Browse Topic: Exhaust systems

Items (6,505)
Otto Cycle can operate with both gasoline and ethanol; however, these fuels have different properties that will result in different performance parameters. This work aims to compare the thermal energy balance of an internal combustion engine fueled with gasoline and ethanol. The experimental tests were carried out on a dynamometer bench varying engine speed between 1500 and 6000 rpm and at full load condition. The results showed that the engine’s maximum thermal efficiency ranged from 30.51% with gasoline to 31.72% with ethanol. The percentage of energy dissipated to the cooling system varied from 16.93% with gasoline from 16.12% with ethanol. The percentage of energy dissipated to the exhaust system ranged from 32.82% with gasoline from 34.64% with ethanol. The percentage of energy wasted due to incomplete fuel combustion varied from 3.50% with gasoline from 10.00% with ethanol. The percentage of energy dissipated to the lubrication system ranged from 3.95% with gasoline from 3.76
Santana, Claudio MarcioSantana, Linicker Lopes BrunoAlmeida, Helder Giostri Alves
The objective of this study is to investigate the root cause of cracks detected in the Turbocharger bracket belonging to the engine Mercedes-Benz OM471 (Power: 390kW, Torque: 2600Nm) from Vehicle Truck Mercedes-Benz Actros 2651LS 6x4 Euro V. The investigation started with the instrumentation of every related component (besides the bracket itself, the charge air pipe, the exhaust pipe and also the crankcase for reference) in order to perform a vibration measurement. The necessary equipment to execute this procedure, included accelerometers, temperature sensors, strain gages and an inductive engine speed sensor. All data had to be acquired directly from real application conditions in vehicle, maximum load of 74 ton in a previously defined mountain road track, due to the impossibility to generate similar results in comparison to the ones detected on road through bench tests (or any other in-door experiment). The bracket position is located on the right side of a diesel combustion engine
Feijó, Igor SommerfeldGonçalves, Carlos Aurélio Bustamante
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
Vandresen, MarceloSantos, Luciano Amaury
Increasingly stringent emission regulations continue to be legislated around the world to significantly minimize pollutants released to the air by internal combustion engines. After Treatment Systems (ATS) meant for reducing oxides of nitrogen (NOx) in the exhaust into non-harmful species have evolved at a rapid pace over the past two decades. Stringent emissions requirements have driven complex ATS architecture through sensors to measure delta-pressure, NOx, and temperatures. Accurate and precise performance of individual components as well as the integrated ATS is required to ensure regulatory compliance and efficient performance. Both of which require substantial amounts of performance and validation testing. Manufacturers have been developing the ability to accurately and efficiently test the ATS components. To meet the norms for tail pipe or stack emissions of NOx in ‘as new’ condition and during the entire ‘emissions useful life (EUL)’ of the ATS, all components of an ATS must
Raut, Pratiksha COttikkutti, PradheepramPhadke, Abhijit NarahariMagar, Vijay A.
As vehicle emission standards are becoming stringent worldwide because of the looming climate crisis, it is important to control the pollutants that vehicles emit. To achieve the stringent emission target, it has become a priority to enhance the capability of Emission Control System (ECS) which consist of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) sub-systems. One of the bottlenecks is the limited operating temperature range of the after-treatment system. In modern emission control systems, the temperature characteristics should always be optimized to have the best efficiency involving chemical conversions. To achieve this optimal operating temperature, different thermal control strategies are followed in the Engine and emission control unit. Temperature sensor values are one of the primary inputs for thermal management strategies. In the event of temperature sensor malfunction, the ECS performance is affected due to
Kumar, AmitV H, YashwanthKumar, RamanHegde, KarthikManojdharan, Arjungopal
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
Titave, Uttam VasantZalaki, NitinNaidu, Sudhakara
As a journey to green initiatives, one of the focus areas for automotive industry is reducing environmental impact especially in case of internal combustion engines. Latest digital twin technology enable modelling complicated, fast and unsteady phenomena including the changes of emission gases concentration and output torque observed during diesel emission and combustion process. This paper presents research on the emission and combustion characteristics of a heavy vehicle diesel engine, elaborating an engineered architecture for prognostics/diagnostics, state monitoring, and performance trending of heavy-duty vehicle engine (HDVE) and after treatment system (ATS). The proposed architecture leverages advanced modeling methodologies to ensure precise predictions and diagnostics, using data-driven techniques, the architecture accurately model’s engine and exhaust system behaviors under various operating conditions. For exhaust system, architecture demonstrates encouraging predictive
