Browse Topic: Exhaust systems

Items (6,524)
This paper presents recent developments of the Euler/Lagrange wall film model which allow the efficient simulation of complete Selective Catalytic Reduction (SCR) systems, used for exhaust gas aftertreatment in diesel and newly designed H2 engines. Since release 2024R2, ANSYS Fluent is equipped with a chemistry model from recent literature to predict homogeneous chemical reactions in the film and heterogeneous reactions between gas and film occurring in SCR systems operating with aqueous urea solutions. The implementation of the chemistry model is first validated against results from Thermo–Gravimetric Analysis (TGA) measurements. The SCR–specific chemistry, combined with the Lagrangian Wall Film (LWF) model employing an improved wall–film convective heat transfer model, is then compared favorably with experimental SCR test rig measurements of urea deposits for fifty injection cycles, followed by a relaxation period. The full simulation completes significantly faster due to a new
Sofialidis, DimitriosMutyal, JayeshFaltsi, RanaBraun, MarkusBörnhorst, MarionEsch, Thomas
Selective catalytic oxidation/reduction catalysts coated on diesel particulate filters (SDPF) are an important technology route to meet next-stage emission regulations. The previous research of the research group showed that compared with SDPF coated with Cu-SSZ-13, the SDPF coated with novel selective catalytic oxidation-selective catalytic reduction (SCO-SCR) catalyst, which combined MnO2-CeO2/Al2O3 and Cu-SSZ-13, can simultaneously improve NOx reduction and soot oxidation performance. Catalyst coating strategy is an important parameter affecting the performance of SDPF. In this study, the effects of different coating strategies of SCO-SCR catalysts (C25, C50, C75, and C100) on the performance of NOx reduction and soot oxidation in SDPF were investigated. The results show that, as the inlet gas temperature increases, NO emissions first decrease and then increase, NOx conversion efficiency first increases and then decreases, and the rich-NO2 area, NH3 oxidation rate, N2O, CO, CO2
Chen, Ying-jieTan, PiqiangYao, ChaojieLou, DimingHu, ZhiyuanYang, Wenming
A diesel engine was run on off-highway cycle sequence on nine (9) fuels and blends. Number-weighted solid particle size distribution (PSD) in the size range from 5.6 nm to 560 nm was measured at inlet and outlet of a diesel particulate filter (DPF) on a sequence of five (5) non-road transient cycles (NRTCs) and five (5) non-road steady-state cycles (NRSCs). The measurements were used to correlate the fuel properties to the DPF-In concentrations and filtration of different size particles in the DPFs. The data showed an expected trend with the DPF-In emissions. Ultra-low sulfur diesel (ULSD) had the highest solid particle number (SPN) concentrations and biodiesels (soy-based biodiesel (B100) and rapeseed-based biodiesel (RME)) had the lowest concentrations. The geometric number mean diameter (GNMD) of DPF-In PSD correlates with the concentrations. The calculated GNMD was the highest for ULSD and lowest for B100/RME. An opposite trend for the GNMD was observed at the DPF-Out where the
Lakkireddy, VenkataKhalek, ImadBuffaloe, Gina
This paper investigates heated and cold Diesel Exhaust Fluid (DEF) sprays with the aim of establishing the effect of temperature on the resulting spray characteristics. The work is motivated by the need to optimize active Selective Catalytic Reduction (SCR) systems to meet more stringent nitrogen oxide (NOx) emission regulations for internal combustion engines. Pre-heating DEF has the potential to improve evaporation of the injected fluid, increasing the NOx conversion efficiency of the SCR at low exhaust temperatures. Experiments are carried out using the MAHLE SmartHeat fluid heater and mounted atop a DEF injector, with an incorporated thermocouple for fluid temperature. The fluid temperature established by the heater in this configuration was about 130 °C. The fluid is injected into an atmospheric environment and Schlieren imaging is used to visualize the spray evolution. CFD simulations are also carried out to validate the experimental observations and further shed light on the
Liu, ZeyangPeters, NathanBunce, MikePothuraju Subramanyam, SaiAkih Kumgeh, Benjamin
The adoption of hydrogen as a sustainable replacement for fossil fuels is pushing the development of internal combustion engines (ICEs) to overcome the technical limitations related to its usage. Focusing on the fuel injector in a DI configuration, it must guarantee several targets such as the adequate delivery of hydrogen mass for the given operating condition and the proper mixture formation in the combustion chamber playing a primary role in reaching the target performance in H2-ICEs. Experimental campaigns and computational fluid dynamics simulations can be used as complementary tools to provide a deep understanding of the injector behaviour and to drive design modifications in a quick and effective way. In the present work an outward opening, piezo-actuated injector purposely designed to be fuelled with hydrogen is tested on several operating conditions to evaluate its performance in terms of delivered mass flow and jet morphology using the Schlieren imaging technique. To
Pavan, NicolòCicalese, GiuseppeGestri, LucaFontanesi, StefanoBreda, SebastianoMechi, MarcoVongher, SaraPostrioti, LucioBuitoni, GiacomoMartino, Manuel
