Browse Topic: Injuries

Items (2,831)
The safety of vulnerable road users, particularly pedestrians, cyclists, and motorcyclists, is a paramount concern in automotive design and regulation. In India, the situation is particularly alarming, with pedestrians being the second highest victims of road accidents, as evidenced by over 32,825 reported pedestrian accidents and 4,836 cyclist fatalities in 2022, excluding two-wheeler motorcyclists. On a global scale, the prevalence of such incidents has prompted European countries to introduce new regulatory requirements, such as ECE R127.03. This regulation encompasses the evaluation of pedestrian head form impacts on windshields, assessing the typical behavior of glass through jerk criteria following initial contact, in conjunction with the existing Head Injury Criterion (HIC) evaluation for pedestrian head forms. These criteria’s are meticulously designed to ensure that both acceleration and jerk remain within safe limits to reduce the severe risk of severe injury to head of
Kumar, RitikA, Rajesh
PU foam shows a excellent energy absorbing dissipation properties during impact load so it commonly used in car seats, cabin and crash protection system. Specifically, in vehicle seats PU foams play a critical role in protecting occupants during crash scenarios by absorbing energy, distributing forces, and improving seatbelt performance, additionally providing countermeasures for head impact protection. The movement of the seat and the direction of the force during crash testing are highly unpredictable. The material behaviour of PU foam is captured using an isotropic, hyper-elasticity-based constitutive model available in LS-DYNA through MAT_083. This model is designed to take into account the foam's compressibility, sensitivity to strain rates, low Poisson's ratio, and hysteresis. The characterization of a PU foam with a nominal density of 65 kg/m3 was performed using quasi-static compressive testing of 0.01/s and dynamic compressive testing of 1/s,13/s, 120/s, as well as a quasi
Gaurav, Ashish KumarKrishnamoorthy, KunjuVaratharajan, Senthilkumaran
As vehicles are becoming more complex, maintaining the effectiveness of safety critical systems like adaptive cruise control, lane keep assist, electronic breaking and airbag deployment extends far beyond the initial design and manufacturing. In the automotive industry these safety systems must perform reliably over the years under varying environmental conditions. This paper examines the critical role of periodic maintenance in sustaining the long-term safety and functional integrity of these systems throughout the lifecycle. As per the latest data from the Ministry of Road Transport and Highways (MoRTH), in 2022, India reported a total of 4.61 lakh road accidents, resulting in 1.68 lakh fatalities and 4.43 lakh injuries. The number of fatalities could have been reduced by the intervention of periodic services and monitoring the health of safety critical systems. While periodic maintenance has contributed to long term safety of the vehicles, there are a lot of vehicles on the road
HN, Sufiyan AhmedKhan, FurqanSrinivas, Dheeraj
Pedestrian safety is a critical concern in India, where rapid urbanization, increased vehicular traffic, and inadequate infrastructure pose significant risks to pedestrians. This study aims to analyze pedestrian accidents across various regions in India, drawing insights from comprehensive accident data. By examining accident patterns, risk factors, and contributing variables, we seek to inform policy recommendations and enhance pedestrian safety measures.
