Browse Topic: Crashes

Items (6,048)
Road safety remains a critical concern globally, with millions of lives lost annually due to road accidents. In India alone, the year 2021 witnessed over 4,12,432 road accidents resulting in 1,53,972 fatalities and 3,84,448 injuries. The age group most affected by these accidents is 18-45 years, constituting approximately 67% of total deaths. Factors such as speeding, distracted driving, and neglect to use safety gear increases the severity of these incidents. This paper presents a novel approach to address these challenges by introducing a driver safety system aimed at promoting good driving etiquette and mitigating distractions and fatigue. Leveraging Raspberry Pi and computer vision techniques, the system monitors driver behavior in real-time, including head position, eye blinks, mouth opening and closing, hand position, and internal audio levels to detect signs of distraction and drowsiness. The system operates in both passive and active modes, providing alerts and alarms to the
Ganesh, KattaPrasad, Gvl
This paper studies design parameters, selection of materials and structural analysis for an All-Terrain Vehicle (ATV) BAJA roll cage at the event site in any possible situation. SolidWorks 2022 was used for creating the prototype of the roll cage and then both static structural as well as dynamic crash analysis for the roll cage was done using Altair HyperWorks 2023 for various collisions like front, rear, side, rollover, torsional, front bump, rear bump, front roll over, side roll over and rear roll over. In addition to their corresponding deformation, Von Mises stresses were observed and a safety factor was calculated for these load cases which was found to be in the range of 1.5 to 3. Without reducing the roll cage’s strength, the roll cage designed for a four-wheel drive configuration is developed with driver comfort and safety in mind. Finding the optimal safety factor is the core objective of the analysis, as it ensures in any situation, the ATV’s roll cage will stay secure
L, Ravi KumarSanjay P, ChiranjeevT J, Pravin ChanderMoses J, JebishD, ParthesunG, Sureshmani
Background: Road accident severity estimation is a critical aspect of road safety analysis and traffic management. Accurate severity estimation contributes to the formulation of effective road safety policies. Knowledge of the potential consequences of certain behaviors or conditions can contribute to safer driving practices. Identifying patterns of high-severity accidents allows for targeted improvements in terms of overall road safety. Objective: This study focuses on analyzing road accidents by utilizing real data, i.e., US road accidents open database called “CRSS.” It employs advanced machine learning models such as boosting algorithms such as LGBM, XGBoost, and CatBoost to predict accident severity classification based on various parameters. The study also aims to contribute to road safety by providing predictive insights for stakeholders, functional safety engineering community, and policymakers using KABCO classification systems. The article includes sections covering
Babaev, IslamMozolin, IgorGarikapati, Divya
Automatic emergency braking (AEB) systems play a crucial role in enhancing vehicular safety. Current research predominantly focuses on the longitudinal dynamics of vehicles, utilizing various control algorithms to improve braking effectiveness. However, there has been limited exploration into utilizing wheel deflection as a method to further enhance emergency braking performance. This study aims to contribute by proposing an advanced enhancement of the AEB system through coordinated wheel deflection strategies. In an emergency situation, when the speed of AEB-equipped vehicle drops to the set threshold due to wheel braking, the innovative control system will activate. The vehicle’s coaxial wheels will then execute a counter-deflection maneuver to maximize friction between the tires and the road surface. As a result, this approach reduces braking distance, thereby enhancing vehicle safety. The effectiveness of the proposed control algorithm is validated through combined simulation using
Lai, FeiXiao, HaoHuang, Chaoqun
Forward-facing child restraint systems (FF CRS) and high-back boosters often contact the vehicle seat head restraint (HR) when installed, creating a gap between the back surface of the CRS and the vehicle seat. The effects of HR interference on dynamic CRS performance are not well documented. The objective of this study is to quantify the effects of HR interference for FF CRS and high-back boosters in frontal and far-side impacts. Production vehicle seats with prominent, removeable HRs were attached to a sled buck. One FF CRS and two booster models were tested with the HR in place (causing interference) and with the HR removed (no interference). A variety of installation methods were examined for the FF CRS. A total of twenty-four tests were run. In frontal impacts, HR interference produced small but consistent increases in frontal head excursion and HIC36. Head excursions were more directly related to the more forward initial position rather than kinematic differences caused by HR
Mansfield, Julie A.