Ammonia (NH3) is emerging as a promising fuel for longer range decarbonised heavy transport, predominantly due to relative favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting ammonia’s end use to applications where robust health and safety protocols can always be assured. In the currently reported work, a spark ignited thermodynamic single cylinder research engine was equipped with separate gaseous ammonia and hydrogen port injection fuelling, with the aim of understanding the impact of varied co-fuelling upon combustion, fuel economy and engine-out emissions (and the arising implications upon future emissions after-treatment). Under stoichiometric conditions, the engine could be operated in a stable manner on pure NH3 at low-to-medium speeds and medium-to-high engine loads, with up to ~20% hydrogen (by energy) required at the lowest engine loads. Engine-out NH3 emissions remained relatively
Ambalakatte, AjithGeng, SikaiMurugan, ReeseVaraei, AmirataCairns, AlasdairHarrington, AnthonyHall, JonathanBassett, Michael
Cu/zeolite selective catalytic reduction (SCR) catalysts are used globally to reduce NOx emissions from diesel engines. These catalysts can achieve high NOx conversion efficiency, and they are hydrothermally durable under real world diesel exhaust environments. However, Cu/zeolite catalysts are susceptible to sulfur poisoning and require some type of sulfur management even when used with ultra-low sulfur diesel (ULSD). In the present study, the authors seek to better illuminate the chemical processes responsible for ammonium sulfate formation and decomposition occurring in Cu/zeolite SCR catalysts. Reactor-based experiments are first conducted with a real-world concentration of SO2 (0.5 ppmv) and a typical diesel exhaust water vapor concentration (7 vol.%) to quantify progressive effects of ammonium sulfate formation. A second group of experiments probe the chemical decomposition of ammonium sulfate via NO titration. The “movement” of sulfate species during this process is monitored
Ottinger, NathanXi, YuanzhouLiu, Z. Gerald
As part of decarbonization, alternative fuels are likely to be used in compression ignition internal combustion engines as a substitute for diesel fuel. There have been many studies on the effect of these alternative fuels on emissions and catalytic aftertreatment systems. Past research has reported lower particulate matter (PM) and higher oxides of nitrogen (NOx) with biofuels. However, there are limited studies on the effect of PM on the performance of diesel particulate filters (DPFs), especially in its effectiveness of PM filtration. PM emissions from four (4) types of fuels and five (5) of their blends, a total of nine fuels, were investigated using PM2.5 mass, soot mass, solid particle number (> 10 nm SPN10 and > 23 nm SPN23) and size distribution (6 nm to 560 nm) measurements at inlet and outlet of a DPF. The PM emissions were measured over a non-road regulatory cycle sequence consisting of five (5) non-road transient cycles (NRTCs) and five (5) non-road steady-state cycles
Lakkireddy, VenkataKhalek, ImadBuffaloe, Gina
The upcoming EURO 7 and EPA Tier 4 regulations and the possible China 7 are expected to tighten the tailpipe particulate emissions limits significantly. High performance Gasoline Particulate Filters (GPFs) with high filtration efficiency and low pressure drop would be mandated for gasoline engines to meet these stringent regulations. Due to packaging constraints, GPFs are often coated with three-way catalyst (TWC) materials to achieve four-way functionality. Ash accumulation in GPFs also has a significant impact on the performance of GPFs. This paper utilizes 3D CFD to predict the transient filtration efficiency and pressure drop of a washcoated GPF with ash accumulation during the soot loading process. Simulation results show a decent match with experimental data. The 3D CFD model also provides detailed information on soot penetration in the GPF wall substrate and soot cake characteristics on the wall. These information can be crucial for GPF wall substrate design and washcoating
Yang, PengzeCheng, Zhen
With the tightening of emission regulations, Electrically Heated Catalyst (EHC) are an important technical solution for diesel vehicles to address the emission challenges of cold start and Real Driving Emission (RDE). This paper investigates the impact of EHC coupled exhaust aftertreatment system (Diesel Oxidation Catalyst (DOC) + Selective Catalytic Reduction Integrated into Diesel Particulate Filter (SDPF) + Selective Catalytic Reduction (SCR) - Ammonia Slip Catalyst (ASC)) on the energy consumption and emission characteristics of light-duty diesel vehicles based on the World Light Vehicle Test Cycle (WLTC) and RDE. The research results show that under WLTC conditions, compared to EHC off, the time for the SDPF inlet temperature to reach 180 °C when EHC on is 44 seconds earlier. The Carbon Monoxide (CO) emission of diesel vehicles is 63.5 mg/km, the Total Hydrocarbon (THC) emission value is 44.9 mg/km, the Non-Methane Hydrocarbon (NMHC) emission value is 39.5 mg/km, and the Nitrogen
Kang, LuluZhao, ZhiguoLou, Diming
This is a follow-up paper to the two previous reports [1, 2] regarding the development of a zeolite-based, hydrocarbon (HC) trap-type cold-start catalyst (CSC) as a method to meet future vehicle tailpipe emission standards. In this paper, vehicle tests at a low ambient temperature of -7°C have been performed and the CSC has been shown to further decrease the tailpipe cold start non-methane hydrocarbon (NMHC) emissions by 59% when compared to a standard 23°C WLTC test. This work has proven that the increased presence of condensed water at low ambient temperatures within the exhaust system does not affect the ability to provide a NMHC reduction, in fact the lower ambient temperature enables an increase in the reduction capability due to the ability to retain and then release the stored NMHC in a more controlled manner. Additionally, the impact of the zeolite loading level was investigated and the high zeolite loading within a CSC did improve the cold-start NMHC but the benefits did
Xu, LifengZhao, FuchengWei, HongZhao, PengfeiZhao, JiajiaMa, RuiboNewman, PhilipWang, LinQian, WangmuQian, Menghan
