Browse Topic: Fatal injuries

Items (716)
The objectives of this study were to provide insights on how injury risk is influenced by occupant demographics such as sex, age, and size; and to quantify differences within the context of commonly-occurring real-world crashes. The analyses were confined to either single-event collisions or collisions that were judged to be well-defined based on the absence of any significant secondary impacts. These analyses, including both logistic regression and descriptive statistics, were conducted using the Crash Investigation Sampling System for calendar years 2017 to 2021. In the case of occupant sex, the findings agree with those of many recent investigations that have attempted to quantify the circumstances in which females show elevated rates of injury relative to their male counterparts given the same level bodily insult. This study, like others, provides evidence of certain female-specific injuries. The most problematic of these are AIS 2+ and AIS 3+ upper-extremity and lower-extremity
Dalmotas, DainiusChouinard, AlineComeau, Jean-LouisGerman, AlanRobbins, GlennPrasad, Priya
In 2021, 412,432 road accidents were reported in India, resulting in 153,972 deaths and 384,448 injuries. India has the highest number of road fatalities, accounting for 11% of the global road fatalities. Therefore, it is important to explore the underlying causes of accidents on Indian roads. The objective of this study is to identify the factors inherent in accidents in India using clustering analysis based on self-organizing maps (SOM). It also attempts to recommend some countermeasures based on the identified factors. The study used Indian accident data collected by members of ICAT-ADAC (International Centre for Automotive Technology - Accident Data Analysis Centre) under the ICAT-RNTBCI joint project approved by the Ministry of Heavy Industries, Government of India. 210 cases were collected from the National Highway between Jaipur and Gurgaon and 239 cases from urban and semi-urban roads around Chennai were used for the analysis. Based on this study, the following results were
Vimalathithan, KulothunganRao K M, PraneshVallabhaneni, PratapnaiduSelvarathinam, VivekrajManoharan, JeyabharathPal, ChinmoyPadhy, SitikanthaJoshi, Madhusudan
Background: The Indian automobile industry, including the auto component industry, is a significant part of the country’s economy and has experienced growth over the years. India is now the world’s 3rd largest passenger car market and the world’s second-largest two-wheeler market. Along with the boon, the bane of road accident fatalities is also a reality that needs urgent attention, as per a study titled ‘Estimation of Socio-Economic Loss due to Road Traffic Accidents in India’, the socio-economic loss due to road accidents is estimated to be around 0.55% to 1.35% of India’s GDP [27] Ministry of road transport and highways (MoRTH) accident data shows that the total number of fatalities on the road are the highest (in number terms) in the world. Though passenger car occupant fatalities have decreased over the years, the fatalities of vulnerable road users are showing an increasing trend. India has committed to reduce road fatalities by 50% by 2030. In this context, the automotive
Mehta, PoojaPrasad, AvinashSrivastava, AakashArora, PankajHowlader, Ashim
The Insurance Institute for Highway Safety (IIHS) introduced its updated side-impact ratings test in 2020 to address the nearly 5,000 fatalities occurring annually on U.S. roads in side crashes. Research for the updated test indicated the most promising avenue to address the remaining real-world injuries was a higher severity vehicle-to-vehicle test using a striking barrier that represents a sport utility vehicle. A multi-stiffness aluminum honeycomb barrier was developed to match these conditions. The complexity of a multi-stiffness barrier design warranted research into developing a new dynamic certification procedure. A dynamic test procedure was created to ensure product consistency. The current study outlines the process to develop a dynamic barrier certification protocol. The final configuration includes a rigid inverted T-shaped fixture mounted to a load cell wall. This fixture is impacted by the updated IIHS moving deformable barrier at 30 km/h. The fixture represents the stiff
Mueller, BeckyArbelaez, RaulHeitkamp, EricMampe, Christopher
Over the years the vehicle population has drastically grown which increases the number of road accidents. The accident severity caused fatality and disability being reduced by introducing energy absorption materials (Crash tube). Over the years, researchers have used aluminium, magnesium, and titanium crash tubes to enhance the energy absorption characteristics during different crash scenarios. However crash tube will possess sufficient rigidity to absorb the impact force during collision but it is still challenging to identify the right material. At the same time, this paper aims to examine the energy absorption characteristics of Aluminium-Magnesium hybrid material (Al-Mg 5456) crash tube designs. Three designs were considered square, cylindrical, and hexagonal designs along with different notch designs to minimize the weight percentage of tubes. The LSDYNA results the oval notches performed better in energy absorption when compared to other designs. Hence, the present findings can