Autonomous Navigation (AN) in complex-heterogeneous environments is an unsolved issue for both commercial and defense Autonomous Vehicle (AV) applications: A) Based on accumulated data through 2021 there are on average 9.1 driverless car crashes per million miles driven compared to 4.1 human-driven car crashes. B)The US Army recently reduced the requirement for its current Bradley replacement program of record from an “optionally manned fighting vehicle” to a system that “will not be something you operate entirely unmanned in its initial configuration”. C) Between 2021 and 2023 Ford, UBER, Lyft and Tesla have limited their fully AV operations due to safety related business concerns. It is clear a research breakthrough is needed to ensure AV software is mature to a point where it can handle complex driving scenarios. In complex dynamic domains (e.g. intersections or congested terrain) the expected mode of operation for ensured safety of these unmanned systems is still direct human
Frederick, Philip A.
India is a diverse country in terms of road conditions, road maintenance, traffic conditions, traffic density, quality of traffic which implies presence of agricultural tractors, bullock carts, autos, motor bikes, oncoming traffic in same lane, vulnerable road users (VRU) walking in the same lanes as vehicles, VRU’s crossing roads without using zebra crossings etc. as additional traffic quality deterrents in comparison to developed countries. The braking capacity of such vivid road users may not be at par with global standards due to their maintenance, loading beyond specifications, driver behavior which includes the tendency to maintain a close gap between the preceding vehicle etc. which may lead to incidents specifically of rear collisions due to the front vehicle going through an emergency braking event. The following paper provides a comprehensive study of the special considerations or intricacies in implementation of Autonomous Emergency Braking (AEBS) feature into Indian traffic
Kartheek, NedunuriKhare, RashmitaSathyamurthy, SainathanManickam, PraveenkumarKuchipudi, Venkata Sai Pavan
Communicating when traumatic brain injury, stroke, or disease has made speech impossible can be daunting. But specialized eye-tracking technology uses eye movement to enable people living with disabilities to connect one-on-one, over the phone, or via the internet
University of Michigan Ann Arbor, MI
Getting 800 robots in a warehouse to and from their destinations efficiently while keeping them from crashing into each other is no easy task. In a sense, these robots are like cars trying to navigate a crowded city center
The advent of neck braces for the helmeted motorcycle rider has introduced a pertinent research question: To what extent do they reduce measures related to the major mechanism of neck injury in unrestrained torso accidents, i.e., compression flexion (CF)? This question requires a suitable method of testing and evaluating the measures for a load case resulting in the required mechanism. This study proposes a weighted swinging anvil striking the helmeted head of a supine HIII ATD by means of a near vertex impact with a low degree of anterior head impact eccentricity to induce CF of the neck. The applied impact was chosen for the baseline (no neck brace) so that the upper and lower neck axial forces approached injury assessment reference values (IARV). The head impact point evaluated represents those typically associated with high-energy burst fractures occurring within the first 20 ms, with possible secondary disruption of posterior ligaments. The proposed test can be used to evaluate
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
Researchers at NASA Johnson Space Center have developed the Portable Knee Dynamometer, a device that enables quadricep and hamstring strength assessment, rehabilitation, and exercise capabilities for a user outside of a traditional clinical setting. Clinical orthopedic dynamometers for high-strength muscle groups tend to be large, heavy, and typically not readily transportable. NASA’s novel device can be easily carried to a patient who may be homebound or otherwise unable to travel to a clinic due to surgery, injury, or pathology