Singh, PrabhsharnThakare, UjvalHivarkar, Umesh
The present study aims to meet the Euro-VII compliance applicable for internal combustion engines (diesel and hydrogen) by improving the performance of selective catalytic reduction (SCR) system using a novel urea water solution (UWS) mist injection technique. In SCR system, the interaction of exhaust gas and UWS resulted into ammonia (NH3) species, which is mixed with harmful NOx emission and converted into harmless by-products. Despite the proven technology, there are several challenges presented in the existing system which restricts the ideal performance of SCR system especially during cold starting condition: (i) incomplete droplet evaporation (ii) solid deposit formation (iii) non uniformity of NH3 distribution at the catalyst entrance. The past studies shows that the droplet size plays a major role in this context. Further, it is noted that the smaller size droplets are desirable to overcome the impediments and enhance the efficiency of SCR application. Therefore, it is decided
Venkatachalam, PalaniappanShiva, ShashidharGovindarajan, VaishaliSoni, PrernaPatidar, Sachin
ABSTRACT We propose new methods to help automate the design of customizable mufflers, as well as modular manufacturing techniques targeted at mid volume quantities. A successful solution would reduce the price point of a muffler to an estimated $500 per unit for a order size between 10 and 1000 units. In the ideal case, customers would not need to inventory mufflers because lead times would be fast and managed
Nelson, KevinKangas, GregMattson, SteveHufnagel, Alan
ABSTRACT Curtiss-Wright has developed an advanced Smart Power Architecture for Intelligent Power Distribution, based on our Intelligent Power Distribution Demonstration (iPDD) and experience in providing power distribution components specifically for Heavy Brigade Combat Team (HBCT) vehicles. The challenges of power distribution and management in ground vehicles are presented, including issues of scalability, warfighter burden, and the complexity of distributing multiple vehicle power sources. The fundamental building blocks of Smart Power are described, including Power Distribution Units, Power Conditioning Units, and types of Power Conversion Units (AC/DC, DC/DC, DC/AC). A Smart Power Reference Architecture will be presented, showing how it enables scalable and modular power distribution systems. How modular Smart Power Architecture can enable commonality across vehicles and applications. How it can provide automatic and programmable load management, including startup and shutdown
Dolbin, BradJedynak, David
ABSTRACT Fuel filters used to remove particulates from liquids are evaluated by OEM’s and filter manufacturers using standardized test protocols that specify simplified conditions that aid in laboratory reproducibility. These test results do not always translate into actual filter performance in application. In military vehicles that experience frequent demands for rapid acceleration and deceleration and extreme vibration, the importance of evaluating fluid filtration performance with these parameters as inputs is significant. This paper discusses an investigation of the performance sensitivity of a diesel particulate filter to structural vibration properties and flow rate fluctuation. After determination of this sensitivity to dynamic inputs, a new test protocol was developed for evaluating competitive fuel filters. The cyclic flow and mechanical vibration inputs for the new protocol were selected to be representative of those that would be seen in a heavy duty diesel application
Hollingsworth, LarryWostarek, PeterExposito, Christian
Selective catalytic reduction (SCR) technology is currently one of the most effective methods to reduce NOx emissions for engine. NH3-SCR technology is also considered to be the most promising hydrogen engine after-treatment device. This paper used Cu-SSZ-13, which is widely commercially available, as the research object, and explored the relationship between micron and nanoscale grain sizes through experimental methods such as BET, XRD, NH3-TPD, UV-vis-DRS and activity testing, the influence mechanism of micron-scale and nano-scale grain size on the morphology and properties of Cu/SSZ-13 catalyst was explored. The results show that the fresh nanoscale 900F sample has higher low-temperature NOx conversion efficiency, while the micron-scale 1800F sample has poor low-temperature activity and better high-temperature activity. This is closely related to its morphological characteristics, adsorption and desorption characteristics and dual-site properties. The specific surface area and total
Chen, YajuanLou, DimingZhang, YunhuaTan, PiqiangFang, LiangHu, Zhiyuan