Howlader, AshimMehta, Pooja
The objective of the present study is to examine trends in occupant kinematics and injuries during side impact tests carried out on vehicle models over the period of time. Head, shoulder, torso, spine, and pelvis kinematic responses are analysed for driver dummy in high speed side impacts for vehicle model years, MY2016-2024. Side impact test data from the tests conducted at The Automotive Research Association of India (ARAI) is examined for MY2016-2024. The test procedure is as specified in AIS099 or UNECE R95, wherein a 950kg moving deformable barrier (MDB) impacts the side of stationary vehicle at 50km/hr. An Instrumented 50th percentile male EUROSID-2 Anthropomorphic Test Device is positioned in the driver seat on the impacting side. Occupant kinematic data, including head accelerations, Head Injury Criterion (HIC15), Torso deflections at thorax and abdominal ribs, spine accelerations at T12 vertebra, and pelvis accelerations are evaluated and compared. The “peak” and “time to
Mishra, SatishBorse, TanmayKulkarni, DileepMahajan, Rahul
India has emerged as the world’s largest market for motorized two-wheelers (M2Ws) in 2024, reflecting their deep integration into the country’s transportation fabric. However, M2Ws are also a highly vulnerable road user category as according to the Ministry of Road Transport and Highways (MoRTH), the fatality share of M2W riders rose alarmingly from 27% in 2011 to 44% in 2022, underlining the urgency of understanding the circumstances that lead to such crashes. This study aims to investigate the pre-crash behavior and crash-phase characteristics of M2Ws using data from the Road Accident Sampling System – India (RASSI), the country’s only in-depth crash investigation database. The analysis covers 3,632 M2Ws involved in 3,307 crash samples from 2011 to 2022, representing approximately 5 million M2Ws nationally. Key variables examined include crash configuration, collision partner, road type, pre-event movement, travel speed, and human contributing factors. The study finds that straight
Govardhan, RohanPadmanaban, JeyaJethwa, Vaishnav
Real-world crashes involve diverse occupants, but traditional restraint systems are designed for a limited range of body types considering the applicable regulations and protocols. While conventional restraints are effective for homogeneous occupant profiles, these systems often underperform in real-world scenarios with diverse demographics, including variations in age, gender, and body morphology. This study addresses this critical gap by evaluating adaptive restraint systems aligned with the forthcoming EURO NCAP 2026 protocols, which emphasize real-world crash diversity and occupant type. Through digital studies of frontal impact scenarios, we analyze biomechanical responses using adaptive restraints across varied occupant demographics, focusing on head and chest injury (e.g., Chest Compression Criterion [CC]). This study used a Design of Experiments (DOE) approach to optimize occupant protection by timing the actuating of these adaptive systems. The results indicate that activating
satija, AnshulSuryawanshi, YuvrajChavan, AvinashRao, Guruprakash
A crash pulse is the signature of the deceleration experienced by a vehicle and its occupants during a crash. The deceleration-time plot or crash pulse provides key insights into occupant kinematics, occupant restraints, occupant loading and efficiency of the structure in crash energy dissipation. Analysing crash pulse characteristics like shape, slope, maximum deceleration, and duration helps in understanding the impact of the crash on occupant safety and vehicle crashworthiness. This paper represents the crash pulse characterization study done for the vehicles tested at ARAI as per the ODB64 test protocol. Firstly, the classification and characterization of the crash pulses is done on the basis of the unladen masses of the vehicles. The same are further analysed for suitability of mathematical waveform models such as Equivalent Square Wave (ESW), Equivalent Triangular Wave (ETW), Equivalent Sine Wave (ESW), Equivalent Haversine Wave (EHSW) as well as EDTW (Equivalent dual trapezia
Mishra, SatishKulkarni, DileepBorse, TanmayMahindrakar, Rahula AshokMahajan, RahulJaju, Divyan
This study is conducted to analyse the significance of the Bharat NCAP crash test protocol in real road crashes in India. Accident data from on-the-spot investigation (Road Accident Sampling System India) and Government of India’s, Ministry of Road Transport and Highways official road accident statistics 2023 is used together to understand the real road accidents in India. The current Bharat NCAP crash test protocol is compared against the real road accidents and the frequency of the same in discussed in this paper. A seven-step calculation method is developed to analyse real accidents together with existing crash tests by using similar crash characteristics like impact area, overlap and direction of force. This method makes the real accident comparable with the corresponding crash test by calculating the impact energy during the collision between the real accident and a collision under crash test conditions. Relevant parameters in real accidents that significantly influence the test
Moennich, JoergLich, ThomasKumaresh, Girikumar
