Browse Topic: Fatal injuries
Head injuries from interior impacts during vehicle accidents are a significant cause of fatalities in India. Data from the National Crime Records Bureau (NCRB) for 2023 reveals that approximately 15% of the total 150,000 road fatalities were due to head impacts on vehicle interiors, resulting in about 22,500 deaths. Thus, head impact protection in a car crash is key during the design of vehicle interiors. IS 15223 and ECE-R21 provide specific guidelines for head impact testing of instrument panels and consoles in vehicles to ensure compliance with safety standards and minimize the risk of head injury during collisions. By systematically addressing each aspect of IS 15223 and ECE- R21 in the design, testing, and documentation phases, manufacturers can ensure that console armrests are optimized for safety. This approach not only helps meet regulatory standards but also enhances overall occupant protection in vehicles during collisions. The objective of this paper is to design a console
In India, Driver Drowsiness and Attention Warning (DDAW) system-based technologies are rising due to anticipation on mandatory regulation for DDAW. However, readiness of the system to introduce to Indian market requires validations to meet standard (Automotive Industry Standard 184) for the system are complex and sometimes subjective in nature. Furthermore, the evaluation procedure to map the system accuracy with the Karolinska sleepiness scale (KSS) requirement involves manual interpretation which can lead to false reading. In certain scenarios, KSS validation may entail to fatal risks also. Currently, there is no effective mechanism so far available to compare the performance of different DDAW systems which are coming up in Indian market. This lack of comparative investigation channel can be a concerning factor for the automotive manufactures as well as for the end-customers. In this paper, a robust validation setup using motion drive simulator with 3 degree of freedom (DOF) is
In nature, flying animals sense coming changes in their surroundings, including the onset of sudden turbulence, and quickly adjust to stay safe. Engineers who design aircraft would like to give their vehicles the same ability to predict incoming disturbances and respond appropriately. Indeed, disasters such as the fatal Singapore Airlines flight this past May in which more than 100 passengers were injured after the plane encountered severe turbulence, could be avoided if aircraft had such automatic sensing and prediction capabilities combined with mechanisms to stabilize the vehicle.
Background: The Indian automobile industry, including the auto component industry, is a significant part of the country’s economy and has experienced growth over the years. India is now the world’s 3rd largest passenger car market and the world’s second-largest two-wheeler market. Along with the boon, the bane of road accident fatalities is also a reality that needs urgent attention, as per a study titled ‘Estimation of Socio-Economic Loss due to Road Traffic Accidents in India’, the socio-economic loss due to road accidents is estimated to be around 0.55% to 1.35% of India’s GDP [27] Ministry of road transport and highways (MoRTH) accident data shows that the total number of fatalities on the road are the highest (in number terms) in the world. Though passenger car occupant fatalities have decreased over the years, the fatalities of vulnerable road users are showing an increasing trend. India has committed to reduce road fatalities by 50% by 2030. In this context, the automotive
Road traffic fatalities in India have been increasing, reaching around 150,000 fatalities a year. To reduce fatalities, some prospective studies suggested using active safety technologies such as Forward Collision Warning (FCW), and Autonomous Emergency Braking (AEB). However, the effectiveness of FCW and AEB on Indian roads using retrospective studies is not known. Vehicle data such as radar, and controller area network signals could be used for the evaluation of the systems (FCW and AEB). However, these data are not readily accessible. This exploratory study aims to explore the opportunities and limitations of using simple dashboard cameras for a Field Operational Test. One European car with state-of-the-art FCW and AEB systems was rented. Fifteen drivers shared the vehicle, driving almost 10,000 km over 29 days. The vehicle was mounted with a set of dashboard cameras. The navigator noted the “system activated” events and “no activation” events in the logbook during the drive. Post
Genesys Aerosystems, a Moog company, offers a line of avionics specifically designed for the military/special-mission market. Originally, the system was developed as part of the FAA's Capstone Program - first established in 1999 - to reduce the excessively high number of controlled flight into terrain (CFIT) accidents in the southeast region of Alaska. Implementation of this technology by pilots in the southeast Alaska region immediately reduced the CFIT accident rate from an average of one fatality every nine days to zero among commercial aircraft. Twenty years later, the Capstone equipment continues to provide exceptional safety, and Genesys has become a leading avionics supplier to military and special-mission fleet operators around the world, including the U.S. Navy, U.S. Army, and over 35 foreign militaries and other government operators.
