has developed and tested a new generation of optical ice detectors (OID Lite) intended to discriminate among icing conditions described by Appendix C and Appendix O of 14 CFR Part 25 and Appendix D of Part 33. The OID Lite is a flush-mounted, short-range, polarimetric optical sensor that samples the airstream up to two meters beyond the skin of the aircraft. The intensity and polarization of the backscatter light correlate with bulk properties of the cloud, such as cloud density and phase. Drizzle-sized droplets, mixed within a small droplet cloud, appear as scintillation spikes in the lidar signal when it is processed pulse-by-pulse. Scintillation in the backscatter (in combination with the outside air temperature monitored by another probe) signals the presence of supercooled large droplets (SLD) within the cloud—a capability incorporated into the OID Lite to meet the requirements of Appendix O. Recent
Ray, MarkAnderson, KaareRamthun, Kent
In this research, the performance of two commercially available icephobic coatings is evaluated on an 81% scaled-down version of the Bell Flight APT 70 drone propeller. Tests are performed in an icing wind tunnel (IWT) under selected severe icing conditions to test the ice protection capability of coatings against both glaze and rime ice. Two different coating formulations are used, one is a polydimethylsiloxane (PDMS) acetoxy terminated coating, the other an epoxy-silicone. The coatings were briefly characterized in terms of their surface roughness, water contact angle and ice adhesion reduction factor compared to aluminum using the centrifugal adhesion test (CAT). Blade sets were prepared for both coatings and a third uncoated set was tested for reference purposes. Tests in the IWT were performed to simulate a true airspeed of 35 m/s and a constant propeller rotational speed of 5 500 RPM. Two conditions of liquid water content (LWC) and droplet median volumetric diameter (MVD) were
Harvey, DerekVilleneuve, EricVolat, ChristopheBeland, MathieuLapalme, Maxime
Weather situations that are associated with hazardous icing conditions near the ground impact multiple kinds of infrastructure. A prominent example of a transmission system failure due to wintry conditions was the snow storm over the Münsterland, Germany, in 2005, as exceptional high amounts of wet snow in conjunction with supercooled water led to heavy damages on conductor cables and tower collapses (Klinger et al., 2011). In this work, an interdisciplinary approach between energy and aviation meteorology is presented. The study was conducted for the purpose of providing a forecast tool of hazardous icing conditions for German transmission system operators (TSOs). TSOs are faced with icing on ground-based objects just like aviation on the ground. For the purpose of obtaining an ensemble-based forecasting tool to detect hazardous icing of structures near the ground, the already existing aeronautical icing model “Advanced Diagnosis and Warning System for Aircraft Icing Environments
März, BenediktFundel, VanessaKalinka, FrankSchultze, MarkusSchmidli, Jürg
Aircraft icing is the phenomenon that forms an ice layer on the solid surface by impingement of supercooled water droplets in the atmosphere. In icing on rotor blades, ice is shed from the blade surface by centrifugal force as the accumulated ice grows. The ice shedding on rotor blades is a dangerous phenomenon, but the physical mechanism and properties are unclear, and most simulations have not considered it. Therefore, it’s necessary to establish an ice shedding model for icing simulations. In this study, we proposed an ice shedding model in which the condition for ice shedding is that the centrifugal force exceeds both the adhesion and tensile forces. Centrifugal force exceeding adhesion force expresses adhesion failure, while centrifugal force exceeding tensile force expresses cohesion failure. We also proposed functions of temperature and medium volume diameter (MVD) as adhesion strength and tensile strength for ice shedding judgment. Numerical simulations were performed to
Baba, TatsuyaFukudome, KojiYamamoto, MakotoMizuno, TakuyaSuzuki, Masaya
This paper is focused on the numerical analysis of the impingement and water catch rate of snow particles on the engine air intake of the Next Generation Civil Tilt Rotor (NGCTR). This NGCTR is developed by Leonardo Helicopters. The collection efficiency and water catch rate for the intake geometry are obtained for the test cases that have been defined for the relevant snow conditions. These conditions are related to the flight envelope of the NGCTR, existing EASA/FAA certification specifications, and the snow characterization. The analyses have been performed for the baseline air intake geometry. A range of particle diameters has been simulated with a particle density equal to the density of ice and with a particle drag relation that disregards the particle shape. Based on the results for the water catch rate on the basic nacelle configuration in snow conditions it is concluded that the ‘cheeks’ of the duct are more susceptible to impingement of larger snow crystals (>75 μm), whereas
Kool, NinaVan der Weide, EdwinSpek, Ferdinandvan der Ven, Harmenvan 't Hoff, Stefan
