Browse Topic: Injuries

Items (2,798)
ABSTRACT Ground combat vehicles can operate in regions characterized by various types and severities of injuries – resulting from improvised explosive devices (IEDs), gunfire or heat illness – as well as extreme climates such as desert environments. Because of the wounded warrior’s compromised physical condition, their thermal surroundings within the vehicle are especially important. This paper presents insights gleaned from the Army medical community, as well as a simple study of the effect of heat on soldiers in a ground combat vehicle using CFD / thermal modeling and simulation tools and methodologies. In particular, an Army-patented method for controlling body temperature via skin temperature feedback together with a cooling vest and pants ensemble is employed
Tison, NathanSmith, Rob E.
ABSTRACT There have been several hundred rollovers in military vehicles in the last decade of deployment, of which approximately fifty percent are fall-based that occur during off-road operations. Off-road fall-based rollovers occur at lower speeds during road breakaway when the soft road gives way underneath the vehicle on one side as the soil is unable to support the vehicle load (Figure 1). A simulation-based study was conducted to explore potential off-road rollover mitigation benefits for the heavy vehicles with higher center of gravity such as MRAPs, MATV, and JLTV through the use of high performance active suspension systems. The study developed a system architecture based on the ElectroMechanical Suspension (EMS) technology and developed a medium fidelity MATLAB-Simulink-DADS model. Simulation results indicated substantial rollover mitigation benefits for MRAP/JLTV class vehicles, especially in road breakaway scenarios. Potential DoD beneficiaries include the Army and Marines
Beno, JosephBryant, AdamSingh, AmandeepKovnat, AlexanderHayes, RichardWeeks, Damon
With the capability of predicting detailed injury of occupants, the Human Body Model (HBM) was used to identify potential injuries for occupants in car impact events. However, there are few publications on using HBM in the aviation industry. This study aims to investigate and compare the head, neck, lumbar spine and thoracic responses of the Hybrid III and the THUMS (Total Human Model for Safety) model in the horizontal 26g and vertical 19g sled tests required by the General Aviation Aircraft Airworthiness Regulations. The HIC of THUMS and Hybrid III did not exceed the requirements of airworthiness regulations. Still, THUMS had higher intracranial pressures and intracranial stresses, which could result in brain injury to the occupants. In vertical impact, the highest stress of the neck of THUMS appears at the cervical spine C2 and the upper neck is easily injured; in horizontal impact, the cervical spine C7 has the highest load, and the lower neck is easily injured. Due to the low
Shi, XiaopengDing, XiangheGuo, KaiLiu, TianfuXie, Jiang
ABSTRACT Through Army SBIR funding, NanoSonic has designed a next-generation multipurpose Spall Protective, Energy Absorbing (SPEA™) HybridSil® material that has the potential to provide vehicle occupants with pioneering combinatorial protection from 1) fragmentation behind-armor debris (BAD), 2) high velocity head / neck impact, and 3) fire during underbody blast, crash, and rollover events. This innovative multilayered ensemble consists of highly flame resistant, energy absorbing polyorganosiloxane foams, molded ultrahigh molecular weight polyethylene panels, and carbon fiber reinforced polymer derived ceramic composites. The technical foundation for this effort was provided through independent 1) MIL-STD-662 FSP ballistic testing with The Ballistics and Explosive Group at Southwest Research Institute (SwRI); 2) FMVSS 201U head impact testing with MGA Research Incorporation; and 3) ASTM E1354 fire resistance testing with the Fire Technology group at SwRI. Fragment simulating
Baranauskas, VinceKlima, Julie
ABSTRACT The CAMEL program focused on force protection and demonstrated the possibility to protect occupants through higher underbelly blast levels than normally or previously observed. This required a holistic vehicle systems engineering approach to mitigate blast injuries that both optimized existing systems as well as developed new technologies. The result was zero injury to all occupants as assessed by 5th, 50th, and 95th percentile encumbered ATDs during survivability blast testing. Twelve full scale objective-level blast tests were performed on over seventy fully-instrumented ATDs without a single lower-extremity injury. The lower limb protection was provided by an isolated floor system. This system was developed from the ground-up and occupant-out during the CAMEL program. This paper chronicles the CAMEL floor system’s creation, design, testing, and development process
Kwiatkowski, KevinWatson, ChristopherKorson, Chantelle