This paper investigates the current state of road safety for female occupants in India, with a particular focus on road accident statistics and the gaps in safety regulations. According to the Road Accident in India 2022 report by the Ministry of Road Transport and Highways (MoRTH), female occupants constitute 16% of passenger car fatalities. Using a extensive dataset of 596 passenger car accidents involving at least one female occupant from the Road Accident Sampling System – India (RASSI), this study evalu the severity and patterns of injuries sustained by female drivers and passengers. The analysis identifies critical shortcomings in existing safety measures, particularly in addressing anatomical differences and male-centric safety designs. Gender-sorted injury trends reveal heightened vulnerabilities for women in crash scenarios. Current regulatory frameworks bank on crash test dummies developed on average male anthropometry, neglecting female-specific biomechanical needs in
Ayyagari, ChandrashekharG, Santhosh KumarRao, Guruprakash
Asian countries capture a significant share of global two-wheeler usage, with India consistently ranking among the top three countries. 2 wheelers are a significant portion of road traffic and contribute heavily to the national burden of road fatalities. Despite regulatory mandates, helmet non-compliance remains widespread due to limited enforcement reach and behavioural inertia. The current strategies for enforcement, such as traffic policing or external camera-based surveillance, are reactive, infrastructure-dependent, are ineffective at scale. To address these limitations, we propose system that will detect if the user is wearing the helmet. The system is designed and packaged to be integrated into the 2-wheeler directly and then execute functions in real-time for helmet noncompliance. The software algorithm is an AI-powered, vision-based system that leverages deep learning techniques for helmet detection. This model is enforced with a custombuilt dataset accommodating cultural and
Kandimalla, Om MahalakshmiShah, RavindraKarle, Ujjwala
Curtain airbags are the most effective protective systems to prevent severe/fatal head injuries in side collisions with narrow objects such as poles or trees. One of the important parameters of curtain airbags is the inflated zone i.e. the coverage area of the airbag, which decides the extent of head protection for occupants with different anthropometries in different seating rows. EuroNCAP first introduced the concept of Head Protection Device Assessment (HPDA) in 2015., In addition to the performance requirements in the dynamic test, EuroNCAP started assessing the deployed curtain airbag/s for its area coverage and verification of inflated zones for various anthropometries over occupant rows. In India, there is now a near total adoption of curtain airbags as standard fitment by the OEMs. Further, introduction of Bharat NCAP (BNCAP), a Perpendicular Pole Side Impact test is conducted for assessing the effectiveness of curtain airbags in a dynamic test, but currently, does not perform
Jaju, DivyanKulkarni, DileepMahajan, Rahul
As urban population continues to grow, the safety of Vulnerable Road Users (VRUs) particularly in the presence of Heavy Good Vehicles (HGVs) has emerged as a critical concern. Research indicates that VRUs are at a 50% higher risk of fatal injury in collisions involving HGVs compared to passenger cars. To address this issue, this study proposes a novel pedestrian protection system that integrates LiDAR (Light Detection and Ranging) technology with a reusable airbag system to mitigate the severity of collisions. The proposed solution adopts a twofold approach for enhancing VRU protection in scenarios involving HGVs. In both approaches, LiDAR sensors are used to generate a real-time 3D model of the vehicle’s surroundings, enabling accurate VRU detection and predictive collision analysis. Scenario 1: When vehicle speed exceeds the first threshold and a collision is unavoidable, the onboard ECU activates front lid actuators, extending the vehicle's front lid which can be retracted back to
Patil, UdaySriharsha, ViswanathPillai, Rajiv
In emerging markets, especially in India and other similar countries, the growing traffic density on the roads leads to different types of accidents, including frontal head-on collisions, rear-end collisions, side-impact collisions, collisions with fixed objects such as electric poles, trees, road guard rails, road dividers, and accidents involving pedestrians, cyclists, and two-wheelers. These accidents could be due to over speeding, distracted driving, violation of traffic rules, and inadequate road infrastructure etc. Providing the necessary safety restraint systems (Airbags and Seat belts) in vehicles and ensuring their robust functionality in different real-world accident scenarios will be challenging for vehicle manufacturers. It is high time to redefine the traditional collision-sensing architecture strategies with a logical approach based on a thorough study of available accident data statistics, types of objects, and scenarios leading to severe accidents. Among these, rear-end
KOVALAM, SUNIL KUMAR
Severe rear-impact collisions can cause significant intrusion into the occupant compartment when the structural integrity of the rear survival space is insufficient. Intrusion patterns are influenced by impact configuration—underride, in-line, or override—with underride collisions channeling forces below the beltline through the rear wheels as a primary load path. This force concentration rapidly propels the rear seat-pan forward, contacting the rearward-rotating front seatback. The resulting bottoming-out phenomenon produces a forward impulse that amplifies loading on the front occupant’s upper torso, increasing the risk of thoracic injury even when the head is properly supported by the head restraint. This study analyzes a real-world rear-impact collision that resulted in fatal thoracic injuries to the driver, attributed to the interaction between the driver’s seatback and the forward-moving rear seat pan. A vehicle-to-vehicle crash test was conducted to replicate similar intrusion
Thorbole, Chandrashekhar