Krishnasamy, PrabuRajamurugan, G.Agarwal, Vyomrai, Ritesh
In day-to-day life, accidents do occur frequently all around the globe. It is difficult to prevent these accidents as they occur due to different reasons, which cannot be easily controlled. However, the fatal injuries occurring to passengers can be reduced by installing efficient safety systems in vehicles, which will help in saving the lives of mankind. Many safety systems are being installed in vehicles such as seat belt restraints, airbags, etc. Generally, three-point seat belts are installed in passenger vehicles for safety purposes. This type of seat belt doesn't arrest the entire motion of the occupant's body during vehicle crashes, which can lead to fatal injuries and sometimes even death during vehicle crashes. To buckle passengers with seats, we can use five-point seat belts which will help in mitigating the injuries as compared to three-point seat belts. In this paper, we evaluate the performance of five-point seat belts on occupant safety during vehicle crashes on flat rigid
Vinodh, T.Dineshkumar, C.Jeyakumar, P.D.Muthiya, Solomon JenorisVinayagam, Nadana KumarChristu Paul, R.Dhanraj, Joshuva Arockia
The automotive industry has achieved remarkable advances in passenger car safety systems to mitigate the risk of injuries and fatalities caused by road accidents. However, to further improve vehicle safety, it is essential to have a deeper understanding of real-world accidents and the true safety benefits of various safety systems in the field. This requires a framework to evaluate the effectiveness of safety systems in reducing occupant injury and fatalities. This study aims to use machine-learning techniques to predict occupant injury severity by considering accident parameters and safety systems, using the Road Accident Sampling System - India (RASSI) real-world accident data. The RASSI database contains comprehensive accident data, including various factors that contribute to occupant injury. The study focused on fifteen accident parameters that represent key aspects of crash scenarios such as vehicle type, accident type, vehicle speed, and occupant details. Multiple machine
G, Santhosh KumarKhatavkar, AkshayKulkarni, PrasadKoralla, SivaprasadSahu, Dilip
Child crash injury protection in severe rear impact chiefly depends on how well the rear survival space bounded by the vehicle structure is maintained. Previous research and studies have shown the ill effects of front seatback collapse intruding into the rear child survival space from front with minor or no intrusions from the rear. This paper shows the child injury pattern and fatal injury mechanism for a rear impact crash with a severe compartment intrusion from the rear without any front seat occupant. Furthermore, it compares the injury outcome with a similar crash and severe intrusion in the presence of the front occupant employing a full-scale vehicle-to-vehicle crash test. A detailed real-world crash investigation is conducted to identify the injury mechanism and is compared with the outcome of similar severity rear impact vehicle-to-vehicle crash tests producing different injury patterns. The comparison and the analysis show that the survival space intrusion due to safety cage
Thorbole, Chandrashekhar
The functional safety of electric vehicles has attracted a great deal of attention among automobile industries globally. A tricky yet necessary dual gamut of operational ease along with operational safety is something that cannot be ignored while using electric vehicles. Safety paired with vehicle reliability will go a long way in the market. Therefore, abnormal vehicle behavior due to factors such as unintended acceleration should not be kept in hindsight. Unintended acceleration is a phenomenon where the vehicle accelerates involuntarily without the knowledge of the driver which leads to accidents and fatal injuries. Thus, prior detection of unintended acceleration becomes mandatory for driver’s safety. Unintended acceleration is a result of various uncontrolled conditions like road driving conditions and system malfunction. This paper aims to estimate the load torque of a vehicle by utilizing the vehicle drive train model thereby ensuring the timely detection of unwanted
Ghube, Aditya PurushottamChauhan, AbhishaNidubrolu, Kranthi kumar
Road traffic fatalities in India have been increasing, reaching around 150,000 fatalities a year. To reduce fatalities, some prospective studies suggested using active safety technologies such as Forward Collision Warning (FCW), and Autonomous Emergency Braking (AEB). However, the effectiveness of FCW and AEB on Indian roads using retrospective studies is not known. Vehicle data such as radar, and controller area network signals could be used for the evaluation of the systems (FCW and AEB). However, these data are not readily accessible. This exploratory study aims to explore the opportunities and limitations of using simple dashboard cameras for a Field Operational Test. One European car with state-of-the-art FCW and AEB systems was rented. Fifteen drivers shared the vehicle, driving almost 10,000 km over 29 days. The vehicle was mounted with a set of dashboard cameras. The navigator noted the “system activated” events and “no activation” events in the logbook during the drive. Post