A major challenge for auto industries is reducing NOx and other exhaust gas emissions to meet stringent Euro 7 emission regulations. A urea Selective Catalyst Reduction (SCR) after-treatment system (ATS) commonly uses upstream urea water injection to reduce NOx from the engine exhaust gas. The NOx emission conversion rate in ATSs is high for high exhaust gas temperatures but substantially low for temperatures below 200°C. This study aims to improve the NOx conversion rate using urea pulse injection in a mass-production 2.2 L diesel engine equipped with an SCR ATS operated under low exhaust gas temperature. The engine experimental results show that, under 200°C exhaust temperature and 3.73x104 h-1 gross hourly space velocity (SV), the NOx conversion rate can be improved by 5% using 5-sec ON and 12-sec OFF (denoted as 5/12 s) urea pulse supply compared to the constant supply under time-averaged 1.0 urea equivalence ratio. It is experimentally observed that the urea pulse supply’s
Yoshida, FukaTakahashi, HideakiKotani, YuyaZu, QiuyueSok, RatnakKusaka, Jin
Modern automotive powertrains are operated using many control devices under a wide range of environmental conditions. The exhaust temperature must be controlled within a specific range to ensure low exhaust-gas emissions and engine-component protection. In this regard, physics-based exhaust-temperature prediction models are advantageous compared with the conventional exhaust-temperature map-based model developed using engine dyno testing results. This is because physics-based models can predict exhaust-temperature behavior in conditions not measured for calibration. However, increasing the computational load to illustrate all physical phenomena in the engine air path, including combustion in the cylinder, may not fully leverage the advantages of physical models for the performance of electric control units (ECUs). This study proposes an onboard physics-based exhaust-temperature prediction model for a mass-produced engine to protect the engine exhaust system and reduce exhaust emissions
Yamaguchi, SeiyaTomita, MasayukiUrakawa, ShinjiOokubo, Seiichi
The gasoline particulate filter (GPF) represents a durable solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as a viable technology in North America to meet the upcoming US EPA tailpipe emission regulation, the proposed “Multipollutant Rule for Model Year 2027”. The goal of this study was to track the evolution of tailpipe particulate emissions of a modern GTDI light duty vehicle under typical North American mileage accumulation; from a fresh state to 4000-mile, and finally to its full useful life of 150,000-miles. For this purpose, a production TWC + GPF after-treatment system was installed in place of the T3B85 TWC-only system. Chassis dyno emissions testing was performed at the pre-determined mileage points with on-road driving conducted for the necessary mileage accumulation. This report will show the outstanding filtration durability and enhanced particulate control and of the current GPF technology all the way to 150,000 miles for
Craig, AngusWarkins, JasonBeattie, JamesNipunage, SanketMoser, DavidDay, RyanBanker, Vonda
The selective catalytic reduction (SCR) is a technique, which is using in diesel engine to reduce harmful nitrogen oxide (NOx) emissions. SCR technique involves the injection of urea-water-solution (Water-urea solution) into the hot exhaust stream. The water first evaporates and then urea undergoes thermal decomposition. The thermal decomposition of urea produces ammonia, which reacts with the nitrogen oxides inside a SCR catalyst layers and nitrogen and water vapor are the final product. The production of ammonia from urea strongly influenced by the droplet size, residence time of the droplets inside decomposition chamber and exhaust gas temperature. During the combustion process of Diesel engines, Nitrogen oxide (NOx) is produced as a pollutant which is harmful for environment. Acceptance level of (NOx) is made more stringent in BS-VI and subsequent standards to regulate (NOx) levels. In SCR system NH3 reacts with (NOx) and converts N2 and H2O. Ammonia (NH3) concentration and
Chaudhary, Alok SubhashGhodake, PreetamBiswas, Kundan
Modern diesel engines temporarily use a very late post-injection in the combustion cycle to either generate heat for a diesel particulate filter regeneration or purge a lean NOx trap. In some configurations, unburned fuel is left at the cylinder walls and is transported via the piston rings toward the lower crankcase region, where fuel may dilute the oil. Reduced oil lubrication shortens the oil service intervals and increases friction. Beside diesel fuel, this problem may also occur for other types of liquid fuels such as alcohols and e-fuels. The exact transport mechanism of the unburned fuel via the piston ring pack grooves and cylinder wall is hard to measure experimentally, motivating numerical flow simulation in early design stages for an in-depth understanding of the involved processes. A new CFD simulation methodology has been developed to investigate the transient, compressible, multiphase flow around the piston ring pack, through the gap between piston and liner, and its
Antony, PatrickHosters, NorbertBehr, MarekHopf, AnselmKrämer, FrankWeber, CarstenTurner, Paul