The Icing Research Tunnel at NASA Glenn follows the recommended practice for calibration outlined in SAE’s ARP5905. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within the stated specifications of variation within +/- 10% of the curve fit equation generated from calibration data. Using past measurements and data trends, IRT characterization engineers wanted to develop methods for the ability to know when data were not within variation. Trends can be observed in the liquid water content measurement process by constructing statistical process control charts. This paper describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, process for rejection of data, and construction of control charts. Data are presented to display the control
Timko, EmilyKing-Steen, LauraInsana, Eric
This paper presents the adhesion strength of ice on sanded and machine-finished aluminum test coupons as measured using the National Research Council of Canada (NRC) Altitude Icing Wind Tunnel (AIWT) spin rig. This rig is used to evaluate commercial and internally-developed coatings for low-adhesion properties, and the performance of ice on aluminum is required as a baseline to compare the coatings against. The tests are performed over a range of aerodynamic and icing cloud conditions, including variations in static air temperature and exposure time (and therefore accumulated ice mass). The data analysis includes an evaluation of the uncertainty in the results based on the measured ice mass repeatability and the measured shear stress repeatability. The results show the adhesive shear stress of ice, generated with a 20 μm icing cloud at a true airspeed of 80 m/s and a static air temperature of -20°C to create rime ice conditions, is 682 kPa (±13%) for aluminum coupons with a sanded
Clark, Catherine
Hazardous atmospheric icing conditions occur at sub-zero temperatures when droplets come into contact with aircraft and freeze, degrading aircraft performance and handling, introducing bias into some of the vital measurements needed for aircraft operation (e.g., air speed). Nonetheless, government regulations allow certified aircraft to fly in limited icing environments. The capability of aircraft sensors to identify all hazardous icing environments is limited. To address the current challenges in aircraft icing detection and protection, we present herein a platform designed for in-flight testing of ice protection solutions and icing detection technologies. The recently developed Platform for Ice-accretion and Coatings Tests with Ultrasonic Readings (PICTUR) was evaluated using CFD simulations and installed on the National Research Council Canada (NRC) Convair-580 aircraft that has flown in icing conditions over North East USA, during February 2022. This aircraft is a flying laboratory
Nichman, LeonidFuleki, DanSong, NaihengBenmeddour, AliWolde, MengistuOrchard, DavidMatida, EdgarBala, KennySun, ZhigangBliankinshtein, NataliaRanjbar, KeyvanDiVito, Stephanie
As the everyday use of flying small to medium size Remotely Piloted Aircraft System (RPAS) continues to evolve, so does the need to fly them in icing environments. To investigate an RPAS’ ability to fly in these conditions, an outdoor test rig has been developed at the National Research Council Canada (NRC) in which a range of RPAS have been tested in icing environments. This rig has an available test area of 3.05 m × 3.05 m, and is 5.1 m high. An array of spray nozzles installed at the top of the test rig provides a cloud that, when operated at sub-zero temperatures, enables simulation of in-flight icing conditions. The spray cloud is calibrated to provide water concentration and drop size distributions consistent with Appendix C, freezing drizzle and freezing rain conditions. Six RPAS were tested and their performance under icing conditions has been monitored via video and, where available, data provided by the on-board acquisition system was downloaded to enable flight information
Orchard, David
This paper provides information on the comparison of numerical simulations with experimental data for an electrothermal ice protection system with a focus on Appendix O [1] Freezing Drizzle (FZDZ) and Freezing Rain (FZRA) conditions. The experimental data is based on a test campaign with a 2D NACA23012 wing section in the RTA Icing Wind Tunnel in Vienna. 22 icing runs (all either unheated or in anti-ice mode) were performed in total and all residual ice shapes were documented by means of high-resolution 3D scanning. Unheated FZDZ and FZRA reference as well as heated cases with different heater configurations are presented. The experimental results are compared to numerical predictions from two different icing codes from AeroTex GmbH (ATX) and the University of Applied Sciences FH JOANNEUM (FHJ) in Graz. The current capabilities of the codes were assessed in detail and regions for improvement were identified. Overall, the codes were able to predict the ice shapes of both the unheated
Breitfuß, WolfgangMoser, RichardHassler, WolfgangFerschitz, HermannNeubauer, ThomasPuffing, ReinhardDiebald, StefanSchweighart, Simon
Pitot probes and Total Air Temperature (TAT) probes are critical to aircraft performance. They are also susceptible to becoming overwhelmed and produce erroneous outputs when flying in icing conditions, especially in high altitude ice crystal situations. When the probes are overwhelmed with ice crystals, it can have significant impacts to aircraft operations. Through design and process iterations, Collins Aerospace (also known as Rosemount Aerospace™), has developed new Appendix D compliant pitot and TAT probes that are much more capable in high ice crystal content icing environments which greatly reduce the adverse risks to the aircraft and engine systems that depend on these probes.
