Browse Topic: Exhaust systems
Lean NOx trap is a dedicated DeNOx catalyst for lean hybrid gasoline engines. Noble metals (usually platinum group metals) play the role of catalytic sites for NOx oxidation and reduction, which have significant impact of the performance of LNT. This work focuses on the influence of noble metal catalysts on self-inhibition effect from the view of competitive adsorption between NO and CO, and investigates the influence of CO self-inhibition effect on the main by-product of LNT: N2O formation. Adsorption configurations for NO, CO and N2O on noble metal clusters supported by γ-Al2O3(100) are confirmed. For detailed investigation, electron structures are analyzed by investigating Bader charge, DOS (density of state), charge density differences and COHP (crystal orbital Hamilton population) of selected configurations.The results show that CO self-inhibition effect is caused by competitive adsorption between CO and NO. The essence of competitive adsorption between CO and NO is that
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
Items per page:
50
1 – 50 of 6528