Shaikh, JunaidLubbe, Nils
American roadway safety is facing significant challenges. With traffic and pedestrian fatalities approaching record levels, a paradigm shift from Proof of Technology (PoT) to Proof of Value (PoV) will promote the Vehicle-to-Everything (V2X) industry advancement. While a PoT-driven ecosystem has spurred the advancement of the V2X space, this paper underscores the value of a PoV mindset where solutions are focused on the user instead of being technologically driven. Users do not think in terms of minimum viable products (MVP). Instead, they anticipate useful, usable, and lovable products. Putting customers in sharp focus and planning products and services around their needs will pave the way for their widespread adoption and acceptance of V2X technology. This paper concludes with a call to make technology subservient to human needs rather than the other way around
Raddaoui, Omar
The primary objective of this study was to evaluate the fatality risk of powered two-wheeler (PTW) riders across different impact orientations while controlling for different opponent vehicle (OV) types. For the crash configurations with higher fatality rate, the secondary objective was to create an initial speed–fatality prediction model specific to the United States. Data from the NHTSA Crash Reporting Sampling System and the Fatality Analysis Reporting System from 2017 to 2020 was used to estimate the odds of the different possible vehicle combinations and orientations in PTW–OV crashes. Binary logistic regression was then used to model the speed–fatality risk relationship for the configurations with the highest fatality odds. Results showed that collisions with heavy trucks were more likely to be fatal for PTW riders than those with other OV types. Additionally, the most dangerous impact orientations were found to be those where the PTW impacted the OVs front or sides, with
Terranova, P.Guo, F.Perez, Miguel A.
In Japan, where vehicles drive on the left side of the road, pedestrian fatal accidents caused by vehicles traveling at speeds of less than or equal to 20 km/h, occur most frequently when a vehicle is turning right. The objective of the present study is to clarify the driving behavior in terms of eye glances and driver speeds when drivers of two different types of vehicles turn right at an intersection on a left-hand traffic road. We experimentally investigated the drivers’ gaze, vehicle speed, and distance on the vehicle traveling trajectory from the vehicle to the pedestrian crossing line, using a sedan and a truck with a gross vehicle weight of < 7.5 tons (a light-duty truck) during right-turn maneuver. We considered four different conditions: no pedestrian dummy (No-P), right pedestrian dummy (R-P), left pedestrian dummy (L-P), and right and left pedestrian dummies (RL-P). Regarding the gazing characteristics, there was no significant difference in the average total gaze time at
Matsui, YasuhiroHosokawa, NaruyukiOikawa, Shoko
Motor grader is self-propelled, versatile machine widely used for road construction and maintenance in mining and construction applications. It required working in rugged terrain with uneven and slippery surfaces. Probability of rollover in motor grader is more due to the vehicle profile and high centre of gravity. In light of the above, Roll over Protective Structure (ROPS) is essential to safe guard the operator from any fatal injuries / life during the operation of the equipment at different terrain conditions. Considering DGMS (Directorate of General Mines and safety) requirements, a rugged two post Rollover Protective Structure (ROPS) was designed as per ISO 3471 criteria for ROPS and Falling object Protection Structure (FOPS) as per ISO 3449 Material selection for ROPS and FOPS is one of significant factor in design process by meeting the design criteria. It should have dual characteristic, firstly, it is expected to tough enough to withstand sudden impact forces. Secondly, it
Varadaraj, Kumarhs, Satish Chandra
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario. In addition, hypothesis tests are used to reveal
Guo, HuizhongWang, ZifeiSherony, RiniBao, Shan
When commercial vehicles have less than ideal lateral dynamics traveling at high speeds, those dynamics can sometimes be a significant factor in serious and fatal accidents that occur. The primary goal of this study was to create a validated vehicle dynamics model to aid in handling evaluations and a validated model that can play an important role in accurately predicting the movement of the vehicle in limit conditions. The model is used to simulate the effect on roll gradient by altering spring stiffnesses and adding a rear stabilizer for a class 6 or class 7 commercial vehicle (CV). Outputs from 4-post Kinematics & Compliance (K&C) tests of a prototype vehicle were used to model the suspension system. The tire model was developed in collaboration with Calspan [1] using physical tire testing. The vehicle masses, inertias and stiffnesses were modelled using IPG TruckMaker for Simulink (TM4SL) [2]. A constant radius turn maneuver was simulated using TM4SL, and MATLAB [3] was used for
Obel, LukasEdla, NitinPasupathi, SanthoshBergsieker, Gerald