New tests for a Truck Safe rating scheme aim to emulate real-world collisions and encourage OEMs to fit collision avoidance technologies and improve driver vision. Euro NCAP has revealed the elements it is considering as part of an upcoming Truck Safe rating, and how it intends to test and benchmark truck performance. The announcement was made to an audience of international road safety experts at the NCAP24 World Congress in Munich, Germany, in April. The action is intended to mitigate heavy trucks' impact on road safety. The organization cited data showing that trucks are involved in almost 15% of all EU road fatalities but represent only 3% of vehicles on Europe's roads. Euro NCAP says the future rating scheme is designed to go further and faster than current EU truck safety regulations. The organization's goal is to drive innovation and hasten the adoption of advanced driver-assistance systems (ADAS) such as automatic emergency braking (AEB) and lane support systems (LSS), while
Gehm, Ryan
Animal–vehicle collisions (AVCs) can result in devastating injuries to both humans and animals. Despite significant advances in crash prediction models, there is still a significant gap when it comes to injury severity prediction models in AVCs, especially concerning small animals. It is no secret that large mammals can pose a significant threat to road safety; however, researchers tend to overlook the impact of domestic and small animals wandering along the roads. In this study, STATS19 road safety data was used containing any type of live animal, and a radial basis function (RBF) model was used to predict different severities of injury regardless of whether the animal was hit, or not. As a means of better understanding the factors contributing to severities, regression trees were used to identify and retain only the most useful predictors, removing the less useful ones. A comparison was made between the performance of the trees across a range of severity classes, and the model
Siami Doudaran, MeisamKonuralp, Hilmiye
Researchers from North Carolina State University have developed an exosome-coated stent with a “smart-release” trigger that could both prevent reopened blood vessels from narrowing and deliver regenerative stem cell-derived therapy to blood-starved, or ischemic, tissue
With population aging and life expectancy increasing, elderly drivers have been increasing quickly in the United States and the heterogeneity among them with age is also increasingly non-ignorable. Based on traffic crash data of Pennsylvania from 2011 to 2019, this study was designed to identify this heterogeneity by quantifying the relationship between age and crash characteristics using linear regression. It is found that for elderly driver-involved crashes, the proportion leading to casualties significantly increases with age. Meanwhile, the proportions at night, on rainy days, on snowy days, and involving driving under the influence (DUI) decrease linearly with age, implying that elderly drivers tend to avoid traveling in risky scenarios. Regarding collision types, elderly driver-involved crashes are mainly composed of angle, rear-end, and hit-fixed-object collisions, proportions of which increase linearly, decrease linearly, and keep consistent with age, respectively. The increase
Zhang, ZihaoLiu, Chenhui
To investigate the rollover phenomena experienced by all-terrain vehicles (ATVs) during their motion caused by input from the road surface, a combined simulation using CarSim and Simulink has been employed to validate an active anti-rollover control strategy based on differential braking for ATVs, followed by vehicle testing. In the research process, a nonlinear three-degrees-of-freedom vehicle model has been developed. By utilizing a zero-moment point index as a rollover warning indicator, this approach could accurately detect the rollover status of the vehicle, particularly in scenarios involving low road adhesion on unpaved surfaces, which are characteristic of ATV operation. The differential braking, generating a roll moment by adjusting the amount of lateral force each braked tire can generate, was proved as an effective method to enhance rolling stability. Simulation and on-road testing results indicated that this control strategy effectively monitored the state of the ATV and
Hong, HanchiWang, Kuand’Apolito, LuigiQuan, KangningYao, Xu
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world. Although DAMAGE correlates well with MPS in the human brain model across
Prasad, PriyaBarbat, Saeed D.Kalra, AnilDalmotas, Dainius J.