The shape and energy distribution characteristics of exhaust pulse of an asymmetric twin-scroll turbocharged engine have a significant impact on the matching between asymmetric twin-scroll turbines and engines, as well as the matching between asymmetric twin scrolls and turbine wheels. In this article, the exhaust pulse characteristics of an asymmetric twin-scroll turbocharged engine was studied. Experiments were conducted on a turbine test rig and an engine performance stand to determine the operation rules of exhaust pulse strength, turbine flow parameters, turbine isentropic energy, and turbine efficiency. The results showed that the exhaust pulse strength at the inlets of both the small and large scrolls continuously decreased with the increase of engine speed. And the flow parameters at the inlets of the small and large scrolls exhibited a “ring” or “butterfly” shape with the change of expansion ratio depending on the pressure deviation of the extreme points at the troughs on both
Wu, LiangqinJin, JianjiaoWang, JieZhang, Chenyun
Minimizing vibration transmitted from the exhaust system to the vehicle’s passenger compartment is the primary goal of this article. With the introduction of regulatory norms on NVH behavior and emissions targets, it has become necessary to address these issues scientifically. Stringent emissions regulations increased the complexity of the exhaust system resulting in increased size and weight. Exhaust system vibration attenuation is essential not only from the vehicle NVH aspects but also for the optimized functionality of the subsystems installed on it. Based on earlier studies, this work adopts a more thorough strategy to reduce vehicle vibration caused by the exhaust system by adjusting it to actual operating conditions. To achieve this, a complete vehicle model of 22 DOF is considered, which consists of a powertrain, exhaust system, chassis frame, and suspension system. A method for evaluating static and dynamic vibration response is proposed. Through the use of the vehicle’s rigid
Sarna, Amit KumarSingh, JitenderKumar, NavinSharma, Vikas
Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOx regulations on heavy duty vehicles in the United States. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR. The e-heater was capable of providing up to 10 kW, however for the purpose of this project, lower power settings of 2.5 kW and 5 kW were studied in combination with CDA for lowest
Kramer, JanRice, MichaelZavala, BryanSharp, ChristopherMcCarthy, JamesKarrer, Ben
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations. This paper compares the acoustic and thermodynamic performance
Saur, LukasHeidegger, PatrickNaeger, ChristophBecker, Stefan
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO-standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard. This
Herold, TimNoone, PatrickBeidl, ChristianBoldt, ThomasHochholzner, MichaelKontin, Sinisa
Electricity, e-fuel and H2 are considered important recent and future sources of energy for heavy-duty vehicles. Heavy-duty battery electric vehicles (BEV) have many technical challenges. Therefore, internal combustion engines (ICE) powered by e-fuel and hydrogen can be used as an alternative to batteries in heavy-duty trucks. Selective catalytic reduction (SCR) systems are necessary for achieving the goals of zero-emission internal combustion engines that use e-fuel or H2 as a fuel. The Japanese automotive industry mainly utilizes Cu-Zeolite-based SCR catalysts since vanadium-based catalysts have been difficult to be used to prevent the release of vanadium into the atmosphere due to the relatively low evaporation temperature. This study investigated whether improving the conversion rate by pulsing the NH3 supply was possible. Experiments were conducted in a mini-reactor with an inflow of simulated exhaust gas to examine the effect of the pulse amplitude, frequency, and duty ratio on
Morita, DaikiKotani, YuyaZu, QiuyueYoshida, FukaSok, RatnakKusaka, Jin
Expansion chamber mufflers are commonly applied to reduce noise in heating, ventilation, and air-conditioning (HVAC) or exhaust systems. In dissipative mufflers, sound-absorptive materials, such as microperforated plates (MPP), are applied to achieve an enhanced and more broadband mitigation effect. Computational acoustics (CA) analyses of mufflers are usually carried out in the frequency domain, assuming time-harmonic excitation. However, certain applications require time-domain simulations. From a computational point of view, such transient analyses are more challenging. A transformation of the governing equations involving frequency-dependent material parameters into the time domain induces convolution integrals. We apply the recently proposed finite element (FE) formulation of a time-domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. Like most time-domain approaches, the formulation relies on
Maurerlehner, PaulMayrhofer, DominikMehrgou, MehdiKaltenbacher, ManfredSchoder, Stefan
