Browse Topic: Crashes
We present DISRUPT, a research project to develop a cooperative traffic perception and prediction system based on networked infrastructure and vehicle sensors. Decentralized tracking and prediction algorithms are used to estimate the dynamic state of road users and predict their state in the near future. Compared to centralized approaches, which currently dominate traffic perception, decentralized algorithms offer advantages such as greater flexibility, robustness and scalability. Mobile sensor boxes are used as infrastructure sensors and the locally calculated state estimates are communicated in such a way that they can augment local estimates from other sensor boxes and/or vehicles. In addition, the information is transferred to a cloud that collects the local estimates and provides traffic visualization functionalities. The prediction module then calculates the future dynamic state based on neurocognitive behavior models and a measure of a road user's risk of being involved in
This study presents an analysis of 364 motorcycle helmet impact tests, including standard certified full-face, open-face, and half-helmets, as well as non-certified (novelty) helmet designs. Two advanced motorcycle helmet designs that incorporate technologies intended to mitigate the risk of rotational brain injuries (rTBI) were included in this study. Results were compared to 80 unprotected tests using an instrumented 50th percentile Hybrid III head form and neck at impact speeds ranging from 6 to 18 m/s (13 to 40 mph). Results show that, on average, the Head Injury Criterion (HIC) was reduced by 92 percent across certified helmets, compared to the unhelmeted condition, indicating substantial protection against focal head and brain injuries. However, findings indicate that standard motorcycle helmets increase the risk of AIS 2 to 5 rotational brain injuries (rTBI) by an average of 30 percent compared to the unprotected condition, due to the increased rotational inertia generated by
This document applies to safety observers or spotters involved with the use of outdoor laser systems. It may be used in conjunction with AS4970.
This SAE Recommended Practice describes the test procedures for conducting rear impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mount testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
This SAE Recommended Practice describes the test procedures for conducting side impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Drone show accidents highlight the challenges of maintaining safety in what engineers call “multiagent systems” — systems of multiple coordinated, collaborative, and computer-programmed agents, such as robots, drones, and self-driving cars.
Every year, more than 5 million people in the United States are diagnosed with heart valve disease, but this condition has no effective long-term treatment. When a person’s heart valve is severely damaged by a birth defect, lifestyle, or aging, blood flow is disrupted. If left untreated, there can be fatal complications.
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
The effect of seat belt misuse and/or misrouting is important to consider because it can influence occupant kinematics, reduce restraint effectiveness, and increase injury risk. As new seatbelt technologies are introduced, it is important to understand the prevalence of seatbelt misuse. This type of information is scarce due to limitations in available field data coding, such as in NASS-CDS and FARS. One explanation may be partially due to assessment complexity in identifying misuse and/or misrouting. An objective of this study was to first identify types of lap-shoulder belt misuse/misrouting and associated injury patterns from a literature review. Nine belt misuse/misrouting scenarios were identified including shoulder belt only, lap belt only, or shoulder belt under the arm, for example, while belt misrouting included lap belt on the abdomen, shoulder belt above the breasts, or shoulder belt on the neck. Next, the literature review identified various methods used to assess misuse
Items per page:
50
1 – 50 of 6150