Understanding left-turn vehicle-pedestrian accident mechanisms is critical for developing accident-prevention systems. This study aims to clarify the features of driver behavior focusing on drivers’ gaze, vehicle speed, and time to collision (TTC) during left turns at intersections on left-hand traffic roads. Herein, experiments with a sedan and light-duty truck (< 7.5 tons GVW) are conducted under four conditions: no pedestrian dummy (No-P), near-side pedestrian dummy (Near-P), far-side pedestrian dummy (Far-P) and near-and-far side pedestrian dummies (NF-P). For NF-P, sedans have a significantly shorter gaze time for left-side mirrors compared with light-duty trucks. The light-duty truck’s average speed at the initial line to the intersection (L1) and pedestrian crossing line (L0) is significantly lower than the sedan’s under No-P, Near-P, and NF-P conditions, without any significant difference between any two conditions. The TTC for sedans is significantly shorter than that for
Matsui, YasuhiroNarita, MasashiOikawa, Shoko
The objectives of this study were to provide insights on how injury risk is influenced by occupant demographics such as sex, age, and size; and to quantify differences within the context of commonly-occurring real-world crashes. The analyses were confined to either single-event collisions or collisions that were judged to be well-defined based on the absence of any significant secondary impacts. These analyses, including both logistic regression and descriptive statistics, were conducted using the Crash Investigation Sampling System for calendar years 2017 to 2021. In the case of occupant sex, the findings agree with those of many recent investigations that have attempted to quantify the circumstances in which females show elevated rates of injury relative to their male counterparts given the same level bodily insult. This study, like others, provides evidence of certain female-specific injuries. The most problematic of these are AIS 2+ and AIS 3+ upper-extremity and lower-extremity
Dalmotas, DainiusChouinard, AlineComeau, Jean-LouisGerman, AlanRobbins, GlennPrasad, Priya
The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test. The Accelerative Loading Fixture (ALF) version 2, located at APG’s Bear Point range
Pietsch, HollieCristino, DanielleDanelson, KerryBolte, JohnMason, MatthewKemper, AndrewCavanaugh, JohnHardy, Warren
For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions. The causal chain that maximizes
Tian, YanfeiQiao, HuiHua, LinAi, Wanzheng
ISO 26262-1:2018 defines the fault tolerant time interval (FTTI) as the minimum time span from the occurrence of a fault within an electrical / electronic system to a possible occurrence of a hazardous event. FTTI provides a time limit within which compliant vehicle safety mechanisms must detect and react to faults capable of posing risk of harm to persons. This makes FTTI a vital safety characteristic for system design. Common automotive industry practice accommodates recording fault times of occurrence definitively. However, current practice for defining the time of hazardous event onset relies upon subjective judgements. This paper presents a novel method to define hazardous event onset more objectively. The method introduces the Streetscope Collision Hazard Measure (SHMTM) and a refined approach to hazardous event classification. SHM inputs kinematic factors such as proximity, relative speed, and acceleration as well as environmental characteristics like traffic patterns
Jones, DarrenGangadhar, PavankumarMcGrail, RandallPati, SudiptaAntonsson, ErikPatel, Ravi
Reconstruction of inline crashes between vehicles with a low closing speed, so-called “low speed” crashes, continues to be a class of vehicle collisions that reconstructionists require specific methods to handle. In general, these collisions tend to be difficult to reconstruct due primarily to the lack of, or limited amount of, physical evidence available after the crash. Traditional reconstruction methods such as impulse-momentum (non-residual damage based) and CRASH3 (residual damage based) both are formulated without considering tire forces of the vehicles. These forces can be important in this class of collisions. Additionally, the CRASH3 method depends on the use of stiffness coefficients for the vehicles obtained from high-speed crash tests. The question of the applicability of these (high-speed) stiffness coefficients to collisions producing significantly less deformation than experimental crashes on which they are generated, raises questions of the applicability. An alternative
Brach, MatthewStegemann, JacobManuel, Emmanuel JayCivitanova, Nicholas