Indian passenger car accident data indicates that approximately 44% of crashes are frontal impacts (Refer fig 1). Among the injuries sustained in these crashes, lower leg injuries are notably critical, contributing to nearly 25% of driver occupant injuries (Refer fig 2). To evaluate such injuries, the Bharat New Car Assessment Program (BNCAP) includes lower leg injury metrics as part of the Frontal Offset Deformable Barrier (ODB64) test. While the overall injury performance is assessed at the vehicle level, BNCAP also monitors vehicle interior intrusions—particularly pedal intrusions—as key contributors to lower limb injury severity. A major challenge in frontal crashes is the intrusion of the vehicle's front-end structure into the occupant compartment. Rigid components, particularly the brake pedal assembly, can be displaced rearward during a crash, significantly increasing the risk of lower leg injuries. Therefore, minimizing pedal intrusions into the driver foot-well is critical for
Shetti, Rahul R.Kudale, ShaileshNaik, NagarajBisen, BadalKotak, VijayDudhewar, SwapnilBhagat, AmitDurgaprasad, HNV
Road departures remain a major cause of fatal accidents in passenger vehicles, especially on highways, driving the demand for robust and affordable active safety technologies. Conventional Road Departure Mitigation Systems (RDMS) typically depend on camera- or LiDAR-based sensing, which can be cost-prohibitive and challenging to integrate across diverse vehicle platforms. The available RDMS technologies in the market focuses on road departure detection, and lacks the mitigation strategy. Although existing RDMS solutions have enhanced vehicle safety, their dependency on expensive, specialized sensors limits broader adoption, particularly in cost-sensitive market segments. This study introduces a sensor-less, cost-effective RDMS technology which has two parts, detection and mitigation. The technology utilizes existing vehicle sensors accessed through vehicle CAN channels. A decision tree based logic algorithm processes key parameters such as vehicle speed, steering angle, yaw rate, and
Iqbal, ShoaibAdsul, Sourabh
Rear-facing infant seats that are positioned behind front outboard vehicle seats are at risk of being compromised by the rearward yielding of occupied front seat seatbacks during rear-impact collisions. This movement can cause the plastic shell of the infant seat to collapse and deform, increasing the risk of head injuries to the infant. Current designs of rear-facing infant seats typically do not consider the loading effects from the front seatback during rear-impact situations, which results in weak and collapsible shell structures. Moreover, regulatory compliance tests, such as FMVSS 213, do not include assessments of rear-facing infant seats under realistic rear-impact conditions. as the bench used for the regulatory test lacks realistic vehicle interior components. This study emphasizes the need for revised testing methodologies that employ sled tests with realistic seatback intrusion conditions to facilitate the development of improved infant seat designs. Research shows that
Thorbole, Chandrashekhar
The proportion of pedestrian injuries in motor-vehicle-crash-induced injuries in the U.S. has been increasing in recent years. Although extensive police-reported data on pedestrian injuries is available, the incomplete nature of the crash and injury information in these datasets presents a significant challenge for statistical injury analysis and pedestrian protection research. This study aims to address this issue by combining simulation data and field data to impute critical missing crash information in pedestrian crash cases through machine learning techniques. A total of 9,000 MADYMO simulations were generated using maximal projection design, incorporating variables such as pedestrian demographics, crash conditions, and vehicle impact parameters. Gaussian process (GP) surrogate models were trained to predict injury risks with simulation parameters calibrated using the complete crash information in the Pedestrian Crash Data Study (PCDS) dataset. Maximum likelihood estimations were
Song, XiaoyangSun, WenboHu, JingwenFlannagan, CarolKarlow, JaredBowman, PatrickFarooq, IskanderKalra, Anil
Single motorcycle accidents are common in Nagano Prefecture where is mountainous areas in Japan. In a previous study, analysis of traffic accident statistics data suggested that the fatality and serious injury rates for uphill right curves and downhill left curves are high, however the true causes of these accidents remain unclear. In this study, a motorcycle simulator was used to evaluate the driving characteristics due to these road alignments. Evaluation courses based on combinations of uphill/downhill slopes and left/right curves were created, and experiments were conducted. The subjects of the study were expert riders and novice riders. The results showed that right curves are even more difficult to see near the entrance of the curve when accompanied by an uphill slope, making it easier to delay recognition and judgment of the curve. Expert riders recognized curves faster than novice riders. Additionally, expert riders take a large lean of the vehicle body, actively attempted to
Kuniyuki, HiroshiKatayama, YutaKitagawa, TaiseiNumao, Yusuke
Innovators at the NASA Johnson Space Center have developed a soft, wearable, robotic upper limb exoskeleton garment designed to actively control the shoulder and elbow, both positioning the limb in specific orientations and commanding the limb through desired motions. The invention was developed to provide effective upper extremity motor rehabilitation for patients with neurological impairments (e.g., traumatic brain injury, stroke).