Fossil fuels such as natural gas used in engines still play an important role worldwide which however is also exacerbating climate change as a result of carbon dioxide emissions. Although natural gas engines show an overall low pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 times higher global warming potential than CO2. Additionally, further tightening of emissions legislation is to be expected bringing methane emissions even more into focus making exhaust gas aftertreatment issues remain relevant. For lean gas applications, (Pd)-based catalysts turned out to convert CH4 most efficiently usually being supported by metal oxides such as aluminium oxide (Al2O3). Water (H2O) contained in the exhaust gas causes strong inhibition on Pd catalysts. In real exhaust gases, not only water vapour but also pollutants and sulphur-containing compounds such as hydrogen sulphide (H2S) or sulphur oxides (SOx) are poisoning the
Tomin, SebastianWagner, UweKoch, Thomas
Combustion engines in hybrid vehicles start and shut off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during engine off mode. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via reliable and cost-effective engineering tools that can perform accurate analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a catalyst model that predicts the 3D thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow. Next, we examine the impact of zero-flow duration on the exhaust system temperature and subsequent emissions risk and we validate the
Emmanouil, ValesiaKoltsakis, GrigoriosKotoulas, Costas
This research effort is to optimize the conditions to minimize carbon monoxide (CO) gas emissions utilizing activated carbon derived from rice husks, an abundant agricultural waste. In the automobile industry, addressing vehicular emissions is crucial due to environmental ramifications and stringent regulatory mandates. This study presents an innovative and potentially cost-effective solution to capture CO emissions, mainly from motorcycles. The eco-friendly nature of using rice husks and the detailed findings on optimal conditions (20 m/s gas flow rate, 0.47 M citric acid concentration, and 30 g mass of activated carbon) make this research invaluable. These conditions achieved a commendable CO adsorption rate of 54.96 ppm over 1250 s. Essentially, the insights from this research could spearhead the development of sustainable automobile exhaust systems. By integrating activated carbon into these systems, there’s potential to capture CO and possibly other detrimental gases, reducing the
Natrayan, L.Seeniappan, Kaliappan
Vehicle emissions, which are rising alarmingly quickly, are a significant contributor to the air pollution that results. Incomplete combustion, which results in the release of chemicals including carbon monoxide, hydrocarbons, and particulate matter, is the main cause of pollutants from vehicle emissions. However, CO2 contributes more than the aforementioned pollutants combined. Carbon dioxide is the main greenhouse gas that vehicles emit. For every liter of gasoline burned by vehicles, around 2,347 grams of carbon dioxide are released. Therefore, it’s important to reduce vehicle emissions of carbon dioxide. The ability of materials like zeolite and silicon dioxide to absorb CO2 is outstanding. These substances transform CO2 into their own non-polluting carbonate molecules. Zeolite, silicon dioxide, and calcium oxide are combined to form the scrubbing material in a ratio based on their increasing adsorption propensities, along with enough bentonite sand to bind the mixture
Saravanakumar, L.Arunprasad, S.
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection. The flow field state, velocity field, pressure field and exhaust gas concentration parameters of the mixture formed by air and EGR exhaust gas in Venturi
Yang, ShuaiYan, KaiLiu, HaifengLiu, HairanLi, Tong
The proposed Euro 7 regulation aims to substantially reduce the NOx emissions to 0.03 g/km, a trend also seen in upcoming China 6b and US EPA regulations. Meeting these stringent requirements necessitates advancements in Urea/Selective Catalytic Reduction (SCR) aftertreatment systems, with the urea deposit formation being a key challenge to its design. It’s proven that Computational Fluid Dynamics (CFD) can be an effective tool to predict Urea deposits. Transient wall temperature prediction is crucial in Urea deposit modeling. Additionally, fully understanding the kinetics of urea decomposition and by-products solidification are also critical in predicting the deposit amount and its location. In this study, we introduce (i) a novel film boiling model (IFPEN-BRT model) and (ii) a new urea by-product solidification model in the CONVERGE CFD commercial solver, and validate the results against the recent experiments. The IFPEN-BRT model handles the spray-wall heat transfer in various
Bhatt, Mrugank P.Yang, PengzeHabchi, Chaouki
Hydrogen (H2) is commonly considered as one of the most promising carbon-free energy carriers allowing for a decarbonization of combustion applications, for instance by retrofitting of conventional diesel internal combustion engines (ICEs). Although modern H2-ICEs emit only comparably low levels of nitrogen oxides (NOx), efficient catalytic converters are mandatory for exhaust gas after-treatment in order to establish near-zero emission applications. In this context, the present study evaluates the performance of a commercial state-of-the-art oxidation catalyst (OC) and of a catalyst for selective catalytic reduction (SCR) that are typically used for emission reduction from diesel exhausts under conditions representative for H2-fueled ICEs, namely oxygen-rich exhausts with high water vapor levels, comparably low temperatures, and potentially considerable levels of unburnt H2. Herein, the OC is supposed to convert H2 slippage, which can occur due to incomplete combustion, and to oxidize