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios. To conduct this analysis, we utilize SUMO, an open-source microscopic traffic
Shiledar, AnkurSujan, VivekSiekmann, AdamYuan, Jinghui
Automatic emergency braking and forward collision warning (FCW) reduce the incidence of police-reported rear-end crashes by 27% to 50%, but these systems may not be effective for preventing rear-end crashes with nonpassenger vehicles. IIHS and Transport Canada evaluated FCW performance with 12 nonpassenger and 7 passenger vehicle or surrogate vehicle targets in five 2021-2022 model year vehicles. The presence and timing of an FCW was measured as a test vehicle traveling 50, 60, or 70 km/h approached a stationary target ahead in the lane center. Equivalence testing was used to evaluate whether the proportion of trials with an FCW (within ± 0.20) and the average time-to-collision of the warning (within ± 0.23 sec) for each target was meaningfully different from a global vehicle car target (GVT). A similar approach was used to determine if FCW performance was reproducible between 3 targets tested by both IIHS and Transport Canada and was equivalent between surrogate car and motorcycle
Kidd, DavidAnctil, BenoitCharlebois, Dominique
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model. The model is based on 2799 two-vehicle collision accident data from NHTSA CISS (The Crash Investigation Sampling System of NHTSA) traffic accident database.The results show that the model achieves high-precision prediction of occupant injury MAIS level (recall rate 0.8718, AUC(Area under Curve) 0.8579) without excluding vehicle model, and
Huida, ZhangLiu, YuRui, YangWu, XiaofanFan, TiqiangWan, Xinming
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles. These components, in conjunction
Lu, DuoHaines, SamJammula, Varun ChandraRath, Prabin KumarYu, HongbinYang, YezhouWishart, Jeffrey
When investigating traffic accidents, it is important to determine the causes. To do so, it is necessary to reconstruct the accident situation accurately and in detail using objective and diverse information. We propose a method for reconstructing the accident situation (“reconstruction method”) which consists of rebuilding the situation immediately before the collision (“pre-crash situation”) using data collected during that time by an event data recorder (EDR) and a dashboard camera (DBC) onboard one or both of the vehicles involved. First, the vehicle’s traveling trajectory was integrally calculated using the vehicle speed and yaw rate recorded by the EDR, each point along the trajectory being linked to the EDR data. After being combined with the DBC’s video data, the trajectory was projected onto the road surface around the accident site, which allowed us not only to display on a single road map the vehicle’s traveling trajectory, but also to provide, on each point along the
Matsumura, HidekiSugiyama, MotokiIWATA, Takekazu
In 2021, 412,432 road accidents were reported in India, resulting in 153,972 deaths and 384,448 injuries. India has the highest number of road fatalities, accounting for 11% of the global road fatalities. Therefore, it is important to explore the underlying causes of accidents on Indian roads. The objective of this study is to identify the factors inherent in accidents in India using clustering analysis based on self-organizing maps (SOM). It also attempts to recommend some countermeasures based on the identified factors. The study used Indian accident data collected by members of ICAT-ADAC (International Centre for Automotive Technology - Accident Data Analysis Centre) under the ICAT-RNTBCI joint project approved by the Ministry of Heavy Industries, Government of India. 210 cases were collected from the National Highway between Jaipur and Gurgaon and 239 cases from urban and semi-urban roads around Chennai were used for the analysis. Based on this study, the following results were
Vimalathithan, KulothunganRao K M, PraneshVallabhaneni, PratapnaiduSelvarathinam, VivekrajManoharan, JeyabharathPal, ChinmoyPadhy, SitikanthaJoshi, Madhusudan
There are established federal requirements and industry standards for frontal crash testing of motor vehicles. Consistently applied methods support reliability, repeatability, and comparability of performance metrics between tests and platforms. However, real world collisions are rarely identical to standard test protocols. This study examined the effects of occupant anthropometry and passive restraint deployment timing on occupant kinematics and biomechanical loading in a moderate-severity (approximately 30 kph delta-V) offset frontal crash scenario. An offset, front-to-rear vehicle-to-vehicle crash test was performed, and the dynamics of the vehicle experiencing the frontal collision were replicated in a series of three sled tests. Crash test and sled test vehicle kinematics were comparable. A standard or reduced-weight 50th percentile male Hybrid III ATD (H3-50M) or a standard 5th percentile female Hybrid III ATD (H3-5F) was belted in the driver’s seating position. In the crash test