Urea-based selective catalytic reduction (SCR) systems are widely used to meet stringent NOx emission standards in industrial diesel engines. However, suboptimal design of the urea-water solution (UWS) mixing pipes in SCR systems can lead to the formation of urea-derived solid deposits, which may adversely affect the system performance and reliability. Although recent advancements in deposit simulation technology using three-dimensional Computational Fluid Dynamics (3D CFD) have significantly improved the performance and compactness of mixing pipes, assessing deposit formation across all operating and environmental conditions remains challenging due to high simulation costs. This study introduces a novel computational method for predicting the formation and temperature of permanent liquid films from UWS injection which are closely related to deposit formation, along with new deposit evaluation criteria based on them. This proposed method integrates a one-dimensional heat transfer model
Sugimoto, KazumaKawabe, Ken
An experimental study was conducted on a multi-cylinder engine equipped with both intake and exhaust continuously variable valve duration (CVVD). Due to CVVD and continuous variable valve timing (CVVT), valve closing and opening timings of both intake and exhaust sides became decoupled, so that four valve timings (opening and closing timings of intake as well as exhaust sides) can be optimized under each engine condition. Theses independent valve timings allowed reductions of fuel consumption as well as particle number (PN) and stoichiometry combustion under full-load condition without compromise of performance. In addition, to reduce raw gaseous emissions and shorten light-off time of catalyst under catalyst heating condition, various valve timings were tested in the engine test bench. As results, nitrogen oxides (NOx) – total hydrocarbon (THC) trade-off relation was relieved by optimal valve timings including negative valve overlap duration compared to the base engine. As the last
Jung, JinyoungHan, SangyeonPark, SangjaeKwon, Ki YoungSon, YousangKim, Back-SikKim, Youngnam
Methanol is one of the most promising fuels for the decarbonization of the off-road and transportation sectors. Although methanol is typically considered an alternative fuel for spark ignition engines, mixing-controlled compression ignition (MCCI) combustion is typically preferred in most off-road and medium-and heavy-duty applications due to its high reliability, durability and high-efficiency. In this paper, methanol MCCI combustion was enabled using ignition improvers and the potential benefits of this approach compared to conventional diesel combustion were investigated. Methanol was blended with 7%vol of 2-ethylhexyl nitrate (EHN) and experiments were performed in a single-cylinder production-like diesel engine with a displacement volume of 0.8315 L and a compression ratio of 16.5:1. The conditions of the ISO 8178 C1 regulatory cycle for off-road engines were tested, and performance and emissions over the cycle were calculated. Methanol MCCI shows 5.3% lower fuel consumption (in
Lee, SangukLopez Pintor, DarioMacDonald, JamesNarayanan, AbhinandhanChan, Adrian
Parts in automotive exhaust assembly are joined to each other using welding process. When the exhaust is subjected to dynamic loads, most of these weld joints experience high stresses. Hence it should be ensured that the exhaust assembly is designed to meet the requirements of exhaust durability for the estimated life of the vehicle. We also know that all parts used in manufacturing of exhaust system have inherent variations with respect to sheet metal thickness, dimensions and shape. Some parts like flex coupling and isolators have high variations in their stiffness based on their material and manufacturing processes. This all leads to a big challenge to ensure that the exhaust system meets the durability targets on a vehicle manufactured with all these variations. This works aims to evaluate the statistical spread in weld life of an exhaust with respect to inherent variations of its components. For the purpose of variational analysis, a Design of Experiments (DOE) is done where
Ramamoorthy, RajapandianBazzi, Ramzi
This paper presents transient, complex, moving mesh, 3-D CFD analysis of an intebrake lubrication oil circuit for predicting flow performance. Intebrake is a mechanism for improving braking performance during over speeding conditions. The mechanism briefly opens the exhaust valve at the end of a compression stroke with a small valve lift and releases the compressed gases, thereby helping in quick application of the brake. There is no fueling during the process and hence, no combustion induced pressure rise which helps in quick application of the brake. During the intebrake operation, opening of the exhaust valve is achieved by using a complex lube oil circuit inside the exhaust rocker lever. The intebrake lube oil circuit consists of various spring-operated valves with micro-sized clearances, high oil pressure generation up to ~ 250 bar, 3-D movement of the mechanism components, and it is a transient operation. The 3-D movement consists of simultaneous rotational and translational
Tawar, Ranjit RamchandraPasunurthi, Shyam SundarBedekar, SanjeevRanganathan, Raj
Hydrogen is a viable option to power high-performance internal combustion engines while reducing pollutant emissions thanks to its high lower heating value (LHV) and fast combustion rate. Furthermore, if compared to gasoline, hydrogen is characterized by a higher ignition delay time, which makes it more knock-resistant under the same thermodynamic conditions. In this paper, hydrogen potential as a fuel in a high-performance PFI naturally aspirated engine under stoichiometric conditions and high load regimes is investigated through zero and three-dimensional simulations. The analyses show that a stoichiometric hydrogen mixture reaches higher pressure and temperature values during compression than iso-octane at the same operating conditions, hence limiting the maximum engine compression ratio to avoid undesired ignitions throughout the combustion process. Additionally, hydrogen low density causes a reduction in terms of trapped energy inside the cylinder. Thus, despite its LHV is almost