ABSTRACT This paper reviews the Army Generic Hull [1-5] as a vital developmental tool for underbody blast modeling and simulation applications. Since 2010, it has been used extensively to help calibrate and validate various numerical software codes and methodologies. These are being used extensively today in the development of underbody armor, as well as mine blast subsystems such as seats, to protect both military vehicles and their occupants. In the absence of easily shareable information in this domain due to data classification, this specially formulated product is a valuable part of any toolset for underbody blast development and product design. Citation: K. Kulkarni, S. Kankanalapalli, V. Babu, J. Ramalingam, R. Thyagarajan, “The Army Generic Hull As A Vital Developmental Tool For Underbody Blast Applications,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Kulkarni, KumarKankanalapalli, SanjayBabu, VenkateshRamalingam, JaiThyagarajan, Ravi
ABSTRACT Non-combat tactical vehicle incidents such as rollover are one of the major causes of soldier injuries and deaths. Rollover incidents are usually associated with multiple impacts which result in complex interactions between occupants and hard structural components. Detailed information of occupant responses in such rollover incidents are lacking, and to design effective occupant protection system and safety restraints systems, understanding the vehicle to occupant interaction is essential. The performance of ground vehicles during a rollover event is an important safety and occupant protection requirement for military vehicles. Modeling and simulation are a very useful tool in study and investigation of vehicle rollover characteristics and countermeasure concepts. The main goal of this research is to develop an M&S model of a HMMWV full vehicle system and evaluate the effectiveness of the different restraints systems in a lateral 25 mph rollover tests and its effect on
Babu, VenkateshKang, JianKankanalapalli, SanjaySheng, JimVunnam, MadanKarwaczynski, Sebastian K.Jessup, ChrisDuncan, Mike
ABSTRACT Occupant safety is a top priority of military vehicle designers. Recent trends have shifted safety emphasis from the threats of ballistics and missiles toward those of underbody explosives. For example, the MRAP vehicle is increasingly replacing the HMMWV, but it is much heavier and consumes twice as much fuel as its predecessor. Recent reports have shown that fuel consumption directly impacts personnel safety; a significant percentage of fuel convoys that supply current field operations experience casualties en route. While heavier vehicles tend to fare better for safety in blast situations, they contribute to casualties elsewhere by requiring more fuel convoys. This study develops an optimization framework that uses physics-based simulations of vehicle blast events and empirical fuel consumption data to calculate and minimize combined total expected injuries from blast events and fuel convoys. Results are presented by means of two parametric studies, and the utility of the
Hoffenson, StevenKokkolaras, MichaelPapalambros, PanosArepally, Sudhakar
ABSTRACT With US military casualties mounting due to Improvised Explosive Devices (IEDs) and other roadside bombs, improving the protective capabilities of armored vehicles for service personnel is of paramount importance. Accurate numerical simulations of the blast event provide a means to quickly and economically evaluate the blast-protection performance of armored vehicles, and to develop improved blast countermeasures. This effort developed computational simulations of a system intended to mitigate blast accelerations to a level where the acceleration is no longer a lethal threat to the occupants of an armored vehicle. The hypothesis is that through the manipulation of the mass ratio, stiffness and damping properties of a dual-hull system, the capability of current Mine Resistant Ambush Protected (MRAP) vehicles can be greatly improved. The results show that, in comparison to the standard single-hull vehicle, the dual-hull vehicle reduces head injury criteria by 95.7%, neck
Schaffner, GrantMiller, Adam
ABSTRACT The inclusion of energy-absorbing (EA) seats in combat vehicles has been shown to greatly reduce the likelihood of upper-body injuries during mine blast events. A drop tower is one of the common low-cost methods of testing an energy-absorbing seat to determine the vehicle acceleration and associated level of blast that it can protect against. However, the lack of a standard drop tower test procedure for mine blast purposes means that different facilities perform tests and analyze and report results in an inconsistent manner. As a consequence, the reported performance of any given seat tested in a drop tower may not accurately reflect the degree to which it would protect a soldier during an actual blast event. This paper describes the nature of the problems associated with current drop tower testing, and proposes a solution to eliminate much of the ambiguity surrounding test results. We will describe proposed test and analysis methods that can lead to a more accurate and
Eridon, JamesCory, Josh
ABSTRACT The primary focus of this effort is to evaluate the roof liner technology’s ability to reduce the head injury criteria (HIC) and head acceleration to mitigate vertical impact related injures to mounted crew injures which may occur during top and bottom threat events. In an effort to reduce the likelihood of head injury during top and bottom threat attacks, an adequate roof liner is needed to reduce the force exerted on the solider. The roof liners were able to pass all system level tests. The successful system level testing confirmed the blast mat technology’s TRL-6 recommendation. Citation: J. Klima, “Developing Performance and Operating Requirements for Energy Attenuating (EA) Roof Liner for all U.S. Army Military Vehicles”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021
