Browse Topic: Crashes
The integration of mobile device data in accident/crash/collision reconstruction methodologies offers significant potential in analyzing collision events. This study evaluates the utility of iPhone-recorded data, specifically Global Navigation Satellite System (GNSS) position and speed data, along with Coordinated Universal Time (UTC) based time and date information associated with application usage and device activity events. By conducting controlled tests, the accuracy, precision, and reliability of iPhone GNSS data were compared against high-accuracy reference systems, including a Racelogic VBox Video HD2 25 Hz GPS data logger and VBox Sport 25 Hz GPS data logger. The synchronicity between recorded app events and device activities with physical events was also analyzed to assess the temporal resolution of the data. Results highlight the strengths and limitations of iPhone data for reconstructing crash events, including potential discrepancies in GNSS accuracy under varying
A total of 148 tests were conducted to evaluate the Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) systems in five different Tesla Model 3 vehicles between model years 2018 and 2020 across four calendar years. These tests involved stationary vehicle targets, including a foam Stationary Vehicle Target (SVT), a Deformable Stationary Vehicle Target (DSVT), a live vehicle with brake lights, and a SoftCar360 designed for high-speed impact tests. The evaluations were conducted at speeds of 35, 50, 60, 65, 70, 75, and 80 miles per hour (mph) during both daytime and nighttime conditions and utilized early and medium FCW settings. These settings, part of Tesla's Collision Avoidance AssistTM, modify object detection alerts and the timing of visual and auditory warnings issued to drivers. The 2018 to 2020 vehicles initially utilized cameras, radar and ultrasonic sensors (USS) for object detection. Tesla updated their Autoilot software and detection algorithms to a vision
The effect of seat belt misuse and/or misrouting is important to consider because it can influence occupant kinematics, reduce restraint effectiveness, and increase injury risk. As new seatbelt technologies are introduced, it is important to understand the prevalence of seatbelt misuse. This type of information is scarce due to limitations in available field data coding, such as in NASS-CDS and FARS. One explanation may be partially due to assessment complexity in identifying misuse and/or misrouting. An objective of this study was to first identify types of lap-shoulder belt misuse/misrouting and associated injury patterns from a literature review. Nine belt misuse/misrouting scenarios were identified including shoulder belt only, lap belt only, or shoulder belt under the arm, for example, while belt misrouting included lap belt on the abdomen, shoulder belt above the breasts, or shoulder belt on the neck. Next, the literature review identified various methods used to assess misuse
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
Theory and principles of occupant protection for automobiles in rear-end collisions have experienced significant evolution over the decades. Performance of the seatback, specifically the stiffness of the structure, during such a collision has been a subject of particular interest and debate among design engineers, accident reconstruction experts, critics, etc. The majority of current seat designs rely on plastic deformation of the seatback structure to protect the occupant from the dynamics of the crash. In attempt to highlight and provide background information for understanding this subject, this work highlights significant events, research, and publications over the past five decades to illustrate how this subject, automobile design, government regulation and public opinion has evolved. It is observed that technology and design for improving rear-impact protection has received less attention than collisions of other principal directions of force. The different types of
Items per page:
50
1 – 50 of 6148