Lott, PatrickSchäfer, KathrinDeutschmann, OlafWerner, ManuelWeinmann, PhilippZimmermann, LisaToebben, Heike
When used with injecting urea-water solution forming ammonia, Selective Catalytic Reduction (SCR) catalyst is a proven technology for greatly reducing tailpipe emission of nitrogen oxides (NOx) from Diesel engines. However, one major shortcoming of an SCR-based system is forming damaging urea deposits (crystals) in low temperature exhaust operations, especially exacerbated during higher injection rates. Deposits reduce SCR efficiency, damage exhaust components, and induce high concentration ammonia slips. We describe here an Electrically Heated Mixer (EHM™) demonstrated on a Diesel engine markedly inhibiting deposit formation in urea SCR systems, both in low (near 200 °C) and higher exhaust temperature operations and for both low and high urea injection rates in various, realistic engine operations. Engine test runs were conducted in long durations, 10 to 20 hours each, for a total of nearly 100 hours. In nearly all operation modes, EHM maintained deposits below 1% of the total
Vernham, BruceKadam, VaibhavMasoudi, MansourNoorfeshan, SahmPoliakov, Nick
In this study, an integrated emission prediction model was used to predict whether EURO7-compliant commercial internal combustion engine vehicles would be able to meet upcoming regulations. In particular, the optimal value of Adblue injection and EHC (Electrically Heated Catalyst) control strategy for each combination of the specifications of the close-coupled SCR system (volume, substrate spec., EHC, etc.) was derived. Through this, it was intended to derive the best specification combination in terms of control and emission performance, and to use the results as a basis for decision-making in the early stages of product concept selection
Cho, JihoChoi, SungmuLee, Sang MinHwang, Dong Min
Hydrogen Internal Combustion Engines (H2 ICE) are gaining recognition as a nearly emission-free alternative to traditional ICE engines. However, H2 ICE systems face challenges related to thermal management, N2O emissions, and reduced SCR efficiency in high humidity conditions (15% H2O). This study assesses how hydrogen in the exhaust affects after-treatment system components for H2 ICE engines, such as Selective Catalytic Reduction (SCR), Hydrogen Oxidation Catalyst (HOC), and Ammonia Slip Catalyst (ASC). Steady-state experiments with inlet H2 inlet concentrations of 0.25% to 1% and gas stream moisture levels of up to 15% H2O were conducted to characterize the catalyst response to H2 ICE exhaust. The data was used to calibrate and validate system component models, forming the basis for a system simulation. System model validation involved comparing the model against real-world data from production diesel engine after-treatment systems for transient cycles, including Federal Test
Chundru, Venkata RajeshSharp, ChristopherRahman, Mohammed MustafizurBalakrishnan, Arun
The impending emission regulations in both China (CN7) and the United States (Tier 4) are set to impose more stringent emission limits on hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). CN7 places particular emphasis on reducing particulate number (PN) thresholds, while the forthcoming United States Tier 4 legislation is primarily concerned with reducing the allowable particulate matter (PM) to an assumed limit of 0.5 mg/mile. Given the more stringent constraints on both PN and PM emissions, the development of enhanced aftertreatment solutions becomes imperative to comply with these new regulatory demands. Coated Gasoline Particulate Filters (cGPFs) play a pivotal role as essential components for effective PN and PM abatement. These filters are typically deployed in one of two configurations: close-coupled to the turbocharger positioned downstream of a primary three-way catalyst (TWC) or located further downstream of the exhaust system in an
Schoenhaber, JanKawashima, ShotaGotthardt, MeikeSchühle, Johannes
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables. In the current work, engine dynamometer tests were conducted on a SCR-DPF at different
Kannan, RajeshParamadhayalan, ThiyagarajanMital, RahulGustafson, ErikEdwards, David
Design, testing, and implementation of new aftertreatment devices under various engine operating conditions is necessary to meet increasingly stringent regulatory mandates. One common aftertreatment device, the catalytic converter, is typically developed at a reduced scale and tested using predefined fluid compositions sourced from bottle gases and can undergo both species and temperature cycling in addition to steady-state testing. However, these bench-top conditions may differ from real-world operation in terms of flow-rates, species composition, and temperatures experienced. Transitioning from small-scale bench-top testing to full-scale engine applications requires larger monoliths that therefore have a significant amount of catalyst slurry to be washcoated, which increases cost and fabrication time. Being able to experience realistic emission streams under scaled flowrates would allow for a physically smaller catalyst testing at matched space velocities resulting in faster, more