Sable, Robert
Threats to aviation safety as a result of super-cooled large drops (SLD) has been addressed by the FAA rules change (14 CFR Part 25) with the additional icing certification requirement. SLD clouds often consist of bi-modal drop size spectra leading to significant problems in simulating and characterizing these conditions in situ and in icing wind tunnels. Legacy instrumentation for measuring drop size distributions and liquid water content are challenged under these conditions. The large size range measurement problem is addressed with the development of the Phase Doppler Interferometer, Flight Probe Dual-Range (PDI FPDR). The method is described in this report along with the measurement capabilities including the dynamic measurement range and overall working size range. The PDI instrument bases drop size measurements on the light wavelength as the measurement length scale. The light wavelength is a much more robust scale, especially as compared to the light scattering intensity
Bachalo, William DonPayne, GregoryIbrahim, KhalidFidrich, Michael
Considerable amounts of water accumulate in aircraft fuel tanks due to condensation of vapor during flight or directly during fueling with contaminated kerosene. This can result in a misreading of the fuel meters. In certain aircraft types, ice blocks resulting from the low temperatures at high altitude flights or in winter time can even interfere with the nozzles of the fuel supply pipes from the tanks to the engines. Therefore, as part of the maintenance operations, water has to be drained in certain intervals ensuring that no remaining ice is present. In the absence of an established method for determining residual ice blocks inside, the aircraft operator has to wait long enough, in some cases too long, to start the draining procedure, leading potentially to an unnecessary long ground time. A promising technology to determine melting ice uses acoustic signals generated and emitted during ice melting. With acoustic emissions, mainly situated in the ultrasonic frequency range, a very
Pfeiffer, HelgeReynaert, JohanSeveno, DavidJordaens, Pieter-JanCeyhan, OzlemWevers, Martine
The development and calibration of a new facility to test medium size rotors for Remotely Piloted Aircraft Systems (RPAS) under in-flight icing conditions is described. This facility has made use of a 3 m x 6 m cold room available at the NRC which includes a spray system to provide the icing cloud as well as a dedicated rotor stand assembly that incorporates a load cell and dynamometer. Calibration data of the spray drop sizes and liquid water content are provided and compared to conditions of the natural environment as detailed in icing regulations for transport category airplanes, i.e., CFR 14 Part 25 Appendix C and O. Data to examine the sensitivity of rotor performance, under a constant liquid water content to various droplet sizes are provided for a medium sized rotor. Tests have also been performed that examine the ability of the rotor to maintain predefined thrust, torque and power performance throughout an icing encounter of fixed duration. For the purposes of this study, the
Orchard, David
A fundamental understanding of the icing process for aircraft requires a more thorough analysis of the thermodynamics of supercooled droplet impingement. To better study such thermodynamic processes, a novel temperature sensor that functions within supercooled water and ice crystals was developed. The temperature sensor is non-intrusive and provides temperature and phase change information for both liquid water and solid ice. The temperature sensor is an optical sensor based on the luminophore pyranine. The use of pyranine allows for the measurement of spatially and temporally resolved temperature fields for icing applications. The sensitivity of the sensor is -9.2±0.1%/K for temperature measurement in the solid phase and 0.8±0.1%/K for the liquid phase. The performance of the sensor was demonstrated through a calibration process using spectral analysis, the observation of the melting process of a rectangular prism created from the luminescent ice, and the study of the temperature
Gonzales, JosephYamazaki, MasafumiSakaue, Hirotaka
In-flight icing significantly influences the design of large passenger aircraft. Relevant aspects include sizing of the main aerodynamic surfaces, provision of anti-icing systems, and setting of operational restrictions. Empennages of large passenger aircraft are particularly affected due to the small leading edge radius, and the requirement to generate considerable lift for round out and flare, following an extended period of descent often in icing conditions. This paper describes a CFD-based investigation of the effects of sweep on the aerodynamic performance of a novel forward-swept horizontal stabilizer concept in icing conditions. The concept features an unconventional forward sweep, combined with a high lift leading edge extension (LEX) located within a fuselage induced droplet shadow zone, providing passive protection from icing. In-flight ice accretion was calculated, using Ansys FENSAP-ICE, on 10°, 15° and 20° (low, intermediate, and high) sweep horizontal stabilizers, with
Page, JamesOzcer, IsikZanon, AlessandroDe Gennaro, Michele
The purpose of this paper to is to review the methodology applied by Collins Aerospace to develop, test and qualify a more robust surface ply rubber compound that has demonstrable improvements in durability and performance at sub-freezing temperatures. Using in-service products as a reference, pneumatic deicers in use on regional turboprop applications were selected as a basis for operational characteristics and observed failure modes. Custom test campaigns were developed by Collins to comparatively evaluate key characteristics of the surface ply material including low temperature elasticity, erosion durability, and fluid susceptibility. Collins’ proprietary engineered rubber formulations were individually evaluated and built into fully functional test deicers for component level testing to DO-160G environmental exposure, comparative ice shed performance in Collins’ Icing Wind Tunnel and erosion in Collins’ Rain Erosion Silo.
Taylor, AndrewSlane, CaseyHu, JinBotura, Galdemir
Items per page:
1 – 50 of 846