Madia, ManuelVaccari, MarcoDalseno, LucaCicalese, GiuseppeCorrigan, DaireVilla, DavideFontanesi, StefanoBreda, Sebastiano
Diesel Particulate Filters (DPFs) have been used extensively worldwide as a Particle Mass (PM) / Particle Number (PN) reduction technology for various diesel applications. Based on CARB’s latest Tier 5 regulation workshop, PM emission targets are expected to become a lot more stringent; from 0.02 g/kWh to 0.005 g/kWh (75% reduction compared to Tier 4 Final (Tier 4f)). Also, CO2 emission targets are expected to be introduced for Tier 5. In parallel, EU Stage VI emission regulation standards and implementation timing could be announced sometime in late 2024. It is expected that PN emission standards will be tightened such as extending measurement range of PN from 23 nm to 10 nm. With Tier 5 and EU Stage VI regulations approaching, several OEMs are considering implementing a common aftertreatment system that can meet emission targets for both regions. High filtration efficiency and low backpressure DPFs will be required to meet PM/PN and CO2 emission standards. NGK has developed several
Fakih, HusseinElizondo, ZacheryIshikawa, HiroakiYoshioka, FumihikoKato, KyoheiSuzuki, HiroakiAoki, TakashiIto, Yoshitaka
With the increasing clarity of the CNVII emission legislation, it is foreseeable that CNVII will further tighten the emission limits of major pollutants such as Nitrogen Oxide (NOx), Nitrous Oxide (N2O) and Particulate Number (PN). Together with the implementation of stage IV fuel consumption legislation in July 2025, which requires engine fuel consumption reduction or thermal efficiency improvement, it will lead to further deterioration of its pollutant emissions and reduction of exhaust temperature, posing greater challenges to the After-Treatment System (ATS) in terms of NOx removal, particularly during engine cold start and N2O formation suppression. This study is an extension of our earlier investigation [1], and a novel copper-based corrugated SCR (Full Body-CuSCR, FB-CuSCR) technology was successfully applied. The results based on a modified CNVI medium duty engine indicated excellent dynamic response of the FB-CuSCR technology over cordierite which helped to improve the
Wang, YanFu, GuangxiaChen, ShuyueAberg, AndreasJiang, ShuiyanZhang, Jun
The heavy-duty low NOx program funded by EMA at Southwest Research Institute (SwRI) evaluates a combination of engine and advanced aftertreatment systems to achieve a 0.035 g/bhp-hr tailpipe NOx standard. This work emphasizes improvements to the light-off SCR (LO SCR) model used for low NOx controls. Two key mechanisms drive these improvements: the first is a real-time feedback system that utilizes the LO SCR outlet NOx sensor for short-term corrections to the model state, and the second involves adjustments to the dosing mechanism based on long-term trends in dosing signals compared to predicted NH3 consumption, derived from LO SCR inlet and outlet NOx sensors, referred to as long-term trim. An algorithm is incorporated to differentiate the LO SCR outlet NOx sensor readings into NOx and NH3 components based on cross-correlation between inlet and out NOx sensors termed as speciation. The integration of this speciation algorithm with both short-term and long-term trim mechanisms
Chundru, Venkata RajeshAdsule, KartikSharp, Christopher
Upcoming California Tier 5 non-road limits mandate 90% and 75% reductions in NOx and PM respectively, from current Tier 4F emission standards. Similarly, lower NOx and PN/PM limits can be expected from a next round of European Non-Road regulations. To meet these limits, more SCR volume for greater NOx reduction, and better filtration efficiency filters for greater PN/PM reduction, may be required. The challenge is to accommodate larger SCR volume while maintaining oxidation (DOC) and filtration (DPF) functionality of the aftertreatment system within a limited packaging space on non-road machineries. Consolidating DOC and DPF into a single component as DOC-on-filter instead of separate DOC and DPF substrates to achieve space saving has been previously discussed in literature. This study expands on the current understanding and explores various functional performance characteristics of the DOC-on-filter concept in comparison with DOC + bare DPF, DOC + PGM coated DPF. The three test
Dam, MrinmoyWarkins, JasonHe, Suhao
Hydrogen internal combustion engines (H2-ICE) do not emit any fuel-borne carbon emission species. Nitrogen oxides are the remaining raw emission species at significant levels. However, the exhaust aftertreatment system is exposed to a different exhaust matrix, including unburned hydrogen. This raises the question of the role of hydrogen emissions for the aftertreatment system. Extensive synthetic gas bench (SGB) test campaigns address the role of hydrogen in several production catalyst components. Starting with selective catalytic reduction (SCR) systems, a systematic variation of the hydrogen concentration shows rather small effects on the NOX reduction performance. A change in selectivity results in increased secondary N2O emissions for a copper-zeolite system, whereas a vanadium-based SCR catalyst is unaffected. However, both SCR types are highly sensitive to the NO2/NOX ratio in the raw emission. Therefore, an upstream oxidation catalyst remains important for low temperature
Sterlepper, StefanLampkowski, AlexanderHimmelseher, KatrinÖzyalcin, CanClaßen, JohannesPischinger, Stefan