Modern vehicles use automated driving assistance systems (ADAS) products to automate certain aspects of driving, which improves operational safety. In the U.S. in 2020, 38,824 fatalities occurred due to automotive accidents, and typically about 25% of these are associated with inclement weather. ADAS features have been shown to reduce potential collisions by up to 21%, thus reducing overall accidents. But ADAS typically utilize camera sensors that rely on lane visibility and the absence of obstructions in order to function, rendering them ineffective in inclement weather. To address this research gap, we propose a new technique to estimate snow coverage so that existing and new ADAS features can be used during inclement weather. In this study, we use a single camera sensor and historical weather data to estimate snow coverage on the road. Camera data was collected over 6 miles of arterial roadways in Kalamazoo, MI. Additionally, infrastructure-based weather sensor visibility data from
Kadav, ParthGoberville, Nicholas APrins, KyleSiems-Anderson, AmandaWalker, CurtisMotallebiaraghi, FarhangCarow, KyleFanas Rojas, JohanHong, Guan YueAsher, Zachary
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height. The volunteers were lap-shoulder belted in the driver seat of a 2002 Ford F
Burnett, RogerParenteau, ChantalVogler, MichelleToomey, DanielOrlowski, KennethKrishnaswami, Ram
Collisions involving turn-across-path hazards are responsible for a disproportionate number of injuries and fatalities compared to collisions with other orientations. Previous investigations of turn-across-path hazards have found conflicting results regarding hazard detection and response behaviour of drivers, particularly for hazards with different onset conditions. Typically, hazards with abrupt onsets should attract attention more readily, however, the opposite trend for response times has been observed when the abrupt onset is a rapid change in speed, rather than a sudden appearance. This study compared two left-turn-across path hazards with different onsets. The abrupt onset hazard was an initially stopped vehicle that quickly accelerated into the participant drivers’ path, while the gradual onset hazard was already in motion as the participant driver approached. Visual fixations were compared between the two onset types to determine if the sudden speed change was capturing
Caren, BrooklinZiraldo, ErikaOliver, Michele
To avoid pedestrian fatalities due to factors such as understeer of the vehicle or negligence in steering by the driver, a step further needs to be taken to improve the steering kinematics and have object detection integration for a robust solution. Here we integrate human detection concepts in computer vision with steering dynamics concepts in vehicle kinematics to give the framework that achieves the ability to avoid pedestrian fatalities due to its ability, innovativeness, and integrated units. The paper consists of a description of each component and the overall system function. Results of the pedestrian sensing system and steering kinematics have been included in this document in the form of program outputs, simulation results, and calculations
Sengupta, Joy
Genesys Aerosystems, a Moog company, offers a line of avionics specifically designed for the military/special-mission market. Originally, the system was developed as part of the FAA's Capstone Program - first established in 1999 - to reduce the excessively high number of controlled flight into terrain (CFIT) accidents in the southeast region of Alaska. Implementation of this technology by pilots in the southeast Alaska region immediately reduced the CFIT accident rate from an average of one fatality every nine days to zero among commercial aircraft. Twenty years later, the Capstone equipment continues to provide exceptional safety, and Genesys has become a leading avionics supplier to military and special-mission fleet operators around the world, including the U.S. Navy, U.S. Army, and over 35 foreign militaries and other government operators
The steering mechanism determines the maneuverability of four-wheelers. In this paper a novel steering system (NSS) to accomplish steering according to the Ackermann geometry is proposed. The NSS advantageously utilizes the bevel gear technology to accomplish two main tasks (a) changing the direction of the steering torque and (b) steering the wheels in close approximation to Ackermann condition. For the second task, conjugate pairs of elliptic gears play a critically important role due to the variable transmission ratio property. This NSS is analyzed to derive the formula of the inner wheel steer angle and outer wheel steer angle achieved by a special assembly and configuration of circular and noncircular bevel gears. This formula is used to devise a plausible algorithm to obtain the required specification of bevel gears according to the dimension of vehicles. A comparative analysis of the steering performance of the NSS with two of the most popular steering systems, Ackermann four
Gautam, Ravi Shankar