Klima, Julie
ABSTRACT TARDEC researched head impact protective, energy attenuating materials for use in U.S. Army Ground System Vehicle (GSV) applications. The purpose of the project is to reduce potential head impact related mounted crew injuries and deaths which may occur during underbody blast, crash and rollover events. Commercial-off-the-shelf materials were evaluated for their energy attenuating performance. Exposed surface materials in combination with core material were also researched and evaluated. Baseline vehicle testing was conducted to understand the current head impact criterion. The results of this effort identified solutions which may potentially meet the needs of the Army to reduce head impact related injuries which may occur during crash, rollover and blast events. TARDEC used the knowledge gained from this project to create performance specification requirements for interior head impact protective components and materials for use in U.S. Army vehicles
Klima, JulieMarquardt, Rebecca
ABSTRACT The performance of ground vehicles during a rollover event is an important safety and occupant protection requirement for military vehicles. Modeling and simulation is a very useful tool in study and investigation of vehicle rollover characteristics and countermeasure concepts. This study presents two methods of simulating the rollover events. The first one uses Full System Method (FSM), where all the components are modelled as is and are evaluated. The second method is a reduced order modelling method (ROMM) using integration of the resulted kinematics data from FSM into the vehicle model with occupant & restraints. The FSM & ROMM methods were applied to simulate two HMMMV rollover events, and the results from both methods show that simulation and test data agreed fairly well. Computational time reduced by the ROMM was about 53% of that of the FSM. ROMM approach not only saves significant computational time but also increases robustness of the simulation. Citation: V. Babu, J
Babu, V.Kang, J.Kankanalapalli, S.Sheng, J.Vunnam, M.Karwaczynski, S. K.Jessup, C.Duncan, M.Paulson, K.
Summary Combat vehicle designers have made great progress in improving crew survivability against large blast mines and improvised explosive devices. Current vehicles are very resistant to hull failure from large blasts, protecting the crew from overpressure and behind armor debris. However, the crew is still vulnerable to shock injuries arising from the blast and its after-effects. One of these injury modes is spinal compression resulting from the shock loading of the crew seat. This can be ameliorated by installing energy-absorbing seats which reduce the intensity of the spinal loading, while spreading it out over a longer time. The key question associated with energy-absorbing seats has to do with the effect of various factors associated with the design on spinal compression and injury. These include the stiffness and stroking distance of the seat’s energy absorption mechanism, the size of the blast, the vehicle shape and mass, and the weight of the seat occupant. All of these
Eridon, James
Rear-end vehicle collisions may lead to whiplash-associated disorders (WADs), comprising a variety of neck and head pain responses. Specifically, increased axial head rotation has been associated with the risk of injuries during rear impacts, while specific tissues, including the capsular ligaments, have been implicated in pain response. Given the limited experimental data for out-of-position rear impact scenarios, computational human body models (HBMs) can inform the potential for tissue-level injury. Previous studies have considered external boundary conditions to reposition the head axially but were limited in reproducing a biofidelic movement. The objectives of this study were to implement a novel head repositioning method to achieve targeted axial rotations and evaluate the tissue-level response for a rear impact condition. The repositioning method used reference geometries to rotate the head to three target positions, showing good correspondence to reported interverbal rotations
Reis, Matheus SeifCronin, Duane
Pelvic orientation in vehicles is crucial for preventing injuries and creating safer vehicles and restraint systems. A better understanding of pelvic orientation could provide more accurate anthropomorphic test device (ATD) models of underrepresented populations such as obese individuals, children, and small females. Sonomicrometry is the use of piezoelectric transducers that transmit ultrasound signals to each other to measure the distance between them. These signals may be aggregated using triangulation. In this experiment, ultrasound crystals were secured to the surface of a porcine surrogate to evaluate pelvic movement. This data was then processed using Sonometrics software to generate a 3D model of four static positions and three dynamic tests. The test was validated using a camera and a 3D measurement arm (CMM) to validate XYZ positions. This article discusses how this method could be helpful for developing more accurate ATD models, preventing fatalities in vehicle crashes
Mrozek, AllisonSirhan, KaterenaMacDonald, RobertDannaoui, AbdulMazloum, AishaOchocki, Katarzyna‘Dale’ Bass , Cameron R.