With the rapid development of smart transport and green emission concepts, accurate monitoring and management of vehicle emissions have become the key to achieving low-carbon transport. This study focuses on NOx emissions from transport trucks, which have a significant impact on the environment, and establishes a predictive model for NOx emissions based on the random forest model using actual operational data collected by the remote monitoring platform.The results show that the NOx prediction using the random forest model has excellent performance, with an average R2 of 0.928 and an average MAE of 43.3, demonstrating high accuracy. According to China's National Pollutant Emission Standard, NOx emissions greater than 500 ppm are defined as high emissions. Based on this standard, this paper introduces logistic regression, k-nearest neighbor, support vector machine and random forest model to predict the accuracy of high-emission classification, and the random forest model has the best
Lin, YingxinLi, Tiezhu
With the continuous upgrading of emission regulations for internal combustion engines, the nitrogen oxide treatment capacity of selective catalytic reduction (SCR) aftertreatment needs to be continuously improved. In this study, based on a prototype of SCR aftertreatment, the impact of the arrangement of key components in the SCR system (urea injector, mixer, and catalyst unit) on ammonia uniformity was investigated. First, parameterized designs of the urea injector, mixer, and SCR unit were conducted. Then, using computational fluid dynamics (CFD), numerical simulations of the established aftertreatment system models with different parameter factors were performed under a high-exhaust temperature and a low-exhaust temperature conditions to study the impact of each individual parameter on ammonia uniformity. Finally, an optimized solution was designed based on the observed patterns, and the optimized samples were tested on an engine performance and emission test bench to compare their
Jie, WangJin, JianjiaoWu, Yifan
Backpressure is one of key acoustic performance evaluation criteria of exhaust muffler (or Silencer) /EATS (Exhaust after treatment system) as well as for the exhaust system. Exhaust back pressure is an important parameter for fuel efficiency of a vehicle. Typically, the engine manufacturer specifies an upper limit for this. Usually, exhaust back pressure is measured during the driving condition of the vehicle at maximum power condition of the engine either on road or on chassis dynamometer. Both these methods, need a lot of preparatory works, test setup arrangement, 3 or more manpower and special skills. In this research, authors are tried to develop a new backpressure measurement set up for automotive vehicle application, which is simple and innovative, to fulfill the backpressure test requirement. In this design, mainly following devices are used namely Pitot tube, Compressed air, Manometer (or pressure gauge), Thermocouple, Fluke thermometer, along with standalone exhaust layout
Mandal, GoutamBiswas, Sanjoy
Widely used as power equipment, diesel engines emit NO x , which significantly threatens the well-being of both the ecosystem and individuals. The SCR system, which is employed to reduce NO x emissions from diesel engines, relies on precise control of the NO x emission levels. Addressing the challenge that traditional NO x emission prediction methods struggle to accurately forecast the emissions under transient operating conditions, this article introduces a deep learning model that integrates CNN, ECA, and BIGRU. The model’s necessary experimental data were collected during the hot phase of the WHTC, and input parameters were screened through correlation analysis. The model employs a CNN for feature extraction, integrates an ECA module to refine key feature processing, and utilizes BIGRU to capture temporal dynamics and dependencies, yielding predictive outcomes. Additionally, the model employs the Adam optimizer and combines it with BWO to adjust hyperparameters, thereby elevating
Peng, YunlongWang, GuiyongWang, YuhuaWang, FeiyangWang, ZhiyuanHe, Shuchao
This paper presents a strategy to reduce exhaust noise in fuel cell vehicles. It focuses on optimizing the exhaust system. The innovation is an integrated muffler device. It combines a vapor separator and an absorptive-reactive muffler. The vapor separator removes moisture from exhaust gases. This prevents damage to sound-absorbing materials. It keeps mufflers functional for longer. Fuel cell vehicles produce noise across a wide frequency range. This makes noise reduction challenging. The absorptive-reactive muffler improves noise attenuation. It works across the full frequency spectrum. The combination of the separator and muffler enhances noise reduction. Simulations show high transmission loss. They also confirm acceptable back pressure. Real-vehicle testing supports these results. The optimized system reduces idle noise by 22.1 dB(A). This is a 32.4% reduction. Blowdown noise is reduced by 46.3 dB(A), or 40.1%. Full-throttle noise drops by over 20 dB(A), a 17.2% decrease. The
Zhou, JiawangJiang, XiaokunQiu, YongjinChen, JiyuanFeng, PengfeiXie, QiguangXie, XiaopingTan, Ligang
NOx after-treatment has greatly limited the development of lean-burn technology for gasoline engines. NH3-Selective Catalytic Reduction (SCR) technology has been successfully applied to NOx conversion in diesel engines. For gasoline engines, SCR catalyst is required to maintain high activity over a higher temperature window. In this study, we utilized a turbocharged and intercooled 2.0 L petrol engine to investigate the NOx conversion of two zeolite-based SCR catalysts, Cu-SSZ-13 and Fe/Cu-SSZ-13, at exhaust flows ranging from 80 to 300 kg/h and exhaust temperatures between 550 to 600°C. The catalysts were characterized using SEM, ICP, XRD, H2-TPR, NH3-TPD, and other methods. The selected Fe/Cu-SSZ-13 catalyst showed higher NOx conversion (>80%) in the temperature range of 550~600oC and 80~300 kg/h exhaust gas flow. NOx output could be controlled below 10ppm. The characterization results showed that although the specific surface area and acidic sites decreased after the aging treatment
