Browse Topic: Particulate filters
The legislation of CEV Stage V emission norms has necessitated advanced Diesel Particulate Filter calibration strategies to ensure optimal performance across diverse construction equipment applications in the Indian market. Considering the various duty cycles of cranes, backhoe loaders, forklifts, compactors, graders, and other equipment, different load conditions and operational environments require a comprehensive strategy to enhance DPF efficiency, minimize regeneration frequency, and maintain compliance with emission standards. The DPF, as an after-treatment system in the exhaust layout, is essential for meeting emission standards, as it effectively traps particulate matter. Regeneration occurs periodically to burn the soot particles trapped inside the DPF through ECU management. Therefore, understanding soot loading and in-brick DPF temperature behavior across various applications is key. This paper explores the challenges in DPF calibration for CEV Stage V and provides a
Komatsu has launched a new excavator, the PC220LCi-12, that features its latest intelligent machine control technology. IMC 3.0 incorporates automation enhancements and a reported “construction-industry first” technology - factory-integrated 3D boundary control - designed to boost operator productivity. The intelligent machine, displayed previously at Bauma 2025 in Munich, Germany, has many of the same features as the new PC220LC-12 excavator, including a cab that is 28% larger, with 30% more legroom and 50% improved visibility compared to the PC210LC-11 model. Other advantages the new machines offer are up to a 20% increase in fuel efficiency thanks to a new electrohydraulic system and 129-kW (173-hp) next-generation engine, and up to a 20% reduction in maintenance costs due to longer replacement intervals for hydraulic oil and oil filters and longer cleaning intervals for the particulate filter.
The current and upcoming Internal Combustion Engine (ICE) emission norms are very stringent. It is difficult to meet emission standards with just combustion optimization techniques. As a result, post-treatment is required for Engine-out emissions. Otherwise, these hazardous gases impact the ecosystem of living beings. Many technologies are implemented at the exhaust for reducing the emissions. Diesel Particulate Filter (DPF) is one such technique to achieve lower Particulate Matter (PM) and Particulate Number (PN) emission goals. In order to achieve such emission reduction, the DPF undergoes periodic cleaning called regeneration. During regeneration, the exhaust systems including DPF are maintained at elevated temperatures to achieve proper cleaning. When the vehicle is in regeneration, sudden braking or accelerator pedal release leads to engine Drop to Idle speeds (DTI), which sharply increases the temperature gradient inside the DPF which may result in physical damage like cracks
Diesel Particulate Filters (DPFs) have been used extensively worldwide as a Particle Mass (PM) / Particle Number (PN) reduction technology for various diesel applications. Based on CARB’s latest Tier 5 regulation workshop, PM emission targets are expected to become a lot more stringent; from 0.02 g/kWh to 0.005 g/kWh (75% reduction compared to Tier 4 Final (Tier 4f)). Also, CO2 emission targets are expected to be introduced for Tier 5. In parallel, EU Stage VI emission regulation standards and implementation timing could be announced sometime in late 2024. It is expected that PN emission standards will be tightened such as extending measurement range of PN from 23 nm to 10 nm. With Tier 5 and EU Stage VI regulations approaching, several OEMs are considering implementing a common aftertreatment system that can meet emission targets for both regions. High filtration efficiency and low backpressure DPFs will be required to meet PM/PN and CO2 emission standards. NGK has developed several
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system. In order to achieve this, a thermodynamic model of DPF substate was created using empirical relations between parameters like exhaust flow rate, exhaust
With the implementation of BS6 Norms, there is an increased focus on reducing particulate matter emissions from gasoline Direct Injection (GDI) engines. GPFs are effective in capturing particulate matter (PM) and particulate number (PN) but their calibration is critical to ensure optimal performance and emissions compliance. This paper presents a study on the calibration of Gasoline Particulate Filters (GPF) to comply with Bharat Stage-6 (BS6) emissions norms. The focus is on thermal management, soot loading, ash loading, and the unique challenges faced in the Indian market. Thermal management strategies include active and passive methods to optimize GPF regeneration and prevent thermal degradation. Soot load detection involves engine-out simulation-based approach as well as delta-Pressure-based approach for accurate soot modelling. Impact of ash loading and its effects on filtration efficiency and pressure drop will also be discussed. Further the strategies to overcome the challenges
Items per page:
50
1 – 50 of 1791