Thorax injuries are a significant cause of mortality in automotive crashes, with varying susceptibility across sex and age demographics. Finite element (FE) human body models (HBMs) offer the potential for injury outcome analysis by incorporating anthropometric variations. Recent advancements in material constitutive models, cortical bone fracture and continuum damage mechanics model (CFraC) and an orthotropic trabecular bone model (OrthoT), offer the opportunity to further improve rib models. In this study, the CFraC and OrthoT material modes, coupled with age-specific material properties, were progressively implemented to the Global Human Body Model Consortium small female 6th rib. Four distinct 6th rib models were developed and compared against sex and age-specific experimental data. The updated material models notably refined the predictions of force–displacement responses, aligning them more closely with the experimental averages. The CFraC model significantly improved the
Corrales, Miguel A.Holcombe, SvenAgnew, Amanda M.Kang, Yun-SeokMarkusic, CraigSugaya, HisakiCronin, Duane S.
Head injuries account for 15% of snowsport-related injuries, and the majority of head impacts occur against ice or snow, low-friction surfaces. Therefore, this study aimed to evaluate how surface friction affects snowsport helmets’ oblique impact kinematics. Ten helmet models were impacted using an oblique drop tower with a 45-degree anvil and NOCSAE headform, at three locations, two surface friction conditions, and a drop speed of 5.0 m/s. Our findings indicate that friction affects peak linear acceleration, peak rotational acceleration, and peak rotational velocity during helmet impacts, with changes in post-impact rotation and impact response varying by location. Surface friction affects head impact kinematics, underscoring the need for sport-specific lab testing and emphasizing the need for friction-specific and sport-specific testing, particularly for snowsports, where surface conditions like snow and ice can alter kinematics
Stark, Nicole E.-P.Calis, AndrewWood, MatthewPiwowarski, Summer BlueDingelstedt, KristinBegonia, MarkRowson, Steve
Mitigating both neck and head injuries in the pediatric population relies heavily on improving our understanding of the underlying biomechanics of the pediatric cervical spine. The tensile response for individual motion segments and the whole cervical spine (WCS) has been reported, but there is no data characterizing the intersegmental kinematics of pediatric WCS under axial loading conditions. The structural response of motion segments and WCS provide valuable data for the design and validation of biofidelic physical and computational models for the pediatric population. However, the use of motion segment data to construct WCS response or the use of WCS axial response to accurately characterize intersegmental response may present limitations to accurately modeling the pediatric cervical spine response. In this secondary analysis of the work of Luck et al. (2008, 2013), the fixed-fixed, low load, quasi-static tensile response of the WCS and individual motion segments (O-C2, C4-C5, and
Liu, MirandaLuck, Jason F.
Prevention and diagnosis of traumatic brain injuries (TBI) are reliant on understanding the biomechanical response of the brain to external stimuli. Finite element models (FEM) and artificial head surrogates are becoming a common method of investigating the dynamic response of the brain to injurious impact and inertial stimuli. The accuracy and validity of these models is reliant on postmortem human subject (PMHS) research to produce biofidelic brain tissue responses. Previous PMHS research has been performed to measure intracranial pressures, displacements, and strains when subjected to impact and inertial loading; however, there remains a need for additional PMHS datasets to improve our understanding of the brain’s dynamics. The purpose of this study is to measure the relative brain–skull displacement in a PMHS specimen when subjected to blunt force impacts. A high-speed X-ray (HSXR) imaging system and embedded radiopaque elastomeric markers were used to record PMHS impacts at
Demiannay, Jean-JacquesRovt, JenniferBrannen, MacKenzieXu, ShengKang, GiaYip, AshleyAzadi, Amir HosseinDehghan, ParisaGoodwin, ShannonTaylor, ReggiePoon, KatherineBrien, SusanHoshizaki, BlaineKarton, ClaraPetel , Oren
Ongoing research in simulated vehicle crash environments utilizes postmortem human subjects (PMHS) as the closest approximation to live human response. Lumbar spine injuries are common in vehicle crashes, necessitating accurate assessment methods of lumbar loads. This study evaluates the effectiveness of lumbar intervertebral disc (IVD) pressure sensors in detecting various loading conditions on component PMHS lumbar spines, aiming to develop a reliable insertion method and assess sensor performance under different loading scenarios. The pressure sensor insertion method development involved selecting a suitable sensor, using a customized needle-insertion technique, and precisely placing sensors into the center of lumbar IVDs. Computed tomography (CT) scans were utilized to determine insertion depth and location, ensuring minimal tissue disruption during sensor insertion. Tests were conducted on PMHS lumbar spines using a robotic test system for controlled loading in flexion
Burns, Michael R.Caldwell, A. JamesShin, JeesooSochor, Sara H.Kopp, Kevin P.Shaw, GregGepner, BronislawKerrigan, Jason R.