Courtney, AmyCrosby, CharlesMiller, BruceOsterhout, AaronWalker, JamesGondek, Jonathon
This study was conducted to assess the occupant restraint use and injury risks by seating position. The results were used to discuss the merit of selected warning systems. The 1989-2015 NASS-CDS and 2017-2021 CISS data were analyzed for light vehicles in all, frontal and rear tow-away crashes. The differences in serious injury risk (MAIS 3+F) were determined for front and rear seating positions, including the right, middle and left second-row seats. Occupancy and restraint use were determined by model year groups. Occupancy relative to the driver was 27% in the right-front (RF) and 17% in the second row in all crashes. About 39% of second-row passengers were in the left seat, 15% in the center seat and 47% in the right seat. Restraint use was lower in the second row compared to front seats. It was 43% in the right-front and 32% in the second-row seats in all crashes involving serious injury. Restraint use increased with model year groups. It was 63% in the ‘61-‘89 MY vehicles and 90
Parenteau, ChantalBurnett, Roger
Background: The Indian automobile industry, including the auto component industry, is a significant part of the country’s economy and has experienced growth over the years. India is now the world’s 3rd largest passenger car market and the world’s second-largest two-wheeler market. Along with the boon, the bane of road accident fatalities is also a reality that needs urgent attention, as per a study titled ‘Estimation of Socio-Economic Loss due to Road Traffic Accidents in India’, the socio-economic loss due to road accidents is estimated to be around 0.55% to 1.35% of India’s GDP [27] Ministry of road transport and highways (MoRTH) accident data shows that the total number of fatalities on the road are the highest (in number terms) in the world. Though passenger car occupant fatalities have decreased over the years, the fatalities of vulnerable road users are showing an increasing trend. India has committed to reduce road fatalities by 50% by 2030. In this context, the automotive
Mehta, PoojaPrasad, AvinashSrivastava, AakashArora, PankajHowlader, Ashim
There is little prior research into chain-collisions, despite their relatively large contribution to injury and harm in motor-vehicle collisions. This study conducted a series of rear-impact, front-impact, and chain-collision impacts using a bumper car ride at an active amusement park as a proxy for automobiles. The purpose was to begin to identify the threshold time range when separate, discrete collisions transition into a hybrid or combined chain-collision mode and provide bases for future analyses. The test series consisted of rear impacts into an occupied target vehicle from a driven bullet vehicle; frontal impacts into a perimeter barrier (wall); chain-collisions consisting of a driven bullet vehicle striking an occupied primary target vehicle, which then collided with a non-occupied secondary target vehicle; and chain-collisions consisting of a driven bullet vehicle striking an occupied primary target vehicle which then collided with a wall. Time between collisions was adjusted
Bussone, William R.Koiler, RezaBenda, JamieCarney, NicholasGeffard, AndresSam, Samantha
Emergency personnel and first responders have the opportunity to document crash scenes while evidence is still recent. The growth of the drone market and the efficiency of documentation with drones has led to an increasing prevalence of aerial photography for incident sites. These photographs are generally of high resolution and contain valuable information including roadway evidence such as tire marks, gouge marks, debris fields, and vehicle rest positions. Being able to accurately map the captured evidence visible in the photographs is a key process in creating a scaled crash-scene diagram. Image rectification serves as a quick and straightforward method for producing a scaled diagram. This study evaluates the precision of the photo rectification process under diverse roadway geometry conditions and varying camera incidence angles
Hashemian, AlirezaTerpstra, Toby