Research on the subjective items of airbag dangerous deployment in the 2024 version of C-NCAP regulations, which includes two aspects: the action of the airbag sweeping over the face and the speed of airbag deployment. This article starts from other aspects. On the one hand, when examining the action of airbags sweeping over the face, it is necessary to consider the acceleration index. Based on the head injury index of the front dummy in collision in C-NCAP, the injury index of face - sweeping risk is defined; On the other hand, the force level of facial injury should also be examined, and the definition and experimental methods should be discussed based on the force level that the head can withstand. Added airbag deployment hazard assessment for the HIII 5 female dummy.
Tian, WeiXue, KaileWang, Qinggui
Background. Road safety is a major public concern, as road traffic accidents result in numerous casualties and significant economic losses. In traffic collisions, the pattern of injuries sustained by drivers often varies depending on various accident factors. The interactions between safety device use, alcohol consumption status, and injury locations can reveal important association patterns and insights. Therefore, we examine patterns in injury locations, accounting for safety device use and alcohol consumption. Method. In this study, we applied two complementary graphical approaches, including multiple correspondence (MCA) analyses and mosaic plots (MPs). Results. The MPs reveal the existence of meaningful patterns between injury location, alcohol consumption, and safety device. Likewise, the MCA reveals that head/neck injuries are more likely to be associated with alcohol impairment. In particular, sober status and safety device used tend to be associated with all injury locations
Chen, Ching-FuWa Lukusa, Martin Tshishimbi
The return to Earth is a rough ride for astronauts, from the violent turbulence of atmospheric entry to a jarring landing. Hitting the ground in a Soyuz capsule is the equivalent of driving a car backward into a brick wall at 20 mph, and it’s resulting in more head and neck injuries than NASA computer models predicted. To collect more data, NASA’s Johnson Space Center in Houston commissioned a Small Business Innovation Research (SBIR) project to develop a wearable data recorder for astronaut spacesuits. One result, created by Diversified Technical Systems Inc. (DTS), is a miniature commercial device that now collects and transmits data for any application from airplane test flights to tracking high-value shipments.
This study presents an analysis of 364 motorcycle helmet impact tests, including standard certified full-face, open-face, and half-helmets, as well as non-certified (novelty) helmet designs. Two advanced motorcycle helmet designs that incorporate technologies intended to mitigate the risk of rotational brain injuries (rTBI) were included in this study. Results were compared to 80 unprotected tests using an instrumented 50th percentile Hybrid III head form and neck at impact speeds ranging from 6 to 18 m/s (13 to 40 mph). Results show that, on average, the Head Injury Criterion (HIC) was reduced by 92 percent across certified helmets, compared to the unhelmeted condition, indicating substantial protection against focal head and brain injuries. However, findings indicate that standard motorcycle helmets increase the risk of AIS 2 to 5 rotational brain injuries (rTBI) by an average of 30 percent compared to the unprotected condition, due to the increased rotational inertia generated by
Lloyd, John
The development of drones has raised questions about their safety in case of high-speed impacts with the head. This has been recently studied with dummies, postmortem human surrogates and numerical models but questions are still open regarding the transfer of skull fracture tolerance and procedures from road safety to drone impacts. This study aimed to assess the performance of an existing head FE model (GHBMC M50-O v6.0) in terms of response and fracture prediction using a wide range of impact conditions from the literature (low and high-speed, rigid and deformable impactors, drones). The fracture prediction capability was assessed using 156 load cases, including 18 high speed tests and 19 tests for which subject specific models were built. The GHBMC model was found to overpredict peak forces, especially for rigid impactors and fracture cases. However, the model captured the head accelerations tendencies for drone impacts. The formulation of bone elements, the failure representation
Pozzi, ClémentGardegaront, MarcAllegre, LucilleBeillas, Philippe