Motorcyclists are about 29 times more likely than passenger vehicle occupants to die in a motor vehicle crash and are 4 times more likely to be injured. Safe motorcycling takes balance, co-ordination, and good judgement. As per NHTSA, per 100,000 registered vehicles motorcycle fatality and injury rate stand at 58.33 and 975 and that of passenger vehicles stand at 9.42 and 1152. With such rates of fatality and injury of motorcyclists, there is strong need for motorcycle solutions that help to minimize traffic fatalities and improve road safety scenarios. Helmets are estimated to be 37% effective in preventing fatal injuries to motorcycle riders and 41% for motorcycle passengers but there is little to no post-crash assistance available on board the motorcycles. Post-crash emergency response is time sensitive and can be broken down into a subset of activities beginning with discovery of crash, notification, and activation of emergency medical service (EMS), response time, on-scene time
Rao, Aditya NNotani, VipulMuralidharan, Vishal
Though there are active safety features in the passenger cars, unfortunately not all accidents are avoidable. Airbags are the passive safety feature which avoid occupants in colliding with the car interiors and help to mitigate the fatal injuries. Trend and interest in the recent times is to study the occupant injury for front row seats. The second-row occupants are usually protected with the passive safety systems by Seat belts, Inflatable Curtain airbags, seat airbags, Windshield airbags etc. These are installed in the side and rear areas of car to pass on the regulations like FMVSS, ECE and other global standards. This particular case study is to evaluate or say how effective are the occupants in the second rows if they are unbelted. In few of the crash tests and experiment of frontal impact collision, the child dummies will be placed on female dummy lap without wearing the seat belt. In this, we see the second-row occupants will be seriously injured in most of the cases. Though the
Srinivasa, PraveenSundaram, BalachandarPatil, Shubham
With the growing number of cross-sea flights, the occurrence of maritime-related accidents, which have a high fatality rate, has become increasingly critical. This study is aimed at highlighting the causes of maritime-related accidents and identifying the risk factors that led to fatal crashes in the period 2009-2019. A total of 207 maritime-related accidents, the final reports of which are available in the online database of the National Transportation Safety Board, were considered. The accident cause distribution was obtained from the final reports. A two-step approach, involving uni-variable and multi-variable analysis logistic regression, was implemented to select the significant risk factors from 27 parameters. Results showed that the four main causes of maritime-related accidents were personnel issues (69.6%), aircraft-related aspects (60.4%), environmental issues (36.7%), and organizational issues (3.9%). The following three parameters were identified as risk factors: weather
Yang, RuiliangLin, MingchongYang, LibinWei, Jin
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells
A-5 Aerospace Landing Gear Systems Committee
Australian vehicle standards are governed nationwide by the Australian Design Rules (ADR) that specify regulatory standards for the safety performance of road vehicles. The aim of this study was to quantify the number of lives saved on New South Wales roads by accelerating the update of safer vehicles by aligning ADR with global best practice represented by the new European Union General Safety Regulation. The methods used in this study to estimate the impact of future road safety interventions was a logical reduction of current crashes into future casualty outcomes, the residual, based on what is known about delivery of future safety measures and system improvements. A database was prepared including information on all 2018 fatalities on NSW roads (n=347). The database contained information for each individual crash, the vehicles and persons involved and the road environment where the crash occurred. In the results of this study, it was found that a scenario of aligning Australian
Strandroth, JohanFernandes, RalstonBanyer, GreerCavallo, Antonietta
Vehicles that start moving from a stationary position can cause fatal traffic accidents involving pedestrians. Ultrasonic sensors installed in the vehicle front are an active technology designed to alert drivers to the presence of stationary objects such as rigid walls in front of their vehicles. However, the ability of such sensors to detect humans has not yet been established. Therefore, this study aims to ascertain whether these sensor systems can successfully detect humans. First, we conducted experiments using four vehicles equipped with ultrasonic sensor systems for vehicle-forward moving-off maneuvers and investigated the detection distances between the vehicles and a pipe (1 m long and having a diameter of 75 mm), child, adult female, or adult male. The detections of human volunteers were evaluated under two different conditions: front-facing and side-facing toward the front of each vehicle. Front-facing is defined as the condition where the human faces the vehicle front, while
Matsui, YasuhiroOikawa, Shoko
Methanol is sometimes referred to as ethanol's deadly twin. While the latter is the intoxicating ingredient in wine, beer, and liquor, the former is a chemical that becomes highly toxic when metabolized by the human body. Even a relatively small amount of methanol can cause blindness or prove fatal if left untreated