Ankle injuries continue to occur in motor vehicle collisions, particularly in female occupants. The causes of these injuries are sometimes unclear. Further understanding of ankle fracture tolerance and refinement of ankle injury prediction tools would help future injury prediction efforts. The goal of this study was to identify ankle injury types of interest and develop a test methodology to induce these injuries. Cases were examined from NHTSA’s Crash Injury Research Engineering Network (CIREN) database. 68 cases with distal tibia fracture were identified from CIREN years 2017+ (vehicle models years 2010+). The most common fractures were pilon fractures and malleolar fractures. Based on these results, a test methodology was developed to induce pilon and medial malleolar fractures in isolated cadaveric tibiae to quantify local fracture tolerance. Nineteen post-mortem human subject (PMHS) specimens (9 male and 10 female across a wide anthropometric range) were tested. To replicate the
Noss, JuniorDonlon, John-PaulHallman, JasonCarpenter, RandolffForman, Jason
Occupant protection in side impacts, in particular for near-side occupants, is a challenge due to the occupant’s close proximity to the impact. Near-side occupants have limited space to ride down the impact. Curtain and side airbags fill the gap between occupant and the side interior. This analysis was conducted to provide insight on the characteristics of side impacts and the relevancy of currently regulated test configurations. For this purpose, 2007-2015 NASS-CDS and 2017-2021 CISS side crash data were analyzed for towed light vehicles. 2008 and newer model year vehicle data was selected to ensure that most vehicles were equipped with side/curtain airbags. The results showed that side impacts accounted for approximately 26.7% of the vehicles involved and 18.9% of the vehicles with at least one seriously injured occupant. Most side impacts involved damage to the front and front-to-center of the vehicle. For seriously injured (MAIS 3+F) occupants, impacts to the occupant compartment
Parenteau, ChantalAult, B. NicholasToomey, DanielKrishnaswami, RamBurnett, Roger
Diffuse Axonal Injury (DAI) is the most common type of traumatic brain injury, and it is associated with the linear and rotational accelerations resulting from head impacts, which often occurs in traffic related and sports accidents. To investigate the degree of influence of linear and rotational acceleration on DAI, a two-factor, two-level rat head impact experimental protocol involving linear and rotational acceleration was established using the L4(23) orthogonal table in this paper. Following the protocol, rats head was injured and diffusion tensor imaging (DTI) was performed at 24h post-injury to obtain the whole brain DAI injury, and the fractional anisotropy (FA) value of the corpus callosum was selected as the evaluation indicator. Using analysis of variance, the sum of squared deviations for the evaluation indicators was calculated to determine the degree of influence of linear acceleration and rotational acceleration on DAI. The results show that, 1. For the corpus callosum
Wang, PengSong, XueweiChen, DiyouZhu, XiyanQiu, JinlongWang, NanYu, TianmingZhao, Hui
The head injury mechanisms of occupants in traffic accidents will be more complicated due to the diversified seating postures in autonomous driving environments. The injury risks and assessment parameters in complex collision conditions need to be investigated thoroughly. Mining the simulation data by the support vector machine (SVM) and the random forest algorithms, some head injury predictive models for a 6-year-old child occupant under a frontal 100% overlap rigid barrier crash scenario were developed. In these head injury predictive models, the impact speed and sitting posture of the occupant were considered as the input variables. All of these head injury predictive models were validated to have good regression and reliability (R2>0.93) by the ten-fold cross-validation. When the collision speed is less than 60km/h, rotational load is the primary factor leading to head injury, and the trends of BrIC, von Mise stress, Maxshear stress, and MPS are similar. However, when the speed
Li, HaiyanWang, YanxinHe, LijuanLv, WenleCui, ShihaiRuan, Jesse Shijie
Road accidents are a major concern worldwide and vulnerable road users make up more than half of the victims of road accident deaths. In order to combat this issue, several countries worldwide have mandated pedestrian safety test regulations viz., AIS100 & UN-R127. One of the requirements of the regulations is when Flexible Pedestrian Legform Impactor (Flex-PLI) is impacted onto the frontal structure of the vehicle at a speed of 40kmph, the Bending moment (BM) of tibia bone of Flex-PLI shall not exceed the regulatory limit of 340Nm. In this paper, we have built a statistical model for predicting the BM of tibia in Flex-PLI using regression analysis. 13 vehicles have been selected from all applicable vehicle categories viz., Sedan, hatchback, Coupe & SUV/MUV for this undertaking. An exhaustive analysis of the vehicle frontal structures and Flex-PLI test videos have been done to identify & measure the design parameters to be used as predictor variables. The vehicles have then been