Motorcyclists are about 29 times more likely than passenger vehicle occupants to die in a motor vehicle crash and are 4 times more likely to be injured. Safe motorcycling takes balance, co-ordination, and good judgement. As per NHTSA, per 100,000 registered vehicles motorcycle fatality and injury rate stand at 58.33 and 975 and that of passenger vehicles stand at 9.42 and 1152. With such rates of fatality and injury of motorcyclists, there is strong need for motorcycle solutions that help to minimize traffic fatalities and improve road safety scenarios. Helmets are estimated to be 37% effective in preventing fatal injuries to motorcycle riders and 41% for motorcycle passengers but there is little to no post-crash assistance available on board the motorcycles. Post-crash emergency response is time sensitive and can be broken down into a subset of activities beginning with discovery of crash, notification, and activation of emergency medical service (EMS), response time, on-scene time
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
Vehicles that start moving from a stationary position can cause fatal traffic accidents involving pedestrians. Ultrasonic sensors installed in the vehicle front are an active technology designed to alert drivers to the presence of stationary objects such as rigid walls in front of their vehicles. However, the ability of such sensors to detect humans has not yet been established. Therefore, this study aims to ascertain whether these sensor systems can successfully detect humans. First, we conducted experiments using four vehicles equipped with ultrasonic sensor systems for vehicle-forward moving-off maneuvers and investigated the detection distances between the vehicles and a pipe (1 m long and having a diameter of 75 mm), child, adult female, or adult male. The detections of human volunteers were evaluated under two different conditions: front-facing and side-facing toward the front of each vehicle. Front-facing is defined as the condition where the human faces the vehicle front, while
Methanol is sometimes referred to as ethanol's deadly twin. While the latter is the intoxicating ingredient in wine, beer, and liquor, the former is a chemical that becomes highly toxic when metabolized by the human body. Even a relatively small amount of methanol can cause blindness or prove fatal if left untreated.
The on-vehicle automation system is primarily designed to replace the human driver during driving to enhance the performance and avoid possible fatalities. However, current implementations in automated vehicles (AVs) generally neglect that human imperfection and preference do not always lead to negative consequences, which prevents achieving optimized vehicle performance and maximized road safety. Human-like Decision-making and Control for Automated Driving takes a step forward to address breaking through the limitation of future automation applications, investigating in depth: Human driving feature modeling and analysis Personalized motion control for AVs Human-like decision making for AVs Click here to access the full SAE EDGETM Research Report portfolio.
While a safe driving eco-system based on co-operation is being thought off as a possible solution to make Autonomous Driving (AD) a reality - it makes it mandatory to have every car equipped with Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication technology, depends upon every driver’s proactiveness to understand their responsibility on the road when they are being warned to avoid certain maneuvers from these modules and also questions the existence of older cars on the road which are in good driving condition but it is not feasible enough or cost-effective to install V2V and V2I communication technology within. This paper provides a solution to help keep a balance within the autonomous safe driving environment where potential hazardous vehicles (e.g. manually driven cars without any V2V, V2I modules, cars with V2V, V2I modules being driven by drivers not sincere enough to follow warnings from these modules) can co-exist and the autonomous vehicles can be kept
India witnessed 151,113 road deaths in the year 2019 and this alarming number is due to increased urbanization, motorization and per capita income. India is home to the 2nd largest road network in the world and accounts for the highest number of road deaths globally. Curbing the menace of road accidents requires tactical road safety policies and their effective implementation. The meagre availability of factual data regarding socio-economic loss due to road accidents is proving to be a hindrance to the ideation and implementation of the policies. The Planning Commission estimated the social costs of road accidents to be 7.9 billion $ in 1999/2000 which was roughly 3% of the country’s GDP and this value was revised to 14.3 billion $ in 2011. Absence of data regarding the loss due to road accidents in the recent times, has been a motivating factor to estimate the socio economic loss due to accidents on Indian roads. Road traffic accident casualties bring about a great deal of human
Items per page:
50
1 – 50 of 714