Cyclist injuries and fatalities are a world-wide concern and often a consequence of interaction with cars. The MICA2 Project (Modelling of Interactions between Cyclists and Automobiles) is aimed at protecting bicyclists from getting injured by a passing car. This study addresses the need for new protective safety systems through the development and testing of a novel external car airbag. The airbag was designed to add protection to the center side part of the car, in the B-pillar area, to protect the head of a bicyclist impacting a car in this area. Two methods were used to evaluate performance of the system. For full system tests, a Hybrid III 50th percentile male dummy was seated on a city bike and projected into the side of a car at either 30°, 60° or 90° to the car side. In additional component tests an adult pedestrian headform was launched towards the roof rail or B-pillar structure of the car. The highest injury risk was found in a perpendicular (90 degree) impact between the
Carroll, JolyonEnanger, MikaelJeppsson, HannaLubbe, Nils
Two major steps involved in SOTIF analysis are defining acceptance criteria and estimating the validation target. While acceptance criteria aids in determining if we have an acceptable residual risk corresponding to a hazardous scenario, the validation target specifies the amount of testing effort (in hours or representative miles) that is needed to ensure that the acceptance criteria are met. The current approaches for defining acceptance criteria heavily rely on existing fatality databases or naturalistic driving study data sets. The criterion is selected based on average number of fatalities or crashes per mile or per one hour of operation. The validation target is then calculated based on acceptance criteria. However respective validation targets., are these values really reflecting the acceptable risk criteria and targets? According to statistics, for a given data set and a random sample derived from the dataset, only the mean of population of the data set and the sample can be
Madala, KaushikKrishnamoorthy, JayalekshmiAvalos Gonzalez, CarlosShivkumar, AbhishekSolmaz, Mert
A substantial percentage of serious and fatal injuries sustained by motor vehicle occupants occur in lateral impact collisions, and approximately one third of these injuries involve a far-side occupant. A center airbag, deploying inboard of the front seat occupants, has been integrated into certain vehicles to reduce far-side occupant excursion, to limit occupant interactions with the vehicle interior and/or another occupant, and to reduce occupant loading and injury potential. A series of sled tests was conducted to better understand the efficacy and limitations of a center airbag under a variety of high-speed lateral impact conditions in an environment outside of the production design. A production-level driver’s seat equipped with a seat-mounted center airbag was installed onto an open-air sled. A 50th percentile male SID H-3 was placed in the seat and restrained by a three-point seat belt equipped with retractor and buckle pretensioners. Vehicle PDOF, occupant position, and
Rapp van Roden, ElizabethCrosby, CharlesMortensen, JonathanRodowicz, Kathleen
Field data was analyzed on second-row children in front, side and rear impacts to study fatality trends by model year (MY) and calendar year (CY) with 1980-2020 MY vehicles. The different MY and CY perspectives show changes in rates that are useful for setting priorities for second-row child safety in rear impacts. 1990 to 2019 FARS was queried to assess the number of fatally injured and non-ejected second-row children (0-15 years old) in crashes without fires. The children included outboard occupants seated behind an occupied front seat and center occupants. The data was analyzed for rear, front and side impacts to assess crash frequency. 1990-2015 POLK was queried to assess exposure of registered vehicles and estimate a fatality rate. The FARS and POLK data were sub-grouped by MY of the vehicle and CY of the crash. There were 2.8-times more fatally injured children in frontal crashes than in the rear crashes. The ratio of frontal and rear crashes varied with CY sub-groups. It was 3.9
Parenteau, ChantalViano, DavidLau, Edmund
Four crash modes are overrepresented in traffic fatalities: run-off-road crashes, non-tracking run-off-road crashes, head-on crashes, and pedestrian crashes. Two advanced driver assist systems developed to help prevent tracking run-off-road crashes and head-on crashes are lane departure warning (LDW) and lane keeping assist (LKA). LDW acts to warn the driver when they are encroaching the lane boundary, whereas LKA performs automatic steering to prevent the vehicle from departing the lane. The objective of this research was to use real-world crash data to estimate current LDW and LKA system effectiveness in reducing run-off-road crashes and cross-centerline head-on crashes. All passenger vehicles that experienced a lane departure from 2017 to 2019 in the Crash Investigation Sampling System (CISS) were analyzed. The effectivenesses of the LDW and LKA systems were computed using the quasi-induced exposure method, where the exposure group was vehicles that were rear-struck in rear-end
Dean, Morgan E.Riexinger, Luke E.