Pan, ShiyiWang, RuwenZhang, NanXu, ZhiqinHu, JiangtaoLiao, XiukeDuan, PingpingChen, Ruilian
In the context of global energy shortages and increasing environmental pollution, improving energy efficiency in automobiles has become a key area of research. Traditional internal combustion engines exhibit low energy conversion efficiency, with a significant portion of fuel energy wasted as exhaust heat. To address this issue, this paper proposes an integrated thermoelectric generation, catalytic conversion, and noise suppression system (ITGCMS) aimed at recovering waste heat from vehicle exhaust, while optimizing emissions and noise reduction through the combination of a catalytic converter and a muffler. A three-dimensional model was established using COMSOL software to thoroughly analyze the system's thermoelectric generation, catalytic conversion, and acoustic performance. The study found that Model B demonstrated the best thermoelectric performance, with an average surface temperature of 300.2°C and a more uniform temperature distribution across the thermoelectric modules
Wu, Ji-XinSu, Chu-QiWang, Yi-PingYuan, Xiao-HongLiu, Xun
Lean NOx trap is a dedicated DeNOx catalyst for lean hybrid gasoline engines. Noble metals (usually platinum group metals) play the role of catalytic sites for NOx oxidation and reduction, which have significant impact of the performance of LNT. This work focuses on the influence of noble metal catalysts on self-inhibition effect from the view of competitive adsorption between NO and CO, and investigates the influence of CO self-inhibition effect on the main by-product of LNT: N2O formation. Adsorption configurations for NO, CO and N2O on noble metal clusters supported by γ-Al2O3(100) are confirmed. For detailed investigation, electron structures are analyzed by investigating Bader charge, DOS (density of state), charge density differences and COHP (crystal orbital Hamilton population) of selected configurations.The results show that CO self-inhibition effect is caused by competitive adsorption between CO and NO. The essence of competitive adsorption between CO and NO is that
Liu, MingliLiu, YaodongQu, HanshiDuan, JiaquanZhang, QiqiQian, DingchaoWang, ZhenxiHe, Zhentao
Otto Cycle can operate with both gasoline and ethanol; however, these fuels have different properties that will result in different performance parameters. This work aims to compare the thermal energy balance of an internal combustion engine fueled with gasoline and ethanol. The experimental tests were carried out on a dynamometer bench varying engine speed between 1500 and 6000 rpm and at full load condition. The results showed that the engine’s maximum thermal efficiency ranged from 30.51% with gasoline to 31.72% with ethanol. The percentage of energy dissipated to the cooling system varied from 16.93% with gasoline from 16.12% with ethanol. The percentage of energy dissipated to the exhaust system ranged from 32.82% with gasoline from 34.64% with ethanol. The percentage of energy wasted due to incomplete fuel combustion varied from 3.50% with gasoline from 10.00% with ethanol. The percentage of energy dissipated to the lubrication system ranged from 3.95% with gasoline from 3.76
Santana, Claudio MarcioSantana, Linicker Lopes BrunoAlmeida, Helder Giostri Alves
The objective of this study is to investigate the root cause of cracks detected in the Turbocharger bracket belonging to the engine Mercedes-Benz OM471 (Power: 390kW, Torque: 2600Nm) from Vehicle Truck Mercedes-Benz Actros 2651LS 6x4 Euro V. The investigation started with the instrumentation of every related component (besides the bracket itself, the charge air pipe, the exhaust pipe and also the crankcase for reference) in order to perform a vibration measurement. The necessary equipment to execute this procedure, included accelerometers, temperature sensors, strain gages and an inductive engine speed sensor. All data had to be acquired directly from real application conditions in vehicle, maximum load of 74 ton in a previously defined mountain road track, due to the impossibility to generate similar results in comparison to the ones detected on road through bench tests (or any other in-door experiment). The bracket position is located on the right side of a diesel combustion engine
Feijó, Igor SommerfeldGonçalves, Carlos Aurélio Bustamante
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
Vandresen, Marcelodos Santos, Luciano Amaury
Increasingly stringent emission regulations continue to be legislated around the world to significantly minimize pollutants released to the air by internal combustion engines. After Treatment Systems (ATS) meant for reducing oxides of nitrogen (NOx) in the exhaust into non-harmful species have evolved at a rapid pace over the past two decades. Stringent emissions requirements have driven complex ATS architecture through sensors to measure delta-pressure, NOx, and temperatures. Accurate and precise performance of individual components as well as the integrated ATS is required to ensure regulatory compliance and efficient performance. Both of which require substantial amounts of performance and validation testing. Manufacturers have been developing the ability to accurately and efficiently test the ATS components. To meet the norms for tail pipe or stack emissions of NOx in ‘as new’ condition and during the entire ‘emissions useful life (EUL)’ of the ATS, all components of an ATS must
Raut, Pratiksha COttikkutti, PradheepramPhadke, Abhijit NarahariMagar, Vijay A.