Athletes may sustain numerous head impacts during sport, leading to potential neurological consequences. Wearable sensors enable real-world head impact data collection, offering insight into sport-specific brain injury mechanisms. Most instrumented mouthguard studies focus on a single sport, lacking a quantitative comparison of head impact biomechanics across sports. Additionally, direct comparison of prior studies can be challenging due to variabilities in methodology and data processing. Therefore, we gathered head impact data across multiple sports and processed all data using a uniform processing pipeline to enable direct comparisons of impact biomechanics. Our aim was to compare peak kinematics, impulse durations, and head impact directionality across ice hockey, American football, rugby, and soccer. We found that American football had the highest magnitude of head impact kinematics and observed directionality differences in linear and angular kinematics between sports. On the
Masood, Zaryan Z.Luke, David S.Kenny, Rebecca A.Bondi, Daniel R.Clansey, Adam C.Wu, Lyndia C.
Road safety remains a critical concern globally, with millions of lives lost annually due to road accidents. In India alone, the year 2021 witnessed over 4,12,432 road accidents resulting in 1,53,972 fatalities and 3,84,448 injuries. The age group most affected by these accidents is 18-45 years, constituting approximately 67% of total deaths. Factors such as speeding, distracted driving, and neglect to use safety gear increases the severity of these incidents. This paper presents a novel approach to address these challenges by introducing a driver safety system aimed at promoting good driving etiquette and mitigating distractions and fatigue. Leveraging Raspberry Pi and computer vision techniques, the system monitors driver behavior in real-time, including head position, eye blinks, mouth opening and closing, hand position, and internal audio levels to detect signs of distraction and drowsiness. The system operates in both passive and active modes, providing alerts and alarms to the
Ganesh, KattaPrasad, Gvl
Communicating when traumatic brain injury, stroke, or disease has made speech impossible can be daunting. But specialized eye-tracking technology uses eye movement to enable people living with disabilities to connect one-on-one, over the phone, or via the internet
University of Michigan Ann Arbor, MI
The advent of neck braces for the helmeted motorcycle rider has introduced a pertinent research question: To what extent do they reduce measures related to the major mechanism of neck injury in unrestrained torso accidents, i.e., compression flexion (CF)? This question requires a suitable method of testing and evaluating the measures for a load case resulting in the required mechanism. This study proposes a weighted swinging anvil striking the helmeted head of a supine HIII ATD by means of a near vertex impact with a low degree of anterior head impact eccentricity to induce CF of the neck. The applied impact was chosen for the baseline (no neck brace) so that the upper and lower neck axial forces approached injury assessment reference values (IARV). The head impact point evaluated represents those typically associated with high-energy burst fractures occurring within the first 20 ms, with possible secondary disruption of posterior ligaments. The proposed test can be used to evaluate
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
Researchers at NASA Johnson Space Center have developed the Portable Knee Dynamometer, a device that enables quadricep and hamstring strength assessment, rehabilitation, and exercise capabilities for a user outside of a traditional clinical setting. Clinical orthopedic dynamometers for high-strength muscle groups tend to be large, heavy, and typically not readily transportable. NASA’s novel device can be easily carried to a patient who may be homebound or otherwise unable to travel to a clinic due to surgery, injury, or pathology
Animal–vehicle collisions (AVCs) can result in devastating injuries to both humans and animals. Despite significant advances in crash prediction models, there is still a significant gap when it comes to injury severity prediction models in AVCs, especially concerning small animals. It is no secret that large mammals can pose a significant threat to road safety; however, researchers tend to overlook the impact of domestic and small animals wandering along the roads. In this study, STATS19 road safety data was used containing any type of live animal, and a radial basis function (RBF) model was used to predict different severities of injury regardless of whether the animal was hit, or not. As a means of better understanding the factors contributing to severities, regression trees were used to identify and retain only the most useful predictors, removing the less useful ones. A comparison was made between the performance of the trees across a range of severity classes, and the model
Siami Doudaran, MeisamKonuralp, Hilmiye
Researchers from North Carolina State University have developed an exosome-coated stent with a “smart-release” trigger that could both prevent reopened blood vessels from narrowing and deliver regenerative stem cell-derived therapy to blood-starved, or ischemic, tissue
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world. Although DAMAGE correlates well with MPS in the human brain model across
Prasad, PriyaBarbat, Saeed D.Kalra, AnilDalmotas, Dainius J.