In order to further reduce the pedestrian fatalities, the improvement of pedestrian safety performance of vehicles is needed. One of the way to further understand read-world pedestrian accidents is the evaluation by using a whole-body pedestrian dummy. In the past studies, the leg, the thigh and the pelvis of the pedestrian dummy were developed and improved. However, the requirements for the biofidelity of the pedestrian dummy have been improved in SAE J2782. Therefore, this study aimed to evaluate these responses of the past studies by using new requirements and to modify these parts that didn’t meet them. The force-defection curves from 3-point lateral bending tests for the leg and the thigh were compared with the corridors updated in SAE J2782. The biofidelity of the pelvis was evaluated in dynamic lateral compression tests of the isolated pelvis. The sacrum and the pubis force-deflection curves of the iliac or the acetabulum impact were compared with the corridors. The leg and the
Asanuma, HiroyukiBae, HyejinNakamura, HidetoshiGunji, YasuakiNagashima, Akiko
The accuracy and range of chassis control for a four in-wheel motor (IWM)-driven electric vehicles (EVs), especially in observer-based EVs control for improving road handling and ride comfort, is a challenging task for the IWM-driven vehicle system. Due to the high fatality rate caused by inaccurate state-based control algorithm, how to precisely acquire movement state and chose the reasonable observer-based control algorithm for IWM-driven EVs become a hot topic in both academia and industry. Simultaneously, uncertainty is always existing, e.g., varying road excitation, variable system parameters or nonlinear structure. Meanwhile, the coupling effects between the non-ideal IWM actuator and vehicle are ignored under the assumption of an ideal actuator. To deal with the above mentioned, the paper presents an observer-based control approach, which combines Takagi-Sugeno (T-S) fuzzy observer and torque vector control algorithm, to further improve the chassis performance for IWM-driven EVs
Yang, JiansenWang, ZhenfengLi, XinZhu, YugangNie, YanxinLi, HongLiang
Standard operation of autonomous vehicles on public roads results in significant exposure to high levels of risk. There is a significant need to develop metrics that evaluate safety of an automated system without reliance on the rate of vehicle accidents and fatalities compared to the number of miles driven; a proactive rather than a reactive metric is needed. Resilience engineering is a new paradigm for safety management that focuses on evaluating complex systems and their interaction with the environment. This paper presents the overall methodology of resilience engineering and the resilience assessment grid (RAG) as an evaluation tool to measure autonomous systems' resilience. This assessment tool was used to evaluate the ability to respond to the system. A Pure Pursuit controller was developed and utilized as the path tracking control algorithm, and the Carla simulator was used to implement the algorithm and develop the testing environment for this methodology. The path tracking
Fanas Rojas, JohanBrown, NicolasRupp, JeffBradley, ThomasAsher, Zachary D
The on-vehicle automation system is primarily designed to replace the human driver during driving to enhance the performance and avoid possible fatalities. However, current implementations in automated vehicles (AVs) generally neglect that human imperfection and preference do not always lead to negative consequences, which prevents achieving optimized vehicle performance and maximized road safety. Human-like Decision-making and Control for Automated Driving takes a step forward to address breaking through the limitation of future automation applications, investigating in depth: Human driving feature modeling and analysis Personalized motion control for AVs Human-like decision making for AVs Click here to access the full SAE EDGETM Research Report portfolio
Lv, Chen
India witnessed 151,113 road deaths in the year 2019 and this alarming number is due to increased urbanization, motorization and per capita income. India is home to the 2nd largest road network in the world and accounts for the highest number of road deaths globally. Curbing the menace of road accidents requires tactical road safety policies and their effective implementation. The meagre availability of factual data regarding socio-economic loss due to road accidents is proving to be a hindrance to the ideation and implementation of the policies. The Planning Commission estimated the social costs of road accidents to be 7.9 billion $ in 1999/2000 which was roughly 3% of the country’s GDP and this value was revised to 14.3 billion $ in 2011. Absence of data regarding the loss due to road accidents in the recent times, has been a motivating factor to estimate the socio economic loss due to accidents on Indian roads. Road traffic accident casualties bring about a great deal of human