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
Titave, Uttam VasantZalaki, NitinNaidu, Sudhakara
As a journey to green initiatives, one of the focus areas for automotive industry is reducing environmental impact especially in case of internal combustion engines. Latest digital twin technology enable modelling complicated, fast and unsteady phenomena including the changes of emission gases concentration and output torque observed during diesel emission and combustion process. This paper presents research on the emission and combustion characteristics of a heavy vehicle diesel engine, elaborating an engineered architecture for prognostics/diagnostics, state monitoring, and performance trending of heavy-duty vehicle engine (HDVE) and after treatment system (ATS). The proposed architecture leverages advanced modeling methodologies to ensure precise predictions and diagnostics, using data-driven techniques, the architecture accurately model’s engine and exhaust system behaviors under various operating conditions. For exhaust system, architecture demonstrates encouraging predictive
Singh, PrabhsharnThakare, UjvalHivarkar, Umesh
As vehicle emission standards are becoming stringent worldwide because of the looming climate crisis, it is important to control the pollutants that vehicles emit. To achieve the stringent emission target, it has become a priority to enhance the capability of Emission Control System (ECS) which consist of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) sub-systems. One of the bottlenecks is the limited operating temperature range of the after-treatment system. In modern emission control systems, the temperature characteristics should always be optimized to have the best efficiency involving chemical conversions. To achieve this optimal operating temperature, different thermal control strategies are followed in the Engine and emission control unit. Temperature sensor values are one of the primary inputs for thermal management strategies. In the event of temperature sensor malfunction, the ECS performance is affected due to
Kumar, AmitV H, YashwanthKumar, RamanHegde, KarthikManojdharan, Arjungopal
The present study aims to meet the Euro-VII compliance applicable for internal combustion engines (diesel and hydrogen) by improving the performance of selective catalytic reduction (SCR) system using a novel urea water solution (UWS) mist injection technique. In SCR system, the interaction of exhaust gas and UWS resulted into ammonia (NH3) species, which is mixed with harmful NOx emission and converted into harmless by-products. Despite the proven technology, there are several challenges presented in the existing system which restricts the ideal performance of SCR system especially during cold starting condition: (i) incomplete droplet evaporation (ii) solid deposit formation (iii) non uniformity of NH3 distribution at the catalyst entrance. The past studies shows that the droplet size plays a major role in this context. Further, it is noted that the smaller size droplets are desirable to overcome the impediments and enhance the efficiency of SCR application. Therefore, it is decided
Venkatachalam, PalaniappanShiva, ShashidharGovindarajan, VaishaliSoni, PrernaPatidar, Sachin
The gasoline particulate filter (GPF) represents a durable solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as a viable technology in North America to meet the upcoming US EPA tailpipe emission regulation, the proposed “Multipollutant Rule for Model Year 2027”. The goal of this study was to track the evolution of tailpipe particulate emissions of a modern GTDI light duty vehicle under typical North American mileage accumulation; from a fresh state to 4000-mile, and finally to its full useful life of 150,000-miles. For this purpose, a production TWC + GPF after-treatment system was installed in place of the T3B85 TWC-only system. Chassis dyno emissions testing was performed at the pre-determined mileage points with on-road driving conducted for the necessary mileage accumulation. This report will show the outstanding filtration durability and enhanced particulate control and of the current GPF technology all the way to 150,000 miles for
Craig, AngusWarkins, JasonBeattie, JamesNipunage, SanketMoser, DavidDay, RyanBanker, Vonda
A major challenge for auto industries is reducing NOx and other exhaust gas emissions to meet stringent Euro 7 emission regulations. A urea Selective Catalyst Reduction (SCR) after-treatment system (ATS) commonly uses upstream urea water injection to reduce NOx from the engine exhaust gas. The NOx emission conversion rate in ATSs is high for high exhaust gas temperatures but substantially low for temperatures below 200°C. This study aims to improve the NOx conversion rate using urea pulse injection in a mass-production 2.2 L diesel engine equipped with an SCR ATS operated under low exhaust gas temperature. The engine experimental results show that, under 200°C exhaust temperature and 3.73x104 h-1 gross hourly space velocity (SV), the NOx conversion rate can be improved by 5% using 5-sec ON and 12-sec OFF (denoted as 5/12 s) urea pulse supply compared to the constant supply under time-averaged 1.0 urea equivalence ratio. It is experimentally observed that the urea pulse supply’s
Yoshida, FukaTakahashi, HideakiKotani, YuyaZu, QiuyueSok, RatnakKusaka, Jin
Selective catalytic reduction (SCR) technology is currently one of the most effective methods to reduce NOx emissions for engine. NH3-SCR technology is also considered to be the most promising hydrogen engine after-treatment device. This paper used Cu-SSZ-13, which is widely commercially available, as the research object, and explored the relationship between micron and nanoscale grain sizes through experimental methods such as BET, XRD, NH3-TPD, UV-vis-DRS and activity testing, the influence mechanism of micron-scale and nano-scale grain size on the morphology and properties of Cu/SSZ-13 catalyst was explored. The results show that the fresh nanoscale 900F sample has higher low-temperature NOx conversion efficiency, while the micron-scale 1800F sample has poor low-temperature activity and better high-temperature activity. This is closely related to its morphological characteristics, adsorption and desorption characteristics and dual-site properties. The specific surface area and total
