Browse Topic: Exhaust systems
In the power industry, high-power Diesel Generator (DG) sets often utilize high power V-engine cylinder configurations to enhance power output within a compact design, ensuring smoother operation and reduced vibration. In this V-engine configurations, the exhaust gas mass flow rate is significantly higher compared to inline engines of similar displacement, due to the greater number of cylinders operating in a compact space, which leads to a higher volume of exhaust gases expelled in a shorter duration. This necessitates the use of a dual Exhaust After Treatment System (EATS) to effectively manage NOx emissions. High-power gensets typically emit NOx levels around 9 g/kWh, presenting significant challenges for developers in adhering to stringent emission standards. To address these challenges and meet CPCB IV+ emission norms, we propose a dual urea dosing system integrated with a novel control strategy aimed at optimizing the treatment of exhaust gases. This paper introduces a dual
The current and upcoming Internal Combustion Engine (ICE) emission norms are very stringent. It is difficult to meet emission standards with just combustion optimization techniques. As a result, post-treatment is required for Engine-out emissions. Otherwise, these hazardous gases impact the ecosystem of living beings. Many technologies are implemented at the exhaust for reducing the emissions. Diesel Particulate Filter (DPF) is one such technique to achieve lower Particulate Matter (PM) and Particulate Number (PN) emission goals. In order to achieve such emission reduction, the DPF undergoes periodic cleaning called regeneration. During regeneration, the exhaust systems including DPF are maintained at elevated temperatures to achieve proper cleaning. When the vehicle is in regeneration, sudden braking or accelerator pedal release leads to engine Drop to Idle speeds (DTI), which sharply increases the temperature gradient inside the DPF which may result in physical damage like cracks
A cold start occurs when the engine is cranked after being off for a long time, enough for its temperature to drop down to the cold ambient levels. Cold start in an engine is a critical phase as it is characterized by elevated emissions. During a cold start, exhaust components such as catalytic converter do not operate in its optimal temperature zone leading to reduced efficiency in emission control. New regulations for engine emissions are becoming stringent for this condition, hence it is important to accurately determine cold start condition in an engine to optimize the emissions control strategy. Accurate engine off time calculation plays a crucial role in cold start detection, emissions control and On-Board Diagnostics (OBD-II) decision making. This engine off time if greater than 6 hours indicates one of the conditions to confirm a cold start. Other conditions such as Ambient temperature and coolant temperature along with the engine off time confirms a cold start. This paper
Eaton's decompression engine braking technology for medium and heavy-duty diesel engines delivers high braking power and provides several advantages to the commercial truck owner. Eaton offers rocker arm-based 1 stroke, 1.5 stroke, and 2 stroke systems for overhead cam and cam in block engine architectures. The Compression Release (CR) engine brake avoids overheating and fading of primary friction brake. It reduces or eliminates the need for a driveline retarder. One of the failure modes for Engine Brake (EB) system is excessive lateral displacement of the exhaust valve, caused by non-uniform pressure distribution across the valve during Brake Gas Recirculation (BGR) and Compression Release modes. This excessive deformation is referred to as Valve Wagging. Valve wagging significantly affects the structural stability of the engine brake mechanism. Analyzing its behavior is essential to minimize excessive wear on valve guide and Valve Seat Insert in new designs. Since evaluating the
Items per page:
50
1 – 50 of 6564