Recent studies have investigated head injury metrics, including mild traumatic brain injury (mTBI), or concussion risks, in low- to moderate-speed rear-end collisions, with linear and angular head accelerations contributing to the risk of developing a concussion. The present study analyzes head acceleration values in rear-end collisions at an impact severity of 5–30 km/h delta-V. Biomechanical data was obtained from HIII 50th percentile male anthropomorphic test devices (ATDs) seated in the target subject vehicles and utilizing safety restraints and head rests. Concussion risks were calculated from resultant linear and angular head accelerations recorded in the ATDs, and a linear regression model was used to determine what, if any, relationship existed between these head injury metrics and impact severity. The results indicate that there is a significant and positive relationship between head acceleration metrics and impact severity, particularly in the sagittal plane, with F-values
Garcia, BeatrizEmanet, Hatice SeydaHoffman, Austin
This research investigated injury risk functions (IRF) for the THOR-AV 50th percentile male dummy in accordance with ISO TS18506, focusing on areas with design changes. The IRF development utilized a combination of physical tests and finite element (FE) model simulations. For certain postmortem human subject test cases lacking physical dummy tests, the validated Humanetics THOR-AV FE model (v0.7.2) was used to quickly generate data, with the understanding that final IRFs based on full physical test data might offer greater accuracy. Log-logistic, log-normal, and Weibull survival functions were fitted with 95% confidence intervals. The Akaike Information Criterion, Goodman-Kruskal-Gamma, Area under the Curve of Receiver Operating Characteristic, and Quantile-Quantile plot were employed to assess the prediction strength and relative quality of the final IRF selections. Among the three survival distributions, the Weibull distribution provided the best fit. The lumbar Fz was identified as
Wang, Z. JerryHu, George
Recent studies have found that Brain Injury Criteria (BrIC) grossly overpredicts instances of real-world, severe traumatic brain injury (TBI). However, as it stands, BrIC is the leading candidate for a rotational head kinematics-based brain injury criteria for use in automotive regulation and general safety standards. This study attempts to understand why BrIC overpredicts the likelihood of brain injury by presenting a comprehensive analysis of live primate head impact experiments conducted by Stalnaker et al. (1977) and the University of Pennsylvania before applying these injurious conditions to a finite element (FE) monkey model. Data collection included a thorough analysis and digitization of the head impact dynamics and resulting pathology reports from Stalnaker et al. (1977) as well as a representative reconstruction of the Penn II baboon diffuse axonal injury (DAI) model. Computational modeling techniques were employed on a FE Rhesus monkey model, first introduced by Arora et al
Demma, Dominic R.Tao, YingZhang, LiyingPrasad, Priya
There are many riders who drive motorcycles on winding mountain roads and caused single motorcycle traffic accidents on curved roads by lane departure. Driving a motorcycle requires subtle balancing and maneuvering. In this study, in order to clarify the influence of lane departure caused by inadequate driving maneuvers against road alignment, the authors analyzed the required curve initial operation and driving maneuvers in curves depending on the traveling speed using a kinematics simulation for motorcycle dynamics. In addition, it was analyzed how inadequate driving maneuvers for curved roads can easily cause lane departure. As a result, it shows that the steering maneuvers and the lean of motorcycle body during the curves are highly affected by the vehicle speed, and the required maneuvers increases rapidly with increasing speed. The inadequate maneuver in the curves, especially for the lean of motorcycle body and steering torque, even by 10%, may cause failure to follow the
Kuniyuki, HiroshiTakechi, So
The skull-brain interface is structurally complex, and various simplification methods have been employed in existing head models to simulate the interaction between the skull and the brain. The modeling approach of the skull-brain interface determines how loads are transmitted to the interior, which is critical for accurately simulating head injuries. Thus, understanding the impact of current skull-brain interface modeling approaches on intracranial simulation results is significant. This study aims to explore the influence of different skull-brain interface modeling methods on the results of finite element models during the development of Advanced Chinese Human Body Models (AC-HUMs) based on the LS-DYNA solver. By comparing the responses of rigidly bonded connections (tied Contact), failure-allowing bonded contacts (tiebreak Contact), shared nodes, and arbitrary Lagrangian-Eulerian (ALE) methods under the Nahum 37 test load conditions, the study analyzes the effects of different
Gan, Qiuyujiang, YejieJunpeng, XuZhou, RunzhouZhang, LiyingJiang, Binhui
