Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters

2024-01-2631

04/09/2024

Features
Event
WCX SAE World Congress Experience
Authors Abstract
Content
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables.
In the current work, engine dynamometer tests were conducted on a SCR-DPF at different operating conditions covering typical vehicle running conditions. The oxygen assisted and NO2 assisted soot burning efficiency of the SCR-DPF was measured with and without urea injection at different soot loads. The impact of ammonia on soot burning at different engine operating conditions was studied. Using the test data, a physics based 1-D reaction model was developed with NOx reduction and soot oxidation reactions. The detailed SCR chemistry includes reactions for ammonia adsorption/desorption, NO oxidation, NH3 oxidation, standard/fast/slow NOx reduction and N2O formation. The soot burning reaction kinetics is described by the oxidation of soot with NOx. The NOx reduction and soot regeneration efficiency predictions of the model were validated with test values measured at engine dynamometer conditions under various exhaust flow rate, temperature, and soot load conditions. This 1-D kinetic model can be applied to generate calibration look up tables for the SCR-DPF control system in the vehicle to identify the right soot burning protocol to achieve the target regeneration efficiency. Few of the other areas where the model can be applied are, exhaust aftertreatment (EAT) architectural evaluation, converter sizing, wash coat loading studies, urea injection strategy development and heater element controls optimizations. Compared to the conventional hardware test-based approach, this model-based virtual approach uses less test data thus resulting in faster product development cycle and reduces the testing in engine dynamometer and vehicles.
Meta TagsDetails
DOI
https://doi.org/10.4271/2024-01-2631
Pages
11
Citation
Kannan, R., Paramadhayalan, T., Mital, R., Gustafson, E. et al., "Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters," SAE Technical Paper 2024-01-2631, 2024, https://doi.org/10.4271/2024-01-2631.
Additional Details
Publisher
Published
Apr 09
Product Code
2024-01-2631
Content Type
Technical Paper
Language
English