Loprete, JasonRistow Hadlich, RodrigoSirna, AmandaAssanis, DimitrisMon, TalaKyriakidou, Eleni
The increasing importance of minimizing drag and the absence of an exhaust system result in battery electric vehicles (BEVs) commonly having a very streamlined underbody. Although this shape of underbody is typically characterized by a low acoustic interference potential, significant flow resonance can be observed for certain vehicle configurations and frequencies below 30 Hz. Since the interior of the vehicle can be excited as a Helmholtz resonator, these low-frequency fluctuations result in reduced comfort for the passengers. As preliminary studies have shown, the flow around the front wheel spoilers significantly influences this flow phenomenon. Flow separation occurs at the front-wheel spoilers and at the front wheels. This leads to the generation of vortices which are growing significantly while being transported downstream with the flow. Even small geometric changes to add-on components on the underbody significantly influence both aerodynamics and aeroacoustics. Thus, the goal
Breitenbücher, LauraWagner, AndreasWiegand, ThomasBrink, Maarten
The gasoline particulate filter (GPF) represents a practical solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as an essential technology in North America to meet the upcoming US EPA tailpipe emission regulation, as proposed in the “Multi-pollutant Rule for Model Year 2027”. The goal of this study was to introduce advanced, uncoated GPF products and measure their particulate mass (PM) reduction performance within the existing US EPA FTP vehicle testing procedures, as detailed in Code of Federal Regulations (CFR) part 1066. Various state-of-the-art GPF products were characterized for their microstructure properties with lab-bench checks for pressure drop and filtration efficiency, then pre-conditioned with an EPA-recommended 1500 mile on-road break-in, and finally were tested on an AWD vehicle chassis-dyno emissions test cell at both 25°C and -7°C ambient conditions. A modern, T3B70, GTDI light-duty truck served as the test vehicle
Craig, AngusWarkins, JasonWassouf, BasselBeall, DouglasBanker, VondaMadaffari Jr, Dominick
The proposed Euro-7 regulations are expected to build on the significant emissions reductions that have already been achieved using advanced Euro VI compliant after treatment systems (ATS). The introduction of in-service conformity (ISC) requirements during Euro VI paved the way for enabling compliance during real-world driving conditions. The diverse range of applications and resulting operating conditions greatly impact ATS design and the ability of the diesel particulate filter (DPF) to maintain performance under the most challenging boundary conditions including cold starts, partial/complete regenerations, and high passive soot burn operation. The current study attempts to map the particle number (PN) filtration performance of different DPF technologies under a variety of in-use cycles developed based on field-data from heavy duty Class-8 / N3 vehicles. Access to such performance maps can allow original equipment manufacturers (OEMs) to select DPF technologies to suit different
Viswanathan, SandeepSadek, GhadiReddy, VishalHe, SuhaoAlam, Rabeka
Gasoline particulate filters (GPF) have become a standard aftertreatment component in Europe, China, and since recently, India, where particulate emissions are based on a particle number (PN) standard. The anticipated evolution of regulations in these regions towards future EU7, CN7, and BS7 standards further enhances the needs with respect to the filtration capabilities of the GPFs used. Emission performance has to be met over a broader range in particle size, counting particles down to 10nm, and over a broader range of boundary conditions. The requirements with respect to pressure drop, aiming for as low as possible, and durability remain similar or are also enhanced further. To address these future needs new filter technologies have been developed. New technologies for uncatalyzed GPF applications have been introduced in our previous publications. In this contribution we will describe novel Generation 2 and 3 technologies of Corning’s high porosity Corning® DuraTrap® GC HP filters
Boger, ThorstenRose, DominikLi, ChunboChijiiwa, RyokoRemy, ChristopheAlam, Rabeka
Since Non-Road Mobile Machinery (NRMM) China stage IV legislation has been implemented from 2022, some engines within maximum rated power between 37 to 560 kW are required for gaseous emissions, particulate matter (PM) and particulate number (PN) control, evaluated over testing cycle of Non-Road Transient Cycle (NRTC) and Non-Road Steady Cycle (NRSC). The pollutants from diesel engines, widely used in NRMM applications, can be controlled using aftertreatment systems which are comprised of a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF), or optionally a selective catalytic reduction (SCR). In this paper, a compact D-DPF design is introduced and discussed on application in harvesters, tractors, and forklifts. Because harvesters have higher exhaust gas temperature than other applications, more passive regeneration behaviors were observed. Subsequently, a compact design of DOC catalyst on DPF (D-DPF) was studied, in other words is to coat DOC catalyst on DPF. For a