The objectives of this study were to provide insights on how injury risk is influenced by occupant demographics such as sex, age, and size; and to quantify differences within the context of commonly-occurring real-world crashes. The analyses were confined to either single-event collisions or collisions that were judged to be well-defined based on the absence of any significant secondary impacts. These analyses, including both logistic regression and descriptive statistics, were conducted using the Crash Investigation Sampling System for calendar years 2017 to 2021. In the case of occupant sex, the findings agree with those of many recent investigations that have attempted to quantify the circumstances in which females show elevated rates of injury relative to their male counterparts given the same level bodily insult. This study, like others, provides evidence of certain female-specific injuries. The most problematic of these are AIS 2+ and AIS 3+ upper-extremity and lower-extremity
Dalmotas, DainiusChouinard, AlineComeau, Jean-LouisGerman, AlanRobbins, GlennPrasad, Priya
The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test. The Accelerative Loading Fixture (ALF) version 2, located at APG’s Bear Point range
Pietsch, HollieCristino, DanielleDanelson, KerryBolte, JohnMason, MatthewKemper, AndrewCavanaugh, JohnHardy, Warren
Due to the high center of gravity of medium-duty vehicles, rollover accidents can easily occur during high-speed cornering and lane changes. In order to prevent the deformation of the body structure, which would restrict the survival space and cause compression injuries to occupants, it is necessary to investigate methods for mitigating these incidents. This paper establishes a numerical model of right-side rollover for a commercial medium-duty vehicle in accordance with ECE R66 regulations, and the accuracy of the model is verified by experiment. According to the results, the material and size parameters of the key components of the right side pillar are selected as design variables. The response result matrix was constructed using the orthogonal design method for total mass, energy absorption, maximum collision acceleration, and minimum distance from the survival space. A multi-objective optimization of 25 sets of sample points was performed using a multi-factor weight analysis
Zhang, JiangfanZou, XiaojunYuan, Liu-kaiZhang, Tang-yunWang, TaoWang, Liangmo
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model. The model is based on 2799 two-vehicle collision accident data from NHTSA CISS (The Crash Investigation Sampling System of NHTSA) traffic accident database.The results show that the model achieves high-precision prediction of occupant injury MAIS level (recall rate 0.8718, AUC(Area under Curve) 0.8579) without excluding vehicle model, and
Huida, ZhangLiu, YuRui, YangWu, XiaofanFan, TiqiangWan, Xinming
In 2021, 412,432 road accidents were reported in India, resulting in 153,972 deaths and 384,448 injuries. India has the highest number of road fatalities, accounting for 11% of the global road fatalities. Therefore, it is important to explore the underlying causes of accidents on Indian roads. The objective of this study is to identify the factors inherent in accidents in India using clustering analysis based on self-organizing maps (SOM). It also attempts to recommend some countermeasures based on the identified factors. The study used Indian accident data collected by members of ICAT-ADAC (International Centre for Automotive Technology - Accident Data Analysis Centre) under the ICAT-RNTBCI joint project approved by the Ministry of Heavy Industries, Government of India. 210 cases were collected from the National Highway between Jaipur and Gurgaon and 239 cases from urban and semi-urban roads around Chennai were used for the analysis. Based on this study, the following results were
Vimalathithan, KulothunganRao K M, PraneshVallabhaneni, PratapnaiduSelvarathinam, VivekrajManoharan, JeyabharathPal, ChinmoyPadhy, SitikanthaJoshi, Madhusudan
This study was conducted to assess the occupant restraint use and injury risks by seating position. The results were used to discuss the merit of selected warning systems. The 1989-2015 NASS-CDS and 2017-2021 CISS data were analyzed for light vehicles in all, frontal and rear tow-away crashes. The differences in serious injury risk (MAIS 3+F) were determined for front and rear seating positions, including the right, middle and left second-row seats. Occupancy and restraint use were determined by model year groups. Occupancy relative to the driver was 27% in the right-front (RF) and 17% in the second row in all crashes. About 39% of second-row passengers were in the left seat, 15% in the center seat and 47% in the right seat. Restraint use was lower in the second row compared to front seats. It was 43% in the right-front and 32% in the second-row seats in all crashes involving serious injury. Restraint use increased with model year groups. It was 63% in the ‘61-‘89 MY vehicles and 90
Parenteau, ChantalBurnett, Roger