Real-world data show that abdominal loading due to a poor pelvis-belt restraint interaction is one of the primary causes of injury in belted rear-seat occupants, highlighting the importance of being able to assess it in crash tests. This study analyzes the phenomenon of submarining using video, time histories, and statistical analysis of data from a Hybrid III 5th female dummy seated in the rear seat of passenger vehicles in moderate overlap frontal crash tests. This study also proposes different metrics that can be used for detecting submarining in full-scale crash tests. The results show that apart from the high-speed videos, when comparing time-series graphs of various metrics, using a combination of iliac and lap belt loads was the most reliable method for detecting submarining. Five metrics from the dynamic sensors (the maximum iliac moment, maximum iliac force drop in 1 ms, time for 80% drop from peak iliac force, maximum pelvis rotation, and lumbar shear force) were all
Jagtap, Sushant RJermakian, Jessica SEdwards, Marcy A
The proportion of pedestrian fatalities due to traffic accidents is higher at night than during the day. Drivers can more easily recognize pedestrians by setting their headlights to high beam, but use of high beam poses the issue of increasing glare for pedestrians. This study proposes a lighting technology that increases the noticeability of pedestrians for drivers and the noticeability of approaching vehicles for pedestrians while at the same time helping to reduce glare for pedestrians. The newly designed lighting enables geometric patterns projection lighting that makes use of projection technology. This geometric pattern projection lighting was compared with conventional low beam and high beam headlights to verify the effectiveness. Tests were conducted on a closed course with the participation of 20 drivers to evaluate the functionality of each headlight type. In these tests, subjects performed specific tasks such as evaluation of pedestrian visibility from the driver’s point of
Kawamura, KazuyukiOshida, Kei
In order to effectively predict the vehicle safety performance and reduce the cost of enterprise safety tests, a generalized simulation model for active and passive vehicle safety was proposed. The frontal driver-side collision model under the intervention of the Autonomous Emergency Braking (AEB) was created by using the MADYMO software. The collision acceleration obtained from the sled test was taken as the original input of the model to conduct simulation for the working conditions under different sitting postures of the human body. The injury values of various parts of the Hybrid III 50th dummy were read. Based on the correlation between the two, an active and passive simulation model was established through the Back Propagation (BP) neural network. The input of the model was the inclination angle centered on the dummy's waist, and the output was the acceleration of the dummy's head. The results showed that the comprehensive prediction accuracy rate exceeded 80%. Therefore, the
Ge, Wangfengyao, LV
Research on modeling head injury metrics and head acceleration waveforms from real-world collisions has been limited compared to vehicle crash pulses. Prior studies have used rectangular, triangular, polynomial, half-sine, and haversine pulse functions to model vehicle crash pulses and have employed more complex approximations for head injury metrics. This study aimed to develop a method to predict 15 ms Head Injury Criterion (HIC15) in frontal passenger vehicle impacts using these simple pulse functions, where only occupant peak head acceleration and head impact duration are known. Vehicle crash tests from the New Car Assessment Program (NCAP) were selected for frontal impacts that included driver occupants. Head acceleration and shoulder belt load channels of Hybrid III 50th percentile male anthropomorphic test devices were collected and separated for training a set of ratios and testing their performance. Rectangular, triangular, quadratic, half-sine, and haversine pulse functions
Westrom, ClydeTanczos, RachelAdanty, KevinShimada, Sean
In the pre-crash emergency braking scenario, the occupant inside the vehicle will move forward due to inertia, deviating from the standard upright seating position for which conventional restraint systems are designed. Previous studies have mainly focused on the influence of out-of-position (OOP) displacement on occupant injuries in frontal collisions, and provided solutions such as active pretensioning seatbelts (APS). But little attention has been paid to the influence of OOP on whiplash injury during a subsequent rear-end collision. To investigate the forward OOP impact on whiplash injuries and the effectiveness of APS in this accident scenario, a vehicle interior model with an active human body model (AHBM) was setup in the MADYMO simulation platform. Different braking strengths (0.8g and 1.1g), APS triggering times (from 0.2s before to 0.2s after the braking initiation) and pretensioning forces (from 100N to 600N) were input to the simulation matrix. The occupant’s forward OOP
Fei, JingQiu, HangWang, PeifengLiu, YuCheng, James ChihZhou, QingTan, Puyuan
Items per page:
1 – 50 of 2831