Kumaresh, GirikumarSaldanha, FionaLich, ThomasMoennich, Joerg
Child safety in the back seat during a rear-impact chiefly depends on how well the survival space is maintained at their location. Collapsing front seatback pose a foreseeable hazard as it intrudes into the survival space of the child on the backseat. Furthermore, the condition gets worse in the presence of a structural intrusion from the rear that tends to push the occupant further closer to the backward collapsing seatbacks. This paper reports two real-world rear impact collisions resulting severe to fatal injuries to the child occupant seating behind the driver. Each collision shows the dangers of seatback collapse into the survival space of the child. Furthermore, the paper demonstrates safety through design concept by employing seats with strong seatback design resisting collapse into the survival space of the child. The crash sled-testing are conducted to show the importance of front seatback strength preventing its collapse and occupant ramping up into the child’s survival space
Thorbole, Chandrashekhar
As per the 2018 MoRTH accident report, there were 467,044 accidents, out of which 137,726 were fatal which resulted in 151,417 fatalities. In order to get an idea of the reasons for injuries and estimate the benefits of any intervention, a mathematical model should go a long way. This study is aimed at the development of such a model to predict the injuries sustained by the occupants of an M1 vehicle. We used a detailed accident database of 'Road Accident Sampling System India' (RASSI). RASSI, since 2011, has been collecting traffic accident data scientific across various locations in India. In the data, the occupant injuries are classified as No injury, Minor, Serious and Fatal We used the data of about 4700+ M1 occupants for the study & used almost 40 input parameters to determine the outcome. Based on the data, an algorithm was developed with an overall accuracy of about 67%. The parameters represented human, infrastructure, and environment. In 67% of the cases, the injuries were
Howlader, Ashim
As per WHO 2018 report, pedestrian fatalities account for 23% of world road accident fatalities. Every day 850 pedestrians lose their lives in the world. As per MoRTH 2018 report, 16% of road accident fatalities are of pedestrians in India. Everyday 64 pedestrians lose their lives in India. Based on accident data, one of the most common reason for the pedestrian fatality is head injury due to primary contact from vehicle front-end structure. Pedestrian head injury performance highly depends on front-end styling, bonnet stiffness, clearance with aggregates underneath the bonnet and hard contact points. During concept stage of vehicle development, safety recommendation on front-end design is provided based on geometric assessment of the class A surface. This paper presents the novel approach of using machine-learning algorithms to predict the head injury performance at the early stage of vehicle design using the knowledge of existing vehicle simulation data and new vehicle design
Kaushik, BharatDaphal, PratapKhare, PratyushKoralla, SivaprasadBera, Satadru
While a safe driving eco-system based on co-operation is being thought off as a possible solution to make Autonomous Driving (AD) a reality - it makes it mandatory to have every car equipped with Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication technology, depends upon every driver’s proactiveness to understand their responsibility on the road when they are being warned to avoid certain maneuvers from these modules and also questions the existence of older cars on the road which are in good driving condition but it is not feasible enough or cost-effective to install V2V and V2I communication technology within. This paper provides a solution to help keep a balance within the autonomous safe driving environment where potential hazardous vehicles (e.g. manually driven cars without any V2V, V2I modules, cars with V2V, V2I modules being driven by drivers not sincere enough to follow warnings from these modules) can co-exist and the autonomous vehicles can be kept
Bhowmick, Soumen
Items per page:
1 – 50 of 716