Background: The Indian automobile industry, including the auto component industry, is a significant part of the country’s economy and has experienced growth over the years. India is now the world’s 3rd largest passenger car market and the world’s second-largest two-wheeler market. Along with the boon, the bane of road accident fatalities is also a reality that needs urgent attention, as per a study titled ‘Estimation of Socio-Economic Loss due to Road Traffic Accidents in India’, the socio-economic loss due to road accidents is estimated to be around 0.55% to 1.35% of India’s GDP [27] Ministry of road transport and highways (MoRTH) accident data shows that the total number of fatalities on the road are the highest (in number terms) in the world. Though passenger car occupant fatalities have decreased over the years, the fatalities of vulnerable road users are showing an increasing trend. India has committed to reduce road fatalities by 50% by 2030. In this context, the automotive
Mehta, PoojaPrasad, AvinashSrivastava, AakashArora, PankajHowlader, Ashim
Ankle injuries continue to occur in motor vehicle collisions, particularly in female occupants. The causes of these injuries are sometimes unclear. Further understanding of ankle fracture tolerance and refinement of ankle injury prediction tools would help future injury prediction efforts. The goal of this study was to identify ankle injury types of interest and develop a test methodology to induce these injuries. Cases were examined from NHTSA’s Crash Injury Research Engineering Network (CIREN) database. 68 cases with distal tibia fracture were identified from CIREN years 2017+ (vehicle models years 2010+). The most common fractures were pilon fractures and malleolar fractures. Based on these results, a test methodology was developed to induce pilon and medial malleolar fractures in isolated cadaveric tibiae to quantify local fracture tolerance. Nineteen post-mortem human subject (PMHS) specimens (9 male and 10 female across a wide anthropometric range) were tested. To replicate the
Noss, JuniorDonlon, John-PaulHallman, JasonCarpenter, RandolffForman, Jason
Diffuse Axonal Injury (DAI) is the most common type of traumatic brain injury, and it is associated with the linear and rotational accelerations resulting from head impacts, which often occurs in traffic related and sports accidents. To investigate the degree of influence of linear and rotational acceleration on DAI, a two-factor, two-level rat head impact experimental protocol involving linear and rotational acceleration was established using the L4(23) orthogonal table in this paper. Following the protocol, rats head was injured and diffusion tensor imaging (DTI) was performed at 24h post-injury to obtain the whole brain DAI injury, and the fractional anisotropy (FA) value of the corpus callosum was selected as the evaluation indicator. Using analysis of variance, the sum of squared deviations for the evaluation indicators was calculated to determine the degree of influence of linear acceleration and rotational acceleration on DAI. The results show that, 1. For the corpus callosum
Wang, PengSong, XueweiChen, DiyouZhu, XiyanQiu, JinlongWang, NanYu, TianmingZhao, Hui
The head injury mechanisms of occupants in traffic accidents will be more complicated due to the diversified seating postures in autonomous driving environments. The injury risks and assessment parameters in complex collision conditions need to be investigated thoroughly. Mining the simulation data by the support vector machine (SVM) and the random forest algorithms, some head injury predictive models for a 6-year-old child occupant under a frontal 100% overlap rigid barrier crash scenario were developed. In these head injury predictive models, the impact speed and sitting posture of the occupant were considered as the input variables. All of these head injury predictive models were validated to have good regression and reliability (R2>0.93) by the ten-fold cross-validation. When the collision speed is less than 60km/h, rotational load is the primary factor leading to head injury, and the trends of BrIC, von Mise stress, Maxshear stress, and MPS are similar. However, when the speed
Li, HaiyanWang, YanxinHe, LijuanLv, WenleCui, ShihaiRuan, Jesse Shijie
The Insurance Institute for Highway Safety (IIHS) introduced its updated side-impact ratings test in 2020 to address the nearly 5,000 fatalities occurring annually on U.S. roads in side crashes. Research for the updated test indicated the most promising avenue to address the remaining real-world injuries was a higher severity vehicle-to-vehicle test using a striking barrier that represents a sport utility vehicle. A multi-stiffness aluminum honeycomb barrier was developed to match these conditions. The complexity of a multi-stiffness barrier design warranted research into developing a new dynamic certification procedure. A dynamic test procedure was created to ensure product consistency. The current study outlines the process to develop a dynamic barrier certification protocol. The final configuration includes a rigid inverted T-shaped fixture mounted to a load cell wall. This fixture is impacted by the updated IIHS moving deformable barrier at 30 km/h. The fixture represents the stiff
Mueller, BeckyArbelaez, RaulHeitkamp, EricMampe, Christopher