Chen, JianHe, ChiyiWang, XuhuaLiu, YiYu, Lei
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. Modern internal combustion engines typically employ various in-cylinder emission reduction techniques along with a multi
Sandhu, Navjot SinghYu, XiaoTing, DavidZheng, Ming
Diesel Particulate Filters (DPF) made of cordierite are generally used for diesel engine aftertreatment systems in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. PM/PN and NOx emission regulations will become more stringent worldwide, as represented by CARB2027 and Euro7. Technologies that can meet these strict regulations are required. As a result, aftertreatment systems have become more complex with limited space. Recently, off-highway OEMs have been interested in downsizing the aftertreatment system using concepts such as DOConFilter in an effort to reduce the size of the exhaust system. DOConFilter can effectively replace DOC + CSF or DOC + bare DPF systems with a single zone coated particulate filter. DOConFilter systems have an increased amount of coating compared to CSF as higher-filtration filters will become the norm. An undesirable increase in pressure drop is expected by adopting this new technology. In addition, soot
Kinoshita, TakashiTanaka, KatsunoriFuruta, YasuyukiAoki, TakashiSakamoto, HirofumiFakih, HusseinFukumi, YukiYoshioka, FumihikoKato, Kyohei
Catalytic converters have been considered as an integral part of the vehicle powertrain for over a decade now, their application along with the engines increased significantly with the constant evolution of emission standards. Recent regulations keep a strict control on the major four pollutants of engine exhaust gas, i.e., Carbon Monoxide (CO), Nitrogen Oxides (NOx), Hydrocarbons (HC) & Particulate Matter (PM), which demands a highly efficient aftertreatment system. Efforts are continuously being made to downsize the engine for better fuel economy and low emissions, this puts additional requirement of designing a compact aftertreatment system equipped with Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR). Compact catalytic converters experience larger vibration force transferred from the vehicle and hence the durability of the product is significantly impacted. Vibration sources are a) Engine, b) Road Load, using a long flex pipe
Gupta, BipinLi, JiangongSingaravel, Vinothkumar
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed
Liu, YiHess, DevinWang, QiguiCoryell, Jason
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money. However, calibration of these models can be challenging and requires significant time
Wilson, John ParleyDelVescovo, Dan
This is a follow-up report about the development of a cost-effective Palladium (Pd) zeolite-based (HC/NOx trap type) cold-start catalyst (CSC) [1] to meet the future more stringent Chinese vehicle tailpipe emission standard. The impacts of Pd /stabilizer combination within zeolite for the HC/NOx trapping efficiency, the high temperature aging and the durability of the CSCs will be demonstrated by the laboratory results within this paper. The feasibility of a Cu zeolite, a popular non-precious metal ion- zeolite CSC for vehicle applications with respect to cost saving options will be demonstrated. A more complete picture of the effects of PGM/stabilizer within the zeolite to the functions of a CSC will also be summarized in this paper. All results indicate clearly that without the PGM/stabilizer within the zeolite, it would be difficult for the zeolite-based HC/NOx trap type CSC catalyst to be practically used for a vehicle application. The bag and second by second vehicle test results
Xu, LifengZhao, FuchengWei, HongZhao, PengfeiZhao, JiajiaWang, LinQian, WangmuQian, Menghan
NVH refinement of commercial vehicles is the key attribute for customer acceptance. Engine and road irregularities are the two major factors responsible for the same. During powertrain isolators’ design alone, the mass and inertia of the powertrain are usually considered, but in practical scenarios, a directly coupled subsystem also disturbs the boundary conditions for design. Due to the upgradation in emission norms, the exhaust aftertreatment system of modern automotive vehicles becomes heavier and more complex. This system is further coupled to the powertrain through a flexible joint or fixed joint, which results in the disturbance of the performance of the isolators. Therefore, to address this, the isolators design study is done by considering a multi-body dynamics model of vehicles with 16 DOF and 22 DOF problems, which is capable to simulate static and dynamic real-life events of vehicles. Design indicators are thoroughly analyzed and validated through the rigid body modes and
Sarna, Amit KumarSingh, JitenderKumar, NavinSharma, Vikas
Items per page:
1 – 50 of 6505