Chen, YajuanLou, DimingZhang, YunhuaTan, PiqiangFang, LiangHu, Zhiyuan
Modern automotive powertrains are operated using many control devices under a wide range of environmental conditions. The exhaust temperature must be controlled within a specific range to ensure low exhaust-gas emissions and engine-component protection. In this regard, physics-based exhaust-temperature prediction models are advantageous compared with the conventional exhaust-temperature map-based model developed using engine dyno testing results. This is because physics-based models can predict exhaust-temperature behavior in conditions not measured for calibration. However, increasing the computational load to illustrate all physical phenomena in the engine air path, including combustion in the cylinder, may not fully leverage the advantages of physical models for the performance of electric control units (ECUs). This study proposes an onboard physics-based exhaust-temperature prediction model for a mass-produced engine to protect the engine exhaust system and reduce exhaust emissions
Yamaguchi, SeiyaTomita, MasayukiUrakawa, ShinjiOokubo, Seiichi
The selective catalytic reduction (SCR) is a technique, which is using in diesel engine to reduce harmful nitrogen oxide (NOx) emissions. SCR technique involves the injection of urea-water-solution (Water-urea solution) into the hot exhaust stream. The water first evaporates and then urea undergoes thermal decomposition. The thermal decomposition of urea produces ammonia, which reacts with the nitrogen oxides inside a SCR catalyst layers and nitrogen and water vapor are the final product. The production of ammonia from urea strongly influenced by the droplet size, residence time of the droplets inside decomposition chamber and exhaust gas temperature. During the combustion process of Diesel engines, Nitrogen oxide (NOx) is produced as a pollutant which is harmful for environment. Acceptance level of (NOx) is made more stringent in BS-VI and subsequent standards to regulate (NOx) levels. In SCR system NH3 reacts with (NOx) and converts N2 and H2O. Ammonia (NH3) concentration and
Chaudhary, Alok SubhashGhodake, PreetamBiswas, Kundan
Modern diesel engines temporarily use a very late post-injection in the combustion cycle to either generate heat for a diesel particulate filter regeneration or purge a lean NOx trap. In some configurations, unburned fuel is left at the cylinder walls and is transported via the piston rings toward the lower crankcase region, where fuel may dilute the oil. Reduced oil lubrication shortens the oil service intervals and increases friction. Beside diesel fuel, this problem may also occur for other types of liquid fuels such as alcohols and e-fuels. The exact transport mechanism of the unburned fuel via the piston ring pack grooves and cylinder wall is hard to measure experimentally, motivating numerical flow simulation in early design stages for an in-depth understanding of the involved processes. A new CFD simulation methodology has been developed to investigate the transient, compressible, multiphase flow around the piston ring pack, through the gap between piston and liner, and its
Antony, PatrickHosters, NorbertBehr, MarekHopf, AnselmKrämer, FrankWeber, CarstenTurner, Paul
The shape and energy distribution characteristics of exhaust pulse of an asymmetric twin-scroll turbocharged engine have a significant impact on the matching between asymmetric twin-scroll turbines and engines, as well as the matching between asymmetric twin scrolls and turbine wheels. In this article, the exhaust pulse characteristics of an asymmetric twin-scroll turbocharged engine was studied. Experiments were conducted on a turbine test rig and an engine performance stand to determine the operation rules of exhaust pulse strength, turbine flow parameters, turbine isentropic energy, and turbine efficiency. The results showed that the exhaust pulse strength at the inlets of both the small and large scrolls continuously decreased with the increase of engine speed. And the flow parameters at the inlets of the small and large scrolls exhibited a “ring” or “butterfly” shape with the change of expansion ratio depending on the pressure deviation of the extreme points at the troughs on both
Wu, LiangqinJin, JianjiaoWang, JieZhang, Chenyun
Minimizing vibration transmitted from the exhaust system to the vehicle’s passenger compartment is the primary goal of this article. With the introduction of regulatory norms on NVH behavior and emissions targets, it has become necessary to address these issues scientifically. Stringent emissions regulations increased the complexity of the exhaust system resulting in increased size and weight. Exhaust system vibration attenuation is essential not only from the vehicle NVH aspects but also for the optimized functionality of the subsystems installed on it. Based on earlier studies, this work adopts a more thorough strategy to reduce vehicle vibration caused by the exhaust system by adjusting it to actual operating conditions. To achieve this, a complete vehicle model of 22 DOF is considered, which consists of a powertrain, exhaust system, chassis frame, and suspension system. A method for evaluating static and dynamic vibration response is proposed. Through the use of the vehicle’s rigid
Sarna, Amit KumarSingh, JitenderKumar, NavinSharma, Vikas
Items per page:
1 – 50 of 6524