Hood insulators are widely used in automotive industry to improve noise insulation, pedestrian impact protection and to provide aesthetic appeal. They are attached below the hood panel and are often complex in shape and size. Pedestrian head impacts are highly dynamic events with a compressive strain rate experienced by the insulator exceeding 300/s. The energy generated by the impact is partly absorbed by the hood insulators thus reducing the head injury to the pedestrian. During this process, the insulator experiences multi-axial stress states. The insulators are usually made of soft multi-layered materials, such as polyurethane or fiberglass, and have a thin scrim layer on either side. These materials are foamed to their nominal thickness and are compression molded to take the required shape of the hood. During this process they undergo thickness reduction, thereby increasing their density. Hence, the material properties vary greatly based on the thickness and strain rate
M, Gokula KrishnanSavic, VesnaV S, RajamanickamKavi, Swaroop
Automated driving systems (ADS) are designed toward safely navigating the roadway environment, which also includes consideration of potential conflict with other road users. Of particular concern is understanding the cumulative risk associated with vulnerable road users (VRUs) conflicts and collisions. VRUs represent a population of road users that have limited protection compared to vehicle occupants. These severity distributions are particularly useful in evaluating ADS real-world performance with respect to the existing fleet of vehicles. The objective of this study was to present event severity distributions associated with vehicle-cyclist collisions within an urban naturalistic driving environment by leveraging data from third-party vehicles instrumented with forward-facing cameras and a sensor suite (accelerometer sampling at 20 Hz and GPS [variable sampling frequency]). From over 66 million miles of driving, 30 collision events were identified. A global optimization routine was
Campolettano, Eamon T.Scanlon, John M.Kusano, Kristofer D.
Wrap around distance (WAD) is an important index to evaluate the contact position between pedestrian head and vehicle, and is also one of the key parameters of pedestrian accident reconstruction. The purpose of this paper is to explore whether the pedestrian headform testcan reflect the distribution of head injury in the real world. Firstly, in order to study the distribution of pedestrian head WAD in road accidents in China, a head WAD prediction model was established using logistic regression based on pedestrian height and vehicle collision speed. Secondly, in order to study the distribution of the risk of severe head injuries among pedestrians in accidents, the frequency of pedestrian head impact and the proportion of pedestrian head injury were counted respectively for sedans and SUVs. Subsequently, a risk curve for severe head injuries was constructed based on the head impact frequency and the proportion of severe injuries, utilizing a method that incorporates joint probability
Ye, BinLiu, YuLong, YongchengShi, LiangliangXinming, Wan
Most of the skin injuries caused by traffic accidents, sports, falls, etc. are in the intermediate strain rate range (1-100s-1), and the injuries may occur at different sites, impact velocities, and orientations. To investigate the multifactorial mechanical properties of rat skin at intermediate strain rates, a three-factor, three-level experimental protocol was established using the standard orthogonal table L9(34), which includes site (upper dorsal, lower dorsal, and ventral side), strain rate (1s-1, 10s-1, and 100 s-1), and sampling orientation (0°, 45°, and 90° relative to the spine). Uniaxial tensile tests were performed on rat skin samples according to the protocol to obtain stress-stretch ratio curves. Failure strain energy was selected as the index, and the influence of each factor on these indexes, the differences between levels of each factor, and the influence of errors on the results were quantified by analysis of variance (ANOVA). The results show that the site factor has
Yang, ShuaijunSong, XueweiZhao, HuiQiu, JinlongWang, NanYu, Tianming
Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt. Three different rubber contents with 14, 28, 33 weight percent (% wt.) were implemented as the ground alongside one regular non-rubberized (0%) asphalt mixture, one baseline, and one extra-compliant
Sahandifar, PooyaWallqvist, VivecaKleiven, Svein
Tubing for wound draining is an essential medical component used to manage the drainage of fluids from surgical or traumatic wounds. This tubing is commonly employed after surgical procedures to facilitate the removal of excess fluids (such as blood or serous fluid) from the wound site, or in traumatic Injuries where there is a need to control and remove fluids to aid in the healing process. Other uses include draining abscesses or fluid collections, helping to prevent infection, and promote faster healing, or to manage fluid accumulation in body cavities, preventing complications like seromas or hematomas. By removing excess fluids, tubing promotes a cleaner wound environment, which is conducive to faster healing
Items per page:
1 – 50 of 2798