Barbhuiya, Junaid HassanJain, Subhav
The Insurance Institute for Highway Safety (IIHS) introduced its updated side-impact ratings test in 2020 to address the nearly 5,000 fatalities occurring annually on U.S. roads in side crashes. Research for the updated test indicated the most promising avenue to address the remaining real-world injuries was a higher severity vehicle-to-vehicle test using a striking barrier that represents a sport utility vehicle. A multi-stiffness aluminum honeycomb barrier was developed to match these conditions. The complexity of a multi-stiffness barrier design warranted research into developing a new dynamic certification procedure. A dynamic test procedure was created to ensure product consistency. The current study outlines the process to develop a dynamic barrier certification protocol. The final configuration includes a rigid inverted T-shaped fixture mounted to a load cell wall. This fixture is impacted by the updated IIHS moving deformable barrier at 30 km/h. The fixture represents the stiff
Mueller, BeckyArbelaez, RaulHeitkamp, EricMampe, Christopher
A total of 93 tests were conducted in daytime conditions to evaluate the effect on the Time to Collision (TTC), emergency braking, and avoidance rates of the Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) provided by a 2022 Tesla Model 3 against a 4ActivePA adult static pedestrian target. Variables that were evaluated included the vehicle speed on approach, pedestrian offsets, pedestrian clothing, and user-selected FCW settings. As a part of the Tesla’s Collision Avoidance AssistTM, these user-selected FCW settings change the timing of the issuance of the visual and/or audible warning provided. This testing evaluated the Tesla at speeds of 25 and 35 miles per hour (mph) versus a stationary pedestrian target in early, medium, and late FCW settings. Testing was also conducted with a 50% pedestrian offset and 75% offset conditions relative to the right side of the Tesla. The pedestrian target was clothed with and without a reflective safety vest to account for
Harrington, ShawnNagarajan, Sundar RamanLau, James
This paper validates the single-track vehicle driver model available in PC-Crash simulation software. The model is tested, and its limitations are described. The introduction of this model eliminated prior limitations that PC-Crash had for simulating motorcycle motion. Within PC-Crash, a user-defined path can be established for a motorcycle, and the software will generate motion consistent with the user-defined path (within the limits of friction and stability) and calculate the motorcycle lean (roll) generated by following that path at the prescribed speed, braking, or acceleration levels. In this study, the model was first examined for a simple scenario in which a motorcycle traversed a pre-defined curve at several speeds. This resulted in the conclusion that the single-track driver model in PC-Crash yielded motorcycle lean angles consistent with the standard, simple lean angle formula widely available in the literature. The PC-Crash calculations did not account for the width of the
Palmer, JacobRose, Nathan A.Smith, ConnorWalter, KevinHashemian, Alireza
Due to the high center of gravity of medium-duty vehicles, rollover accidents can easily occur during high-speed cornering and lane changes. In order to prevent the deformation of the body structure, which would restrict the survival space and cause compression injuries to occupants, it is necessary to investigate methods for mitigating these incidents. This paper establishes a numerical model of right-side rollover for a commercial medium-duty vehicle in accordance with ECE R66 regulations, and the accuracy of the model is verified by experiment. According to the results, the material and size parameters of the key components of the right side pillar are selected as design variables. The response result matrix was constructed using the orthogonal design method for total mass, energy absorption, maximum collision acceleration, and minimum distance from the survival space. A multi-objective optimization of 25 sets of sample points was performed using a multi-factor weight analysis
Zhang, JiangfanZou, XiaojunYuan, Liu-kaiZhang, Tang-yunWang, TaoWang, Liangmo
Items per page:
1